低温陶瓷轴承自润滑材料制备及其转移膜润滑机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展,一些深冷高速重载极苛刻工况条件下工作的轴承如氢氧火箭发动机涡轮泵用滚动轴承只能依靠保持架提供的转移膜来润滑,工作条件十分恶劣,我国正在研制的大推力火箭发动机与将来可重复使用运载系统都对发展长寿命高可靠转移膜润滑材料提出了迫切而苛刻的要求,因此,研制新型自润滑保持架材料并揭示其润滑机理对解决超低温条件下轴承的延寿及可靠性问题具有重要意义。
     本文分析了在超低温条件下与保持架有关的滚动轴承的主要失效形式,提出了相应的自润滑保持架材料的成分设计依据,设计了四种材料组分方案。研究了PTFE基自润滑复合材料成型工艺条件,确定了合理的搅拌速度、压制压力和烧结温度曲线。考察了每种方案中增强剂含量对复合材料摩擦磨损性能和力学性能的影响。测试结果表明:四种方案中,碳纤维增强PTFE复合材料的摩擦系数最大,其范围在0.2~0.25之间,磨损率也较高,当碳纤维含量由10%增加到20%时,复合材料抗冲击能力较好;其它三种方案中复合材料的摩擦系数在0.15~0.18之间,磨损率也较低,其中聚苯酯和PAB纤维增强PTFE复合材料的耐磨性最好,石墨和纳米ZnO均能降低复合材料的冲击韧性,当聚苯酯含量低于15%时,复合材料的冲击韧性较高。
     综合考虑摩擦磨损特性和冲击韧性,在每种方案中优选出摩擦系数较低、耐磨性适中和冲击韧性较好的复合材料。测试了优选出的复合材料的动态力学特性,研究结果表明:在25℃~200℃之间,在同一温度下,除填充碳纤维复合材料的储能模量与纯PTFE接近外,其它复合材料的储能模量均比纯PTFE高;在实验测试温度范围内,填充增强剂后,可明显降低复合材料的损耗因子,从而可降低复合材料的形变迟滞摩擦系数。
     研究了PTFE及其复合材料的热膨胀特性及导热性能。研究结果表明:PTFE及其复合材料在15℃~32℃之间发生结晶转变与结晶松弛,宏观表现为体积突然膨胀,而保持架的加工温度恰好在此范围内,因此,保持架在加工和检测时,要考虑复合材料由于结晶转变和结晶松弛造成的尺寸误差。由于复合材料线膨胀系数比金属线膨胀系数大,在大温差环境下导向配合间隙受温度的影响变化显著。PTFE中填充石墨可明显改善其导热性能,除石墨外,填充纤维对复合材料导热率的提高比填充粉末材料显著。研究结果为精确设计保持架结构参数和优化加工工艺提供了依据。
     探讨了PTFE基自润滑复合材料结构特性和环境温度及工况条件对其摩擦性能影响机理;并且用XPS分析了在干摩擦和在液氮介质中形成的转移膜的化学成分及转移膜与对偶件表面发生的化学反应。研究结果表明:影响聚合物基复合材料摩擦系数的主要因素是复合材料与对偶件之间的分子作用力、名义接触应力、复合材料的损耗因子、硬度、储能模量。纳米ZnO/PAB/PTFE复合材料与9Cr18对摩,在干摩擦条件下形成的转移膜厚而致密,在低温条件下形成的转移膜薄且不连续。两种条件下形成的转移膜都存在PTFE中的部分CF2键断裂,F原子与钢销表面的Fe发生化学反应,生成FeF3。
     研制了低温高速摩擦实验系统,测试了5种PTFE基复合材料在液氮介质中的摩擦性能及极限PV值,并计算了复合材料接触表面的温度。实验结果表明:在液氮介质中,碳纤维增强PTFE复合材料与9Cr18对摩的摩擦系数和与Si3N4对摩的摩擦系数比较接近,其它四种复合材料与9Cr18对摩的摩擦系数比与Si3N4对摩的小。聚苯酯和PAB纤维增强PTFE复合材料在液氮介质中与9Cr18和Si3N4对摩,当载荷一定的情况下,摩擦系数都随着速度的增大而增大,当速度一定时,摩擦系数都随着载荷的增大而减小。无论复合材料与9Cr18对摩还是与Si3N4对摩,碳纤维增强PTFE复合材料的极限PV值最小,而聚苯酯和PAB纤维增强PTFE复合材料的极限PV值最大。影响聚合物基复合材料极限PV值的主要因素是:复合材料与对偶件的摩擦系数、复合材料动态力学性能温度谱中的γ转变温度,以及对偶件的热特性参数和密度。
With the development of space technology, working conditions of some bearings which are applied in the extreme conditions of deep cooling, high speed and heavy load are very adverse. Such as rolling bearings which are used in hydrogen-oxygen rocket engines turbopump, it is lubricated only depend on the transfer film which is supplied by retainer. Large thrust rocket engine which is being developed in our country and reusable delivery systems both propose rigid requirement to developing long life and high reliability lubricate material. So it has important significance to develop new self-lubricating cage materials and reveal their lubricating mechanism for solving the problem of prolonging bearing life and bearing reliability in ultra-low temperature.
     The main failed modes of rolling bearings in ultra-low temperature were analyzed. Aiming at these failed modes which are related to the cage, design basis of component of self-lubricating cage materials was put forward, and based on the basis, four schemes of material component were devised.
     The forming techniques conditions of PTFE based self-lubricated composite were studied, the reasonable mixing speed, the press load and the sinter temperature curves are studied. The effect of strengthening agent content in each scheme on friction and wear properties and mechanical properties of the composite material was researched. Test results indicated that friction coefficient of PTFE based composite filled with carbon fiber was the biggest one in the four schemes, it ranged from 0.2 to 0.25, wear rat of this material was also higher, shock resistance of the composite material was better when the content of carbon fiber increased from 10% to 20%; friction coefficients of composite material in the other three schemes were at range of 0.15~0.18, and wear rat of them were lower, wear resistance of Ekonol and PAB fiber reinforced PTFE based composite was the best among them, graphite and nanometer ZnO were both able to reduce the impact ductility of composite material, and the impact ductility was higher when the content of Ekonol was lower than 15%.
     Comprehensively considered friction and wear properties and impact ductility, composite material that had lower friction coefficient, mezzo wear resistance and better impact ductility in each scheme were selected out. Dynamic mechanical properties of the selected composite material were tested, the results showed that the storage modulus of composite material except composite filled with carbon fiber were higher than pure PTFE in the same temperature when temperature varied at 25℃~200℃, the storage modulus of composite filled with carbon fiber was closed to pure PTFE; in the range of experimental testing temperature, loss factors of composite material were reduced evidently after filling strengthening agent, which can decrease the deformation retardation friction coefficient of the composite.
     Thermal expansion property and thermal conductivity of PTFE and its composites were researched. The results showed that PTFE and its composites occurred crystal transformation and crystal relaxation in the temperature range of 15℃~32℃. The macro behavior of the phenomenon was the volume expanded suddenly. Due to the processing temperature of the cage just between the temperature range, dimension error of the composite material caused by crystal transformation and crystal relaxation needed to be considered during the cage was machined and tested. Because the linear expansion coefficient of composite material is bigger than metal, the guide fit clearance vary obviously under the influence of temperature in the condition of large temperature difference. Thermal conductivity of PTFE was improved if graphite filled in it. Except graphite, using fiber as filler was distincter than using powder as filler in improving the thermal conductivity of composite material. The research result provide authority to design structure parameter of cage accurately and optimize manufacture techniques of cage.
     Mechanism of friction property which influenced by structural characteristics of polymer based self-lubricated composite, environmental temperature and working conditions were discussed; using XPS, chemical composition of the transfer film formed under dry friction and in liquid nitrogen and chemical reaction generated between transfer film and coupled parts surfaces were studied. The results showed that the significant factors which affect friction coefficient of the polymer based composite were molecular force between composite material and coupled parts, nominal contact stress, loss factor of composite material, hardness and storage modulus. If nanometer ZnO/PAB/PTFE composites rubbed with 9Cr18, transfer film formed under dry friction was deep and compact, however in low temperature it was thin and discontinuous. In these two conditions, transfer films both existed that parts of the CF2 bounds in PTFE were ruptured. F atomic and Fe atomic which existed on the surface of steel pin occurred chemical reaction and FeF3 was generated.
     Low temperature and high speed friction experimental system was developed, friction property and limiting PV value of five species of PTFE based composite used in liquid nitrogen were tested, meanwhile, the temperature of composites contact surfaces were calculated. Experimental results indicated that friction coefficients of composite filled with carbon fiber rubbing with 9Cr18 and Si3N4 were closed. Friction coefficients of other four species composites rubbing with 9Cr18 were smaller than rubbing with Si3N4. If Ekonol and PAB fiber reinforced PTFE based composite rubbed with 9Cr18 and Si3N4 in liquid nitrogen, the friction coefficient all increased with the increase of velocity when the load was a constant, the friction coefficient all decreased with the increase of load when the velocity was a constant. Whether composites rubbed with 9Cr18 or rubbed with Si3N4, the limiting PV value of PTFE based composite filled with carbon fiber was the least, but the limiting PV value of Ekonol and PAB fiber reinforced PTFE based composite was the most. The significant factors which affect the limiting PV value of the polymer based composite were friction coefficient of composites rubbing with coupled parts,γtransition temperature in the temperature chart of composites dynamic mechanical properties, as well as thermal parameters and densities of the coupled parts.
引文
1 P. D. Fleischauer, M. R. Hilton. International Applications of Space Tribology. Tribology International. 1990, 23:135~147
    2 Masataka Nosaka, Mamoru Oike,Kamijo Kenjiro, et al. Experimental Study on Lubricating Performance of Self-Lubricating Ball Bearings for Liquid Hydrogen Turbopumps. ASLE Preprints, 1986, 13
    3 Masataka Nosaka, Mamoru Oike, et al. Experimental Study on Lubricating Performance of Self-Lubricating Ball Bearings for Liquid Hydrogen Turbopumps. Lubrication Engineering. 1998, 44:30~44
    4 D. Wyn-Roberts. New Frontiers for Space Tribology. Tribology International. 1990, 23(2):149~155
    5 Masataka Nosaka, Mamoru Oike, et al. Self-Lubricating Performance and Durability of ball Bearings for the LE-7 Liquid Oxygen Rocket- Turbopump. Lubrication Engineering. 1993, 49 (9):677~688
    6 J.W. Kannel, K.F. Dufrane, S.A. Barber, et al. Development of Improved Self-Lubricating Cages for SSME HPOTP Bearings. in Advanced Earth-to-Orbit Technology, NASA, Huntsville, AL, NASA Conference Publication #3012. 1988,(1):175~189
    7王黎钦,齐毓霖,姜洪源等.混合式陶瓷球轴承在液氮中的摩擦学性能研究.摩擦学学报. 1999,19(2):122~125
    8 Masataka Nosaka, Mamoru Oike, et al. Tribo-Characteristics of Self-Lubricating Ball Bearings for the LE-7 Liquid Hydrogen Rocket-Turbopump. Tribology Transactions. 1993, 36(3):432~442
    9 Masataka Nosaka, Mamoru Oike, Kenjiro Kamijo, et al. Experimental Study on Lubricating Performance of Self-Lubricating Ball Bearings for Liquid Hydrogen Turbopumps. Lubrication Engineering. 1988, 44:30~44
    10 R. L. Fusaro. Lubrication of space systems. Lubrication Engineering. 1995, 51:182~194
    11古乐,王黎钦,李秀娟,齐毓霖.超低温固体润滑研究的发展现状.摩擦学学报. 2002, 22(4):314~320
    12吴人洁.复合材料.天津大学出版社. 2002. 2~3
    13赵滨海,宋春磊.固体润滑轴承在航天器中的应用.轴承. 2001(8):1~3
    14 Jean-Luc Bozet. Modeling of Friction and Wear for Designing Cryogenic Valves. Tribology International, 2001(34):207~215
    15 Eric N. Brown, Philip J. Rae, E. Bruce Orler. The Influence of Temperature and Strain Rate on the Constitutive and Damage Responses of Polychlorotri-fluoroethylene (PCTFE, Kel-F 81). Polymer. 2006, 47:7506~7518
    16于德阳,翁立军,欧阳锦林.空间机械润滑研究的发展现状.摩擦学学报. 1996,16(1):89~96
    17 P. B. Hall, R. Thom, L. Chang. An Experimental/Analytical Study of High-Speed, High-Load Rolling/Sliding Contacts with Ultra-Low Viscosity Fluids. Tribology Transaction. 1997,40(1):41~48
    18 Masataka Nosaka, Kikuchi Masataka, Kawai Nobuyuki, et al. Effects of Iron Fluoride Layer on Durability of Cryogenic High-Speed Ball Bearings for Rocket Turbopumps. Tribology Transactions. 2000, 43(2):163~174
    19 Z. Zhng, P. Klein. Sliding Performance of Polymer Composites in Liquid Hydrogen and Liquid Nitrogen. Journal of Materials Science, 2004,39: 2989~2995
    20 Masataka Nosaka, Mamoru Oike, Masataka Kikuchi, et al. Self-lubricating Performance and Durability of Ball Bearings for The LE-7 Liquid Oxygen Rocket-Turbopump. Lubrication Engineering. 1993, 49:677~688
    21 W. Hubner, T. Gradt, T. Schneider, et al. Tribological Behaviour of Materials at Cryogenic Temperatures. Wear. 1998,216:150~159
    22 E. W. Roberts. Thin Solid Lubricant Films in Space. Tribology International. 1990,23(2):95~104
    23 G. Theiler ,W.Hubner, T. Gradt, et al. Friction and Wear of PTFE Composites at Cryogenic Temperatures. Tribology International. 2002,35:449~458
    24 N. L. McCook, D. L.Burris, et at. Cryogenic Friction Behavior of PTFE Based Solid Lubricant Composites. Tribology Letters. 2005,20:109~113
    25 T. Gradt, T. Schneider, W. Hubner and H. Borner. Friction and Wear at Low Temperatures. International Journal hydrogen energy. 1998, 23(5):397~403
    26克拉盖尔斯基等编.余梦生,吴永伟等译.摩擦磨损与润滑手册(第一册).机械工业出版社, 1986:524~540
    27 T. P Yukhno, Yu. V Vvedensky, L. N Sentyurikhina. Low Temperature Investi-gations of Frictional Behavior and Wear Resistance of Solid Lubricant Coatings. Tribology International. 2001,34:293~298
    28 G. D. Gamulya, T. A. Kopteva, I. L. Lebedeva,etal.Effect of low temperatures on the wear mechanism of solid lubricant coatings in vacuum.Wear. 1993,160:351~359
    29 Ye. L. Ostrovskaya, T. P. Yukhno, G. D. Gamulya, et al. Low Temperature Tribology at the B. Verkin institute for Low Temperature Physics & Engineering (Historical Review). Tribology International. 2001, 34:265~276
    30 S. H. Loewenthal, R. G. Chou, G. B. Hopple, W. L. Wenger. Evaluation of ion-sputtered molybdenum disulfide bearings for spacecraft gimbals. Tribo-logy Transactions. 1994, 37:505~515
    31梁波,葛世东,席颖佳.宇航固体润滑轴承技术.轴承. 2001,5:8~12
    32Г.Д.Гамуляю.Экспериметально-расчётноепараметровработоспособно-ститвёрдыесмазочныхпокрытийпритренииввакууме.ТрениеиИзнос.1997,Том18 (2):218~223
    33 Masataka Nosaka, Masataka Kikuchi, Mamoru Oike, et al. Ttibo-Characteristics of Cryogenic Hybrid Ceramic Ball Bearings for Rocket Turbopumps: Bearing Wear and Transfer Film. Tribology Transactions. 1999, 42:106~115
    34 Ye. L. Ostrovskaya , V. E. Strelnitskij, V. I. Kuleba, G. D. Gamulya. Friction and Wear Behaviour of Hard and Superhard Coatings at Cryogenic Temperatures. Tribology International. 2001, 34:255~263
    35 H. Xu Guizhen, H. Lee Jonah, Liang Hong, Doglas Georing. Tribological Pro- perties of Solid-Lubricating Coatings on Cylinder Bore at Low Temperature. Wear. 2004, 257:59~65
    36 A. A. Voevodin , J. S. Zabinski. Nanocomposite and Nanostructured Tribological Materials for Space Applications. Composites Science and Technology. 2005, 65:741~748
    37于德洋,翁立军.物理气相沉积减摩与耐磨薄膜.摩擦学学报. 1996,16(3):282~288
    38 B. Podgornik , M. Sedla?ek, J. Vi?intin. Influence of Contact Conditions on Tribological Behaviour of DLC Coatings. Surface & Coatings Technology. 2007, 202:1062~1066
    39 O.L. Eryilmaz, A. Erdemir. TOF-SIMS and XPS Characterization of Like Dia-mond- Carbonfilms After Tests in Inert and Oxidizing Environments. Wear. 2008, 265:244~254
    40古乐,王黎钦,李秀娟,齐毓霖.超低温氢氧泵轴承技术研究及发展.中国机械工程. 2002, 13:620~623
    41 W. Hubner, T. Gradt, T. Schneider, et al. Tribological Behaviour of Materials at Cryogenic Temperatures. Wear. 1998, 216:150~159
    42 R. Cunningham and W. Anderson. Evaluation of Ball-Bearing Performance in Liquid Hydrogen at DN Values to 1.2 Million. NASA TN 1967, D-2637
    43 Masataka Nosaka, Mamoru Oike, Masataka Kikuchi, et al. Evaluation of Dura-bility for Cryogenic High-Speed Ball Bearings of LE-7 Rocket Turbopumps. Lubrication Engineering. 1996, 52:221~233
    44 Masataka Nosaka, Satoshi Takada, Masataka Kikuchi, et al.Ultra-High- Peed Performance of Ball Bearings and Annular Seals in Liquid Hydrogen at Up to 3 Million DN (120,000 rpm). Tribology Transactions. 2004, 47:43~53
    45 R. L. Fusaro. Self-Lubricating Polymer Composites and Polymer Transfer Film Lubrication for Space Applications. Tribology International. 1990, 23:105~122
    46 T. Gradt , H. Borner, T. Schneider. Low Temperature Tribometers and The Behaviour of ADLC Coatings in Cryogenic Environment. Tribology Interna-tional. 2001, 34:225~230
    47 M. Quillien , R. Gras , L. Collongeat , Th. Kachler. A Testing Device for Rolling–Sliding Behavior in Harsh Environments: the Twin-Disk Cryotribometer. Tribology International. 2001,34:287~292
    48 L. Chevaliera, S. Cloupeta, M. Quillien. Friction and Wear During Twin-Disc Experiments Under Ambient and Cryogenic Conditions. Tribology International. 2006, 39:1376~1387
    49 B. Subramonian , Bikramjit Basu. Development of a High-Speed Cryogenic Tribometer:Design Concept and Experimental Results. Materials Science and Engineering A. 2006, 415:72~79
    50 W. Hübner A. Pyzalla, K. Assmus, E. Wild, T. Wroblewski. Phase Stability of AISI 304 Stainless Steel During Sliding Wear at Extremely Low Temperatures. Wear. 2003, 255:476~480
    51 B. Bhushan.摩擦学导论.葛世荣译.机械工业出版社, 2007:159
    52 B. Bhushan. Magnetic Head-Media Interface Temperatures-Part 1: Analysis. Journal of Tribology. 1987, 109:243~251
    53 B. Bhushan. Magnetic Head-Media Interface Temperatures-Part 2: Application to Magnetic Tapes. Journal of Tribology. 1987, 109:252~256
    54 R. Gulino, S. Bair, W. O. Winer, B. Bhushan. Temperature Mesurement of Microscopic Areas Within a Simulated Head/Tape Interface Using Infrared Radiometric Technique. Journal of Tribology. 1986, 108:29~35
    55 N. H. Cook, B. Bhushan. Sliding Surface Interface Temperatures. Journal Lubrication Engineering. 1973, 95:59~64
    56 S. C. Lee, H. S. Cheng. Scuffing Theory Modeling and Experimental Correlations. Journal of Tribology. 1991, 113:327~334
    57 Q. Wang, H. S. Cheng. A Mixed Lubrication Model for Journal Bearing with a Tin Soft coating-partⅡ: Flash Temperature Analysis and Its Application to Tin Coated Al-Si Bearing. Tribology Transaction. 1995, 38:517~524
    58吴昌林.滚动-滑动表面接触温度解析中边界元方法的研究.华中理工大学学报. 1992, 20:63~69
    59董光能,陈志澜,谢友柏,虞烈. PEEK塑料摩擦销的温度场理论计算.摩擦学学报. 2000,20:34~37
    60马红玉,张红,彭旭东.聚合物运动摩擦件二维温度场的有限元分析.润滑与密封. 2003, 145:50~53
    61彭旭东,曾群峰.聚醚醚酮复合材料的热性质和物理性质预测及其摩擦销的三维温度场的数值模拟.摩擦学学报. 2005, 25:353~357
    62陶国良,高导热先进复合材料设计制备及应用技术研究.南京工业大学博士学位论文. 2006:3
    63朱东升,王忠民,林琳.导热高分子/沸石复合物强化固体吸附热传导性能的研究.工程热物理学报. 1999, 20:94~97
    64李侃社,王琪.导热高分子材料研究进展.功能材料. 2002, 33:136~144
    65 Mihai Rusu, Nicoleta Aofian, Daniela Rusu. Properties of Iron Powder Filled High Density Polyethylene. Journal of Applied Polymer Science. 2001, 21:469~487
    66丁峰,谢维章.导热树脂基复合材料.复合材料学报. 1993, 10:19~24
    67 Dong Choi. Thermally Conductive EMC (Epoxy Molding Compound) For Microelectronic Encapsulation. Polymer Engineering and Science. 1999,39: 756~766
    68王家俊,益小苏.导热型高性能树脂微电子封装材料之一:封装材料的制备.包装工程, 2003, 24:46~48
    69 Y.Agari, A.Ueda, M.Tanaka, S.Nagai. Thermal Conductivity of a Polymer Filled with Particles in the Wide Range From Low to Super-high Volume Content. Journal of Applied Polymer Science. 1990, 40:929~941
    70 Y.Agari, A.Ueda, S.Nagai. Thermal Conductivities of Composites in Several Types of Dispersion Systems. Applied Polymer.Sciences. 1991,42: 1665~ 1669
    71王亮亮,陶国良.高导热聚四氟乙烯复合材料的研究.中国塑料. 2004, 18:26~28
    72王琪,高峻,王茹,华正坤.石墨填充高密度聚乙烯基复合材料导热性能的研究.高等学校化学学报. 1999, 20:1480~1482
    73李良波. CPVC/ABS/EVA三元共混材料的研究.化学建材, 2004,(2):130
    74杜善义,王彪.复合材料细观力学.科学出版社, 1998:1~2
    75 J. D. Eshelby. The Elastic Field Outside an Ellipsoidal Inclusion. Proceedings of the Royal Society. 1959, A252:561~569
    76梁军,杜善义.粘弹性复合材料力学性能的细观研究.复合材料学报. 2001, 18:97~100
    77苏继龙.基于微体积扰动的颗粒增强复合材料有效弹性性能的预测模型.安徽工业大学学报. 2005, 22:226~228
    78杨旭,王国军.基于损伤力学的岩体宏观力学参数研究.勘查科学技术. 2003, (3):14~17
    79 H. Horii, S. Nemat-Nasser. Overall Moduli of Solids with Microcracks. Journal of the Mechanics and Physics of Solids.1983, 31:155~171
    80 E. H. Kerner. The Electrical Conductivity of Composite Media. Proceeding of the Physics Society. 1956, B69:802~807
    81 R. M. Christensen. K. H. Ko. Solution for Effective Shear Properties in (Three) Phase Sphre and Cylinder Models. Journal of the Mechanics and Physics of Solids. 1979, 27:315~330
    82王晓军,蒋持平.混杂纤维复合材料横向剪切模量和体积模量的预测.常州工学院学报. 2005, 18:1~8
    83 T. Mori. K. Tanaka. Average Stress in Matrix and Average Energy ofMaterials with Misfitting Inclusions. Acta Metall. 1973, 21:571~574
    84 M. Taya, on Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Penny-Shaped Cracks in the Matrix. Journal of Composites Materials. 1981, 15:198~210
    85 M. Taya, T. W. Chou. On Two Kinds of Ellipsoidal Inhomogeneities in an infinite Elastic Body and Application to a Hybrid Composite. International Journal of Solids and Structures. 1981, 17:553~563
    86 T. ?. Larsen , T. L. Andersen, B. Thorning, M. E. Vigild. The Effect of Particle Addition and Fibrous Reinforcement Onepoxy-Matrix Composites for Severe Sliding Conditions. Wear. 2008, 264:857~868
    87 N.V. Klaas, K. Marcus, C. Kellock. The Tribological Behaviour of Glass Filled Polytetrafluoroethylene. Tribology International. 2005, 38:824~833
    88 P. Samyn. Tribophysical Phenomena on Sliding Surfaces of Polyester Composites Evaluated by Spectroscopic and Thermal Analysis. Tribology Letters. 2006, 24(3):229~235
    89 Cheng Xian-hua and Shangguan Qian-qian. Effect of Rare Earths on Mechani- cal and Tribological Properties of Carbon Fibers Reinforced PTFE Composite. Tribology Letters. 2006, 23(2):93~99
    90 Y.J. Shi, X. Feng, H.Y. Wang, C. Liu, X.H. Lu. Effects of Filler Crystal Stru- cture and Shape on The Tribological Properties of PTFE Composites. Tribology International. 2007, 40:1195~1203
    91 Dinghan Xiang , Chuanjin Gu. A Study on The Friction and Wear Behavior of PTFE Filled With Ultra-Fine Kaolin Particulates. Materials Letters. 2006, 60:689~692
    92 Anne Bolvari, Sherry Glenn, Rob Janssen, Chris Ellis. Wear and Friction of Aramid Fiber and Polytetrafluoroethylene Filled Composites. Wear. 1997, 203:697~702
    93刘厚才,庞佑霞,郭源君. Ekonol对Ekonol-石墨-PTFE自润滑复合材料的摩擦学性能的影响.润滑与密封. 2001, 114:39~41
    94贾晓梅.新型自润滑保持架材料的研究.哈尔滨工业大学硕士学位论文. 2003:24~25
    95关敏,李彦生.国内外纳米ZnO研究和制备概况.化工新型材料. 2005, 33:18~21
    96 S.Bahadur, C.Sunkara. Effect of Transfer Film Structure, Composition and Bonding on The Tribological Behavior of Polyphenylene Sulfide Filled With Nanoparticles of TiO2, ZnO, CuO and SiC. Wear. 2005, 258: 1411~1421
    97 F. Li, K.A Hu, J. L. Li, B.Y. Zhao, The Friction and Wear Characteristics of Nanometer ZnO Filled Polytetrafluoroethylene. Wear. 2002, 249:877~ 882.
    98陈旭,回素彩.聚四氟乙烯烧结成型的制备工艺.塑料工业. 2005, 33: 38~ 40
    99汪萍.聚四氟乙烯的烧结工艺技术.工程塑料应用. 2001, 19:19~21
    100 Q. L. Shi, S. L. Tong, J. L. Xu, G. L. Ren, Y. Li. The Tribological Properties of PTFE Filled With Thermally Treated Nano-Attapulgite. Tribology International. 2006, 39:541~547
    101王家序,陈战,秦大同,填料对聚四氟乙烯工程塑料改性的影响.机械工程材料. 2002, 26:35~37
    102 B. Bhushan. F. Dashnaw. Material Study For Advanced Stern-Tube Bearings and Face Seals. ASLE Transactions. 1981, 24:398~409
    103朱诚身,聚合物结构分析.科学出版社, 2005:218~219
    104花荣,温津,杨毓华.高分子材料粘弹性能测定方法.计量与测试技术. 1997, (4):31~33
    105秦襄培,李健, MENG Hua,刘洪涛.摩擦热对UHMWPE钢摩擦副摩擦性能的影响.摩擦学学报. 2005, 25:550~554
    106缪京媛.氟塑料.晨光化工研究院化学.工业出版社, 1987年:35~38
    107 F. P.鲍登, D.泰伯.固体的摩擦与润滑.机械工业出版社,1986:272~273
    108朱波,王成国,蔡珣.影响碳纤维增强复合材料摩擦系数的因素.材料科学与工程. 2002, 79:361~363
    109 D. F.Moore. The Friction and Lubrication of Elastomers. Pergamon. Oxford, U. K. 1972
    110郑林庆.摩擦学原理.高等教育出版社, 1994:276~277
    111 B. Bhushan. Principles and Applications of Tribology. Wiley, New Youk. 1999a
    112 A. Leo.氟聚合物.晨光化工研究院译.化学工业出版社, 1978:460~461
    113唐炜,朱宝亮,刘家浚.液晶微纤原位增强PTFE复合材料抗磨性能与磨损机理.摩擦学学报, 2000, 20: 10~13
    114张招柱,薛群基,刘为民,等.纤维及晶须增强PTFE复合材料的摩擦磨损性能研究.高分子材料科学与工程. 2001,17: 90~93
    115 Z. Zhang, P. Klein, G. Theiler, et al. Sliding Performance of Polymer Composites in Liquid Hydrogen and Liquid Nitrogen. Journal of Material Science. 2004, 39: 2989~2995
    116 G.Theiler, W.Hubner, T.Gradt, P.Klein, K.Friedrich, Friction and Wear of PTFE Composites at Cryogenic Temperatures. Tribology International. 2002:35 447~451
    117 R. Bosson, L. Collongeat, E. Edeline. High Performance Cryogenic Ball Bea- rings Demonstration. 35-th AIAA/ASME/SAE/ASEE Joint Propulsion Con-ference and Exhibit . 20-24 June 1999, Los Angeles, California
    118 J. W. Kannel. S. A. Barber. Estimate of Surface Temperatures During Rolli-ng Contact. Tribology Transactions. 1989, 32:305~310
    119陈国邦,张鹏.低温绝热与传热技术.科学出版社, 2004:342~343
    120 J. W. Westwater, J. J. Hwalek, M. E. Irving. Suggested Standard Method for Obtaining Boiling Curves by Quenching. Industrial Engineering Chemistry Fundamentals. 1986, 25(4):685~692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700