孔道精细调变下介孔材料固载的手性salen Mn(III)催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全世界对手性产品需求的日益增长,手性化合物的高效、绿色生产方法已受到普遍关注。在各种生产手性化合物的方法中,手性催化是最符合原子-经济观点的。相对于均相手性催化,非均相手性催化由于其易于产品分离、催化剂可以重复利用等优点,成为手性催化领域的研究热点。烯烃的不对称环氧化反应是制备光学活性环氧化物的重要途径,在医药、农药、香料等精细化学品的合成上具有非常重要的意义。由于salen Mn(III)化合物在非官能团化烯烃的不对称环氧化反应中表现出的高催化活性和对映选择性,近年来关于salen Mn(III)化合物在无机介孔材料上的固载化研究受到了广泛的关注。
     在目前报道的固载研究中,大多数非均相salen Mn(III)催化剂都只得到了比相应均相催化剂低的催化活性和对映选择性,只有一小部分工作获得了与均相催化剂相当甚至更高的对映选择性,这被普遍地归结为载体孔道空间限阈效应的影响。然而系统地研究载体空间限阈效应对非均相手性催化剂催化性能的影响还很少见报道。本文旨在通过详细考察载体的孔道结构、孔径以及活性组分的分布状态对非均相salen Mn(III)催化剂催化性能的影响,从而更深入地了解载体孔道空间限阈效应对非均相手性催化剂催化性能的影响规律。
     本文采用具有不同碳链长度的季铵盐型表面活性剂为模板剂合成了一系列孔径在小范围内变化的MCM-41与MCM-48介孔材料,并通过不同的有机硅烷固载了三种不同结构的salen Mn(III)化合物。XRD、FT-IR、DR UV-Vis、N2吸附-脱附、元素分析和ICP-AES表征的结果表明,salen Mn(III)化合物被成功固载在了介孔载体的孔道中,并且最后制得的非均相催化剂都保持了载体的特征孔道结构。所合成的非均相salen Mn(III)催化剂在非官能团化烯烃的不对称环氧化反应中表现出了高的催化活性和对映选择性。并且通过研究发现,载体孔径的精细调变能明显影响非均相催化剂的催化性能。通常情况下,固载在较大孔径载体上的非均相催化剂能够得到较高的催化活性;而当载体孔径与底物分子大小相匹配时,非均相催化剂能够得到较高的对映选择性。
     本文考察了有机硅烷在介孔载体上的负载量对非均相salen Mn(III)催化剂催化性能的影响规律,从而确定了不同结构的salen Mn(III)化合物固载在不同介孔载体上的最佳有机硅烷投料量。同时实验结果表明,有机硅烷的负载量对催化剂催化性能以及活性组分稳定性都有明显的影响。较高的有机硅烷负载量能提高催化剂的稳定性,催化剂中活性组分不易流失,但同时也增加了反应物与产物扩散的阻力,从而造成催化剂的催化性能降低。
     本文采用共缩聚法制备了活性组分在介孔载体表面分布更加均匀的非均相salen Mn(III)催化剂。通过含salen Mn(III)结构的桥连有机硅烷与正硅酸乙酯共缩聚制备得到了活性组分分布更为均匀的PMOs材料,不过由于活性组分被部分包埋在孔壁中,从而使得催化剂的催化性能较低。为此又通过3-氨丙基-三乙氧基硅烷与正硅酸乙酯共缩聚制备了有机官能团化的介孔材料,并将其用于固载salen Mn(III)化合物。通过实验考察了有机硅烷的负载量对催化剂催化性能的影响,从而确定了3-氨丙基-三乙氧基硅烷的最佳投料量。由此制备得到的非均相salen Mn(III)催化剂即使在较低的用量下(0.6mol%)仍然能在烯烃的不对称环氧化反应中表现出与均相催化剂相当的催化活性和对映选择性,催化剂的催化效率大大提高。
     同时本文还采用多步移植法制备了无机介孔材料固载的非均相salen Mn(III)催化剂。该方法操作简便,并可用于固载不对称结构的手性salen Mn(III)化合物。所制备的非均相催化剂在α-甲基苯乙烯的不对称环氧化反应中得到了>99.9%的反应ee值,明显高于均相催化剂的ee值49.8%。同时催化剂在茚和1-苯基环己烯的不对称环氧化反应中表现出了与均相催化剂相当的催化活性和对映选择性。所合成的非均相催化剂具有较好的稳定性,可以被重复使用三次以上。
With the increasing demand for chiral products around the world, the efficient and green production method for chiral compounds has been widely concerned. Among the various methods to selectively produce single enantiomer, asymmetric catalysis is undoubtedly the most attractive one from the atom-economic point of view. Compared with the homogeneous asymmetric catalysis system, the heterogeneous one has the advantages of easy catalyst/product separation and simple catalyst recycling. And more and more interests have been focused on the studies of heterogenization of chiral complexes. The asymmetric epoxidation of unfunctionalized olefins is an important approach for synthesizing optically active epoxides, and thus is widely used in the synthesis of fine chemicals, such as pharmaceuticals, agrochemicals and perfumes. Chiral salen Mn(III) complexes have demonstrated activity and selectivity for the enantioselective epoxidation of unfunctionalized olefins under homogeneous condition. In recent years, the immobilization of chiral salen Mn(III) complexes on inorganic mesoporous materials has received much attention due to the advantages of heterogeneous catalysis systems.
     In most cases, the heterogenized chiral salen Mn(III) catalysts led to lower activity and enantioselectivity compared with the homogeneous counterparts for asymmetric epoxidation, and only a few immobilized catalysts exhibited comparable or even higher ee values than the homogeneous ones. The improvement of enantioselectivity was mainly attributed to the confinement effect of the nanopores. However, the effect of confinement effect on the catalytic performance of mesoporous material-supported chiral salen Mn(III) catalyst has seldom been systemically investigated for the asymmetric epoxidation. In this thesis, the effects of the pore structure and pore size of mesoporous supports and the distribution of active sites on activity and enantioselectivity of the heterogeneous catalysts were studied. And this study would be helpful for further understanding the confinement effect of the nanopores on the catalytic performance of heterogeneous chiral salen Mn(III) catalysts.
     A series of mesoporous MCM-41 and MCM-48 materials with different pore sizes were synthesized applying the alkylammonium salts with different alkyl chain lengths as templates. These materials were used as supports to immobilize three types of chiral salen Mn(III) complexes via organosilane modification. The results of XRD, FT-IR, DR UV-Vis, N2 sorption, elemental analysis and ICP-AES showed that the chiral salen Mn(III) complexes have been successfully immobilized inside the channels of mesoporous materials, and the heterogeneous catalysts maintain the characteristic mesoporous structures of corresponding parent supports. The as-synthesized heterogeneous chiral salen Mn(III) catalysts were highly active and enantioselective in the asymmetric epoxidation of unfunctionalized olefins. It is found that the catalytic performance of heterogeneous catalysts was closely correlated to the pore sizes of parent supports. Normally, the larger pore size of the supports was beneficial to obtain higher catalytic activity, and the compatible pore size with substrate would be responsible for the improved enantioselectivity in the olefin epoxidation.
     The influence of organosilane dosage on the catalytic performance of heterogeneous chiral salen Mn(III) catalysts was studied, and the optimum organosilane dosage for the preparation of heterogeneous catalysts was determined. The experiments revealed that the dosage of organosilane had a great effect on the catalytic performance of heterogeneous catalysts and the stability of active species. The higher content of organosilane would improve the stability of the catalysts and decrease the leaching of active sites, however, it could also increase the diffusional resistance of reactants to the active sites located on the inner surfaces of supports, and thus decrease the catalytic performance of heterogeneous catalysts.
     The co-condensation method was applied to immobilize the chiral salen Mn(III) complex so as to make the active species uniformly dispersed on the surface of supports. The heterogeneous catalysts (PMOs) were prepared through the co-condensation of TEOS and bridged organosilane precursor-containing salen Mn(III) complex. The as-synthesized catalysts showed low activity and enantioselectivity in the epoxidation of olefins due to the embedment of active species into the pore wall. In consideration of this, the organo-functionalized mesoporous materials were prepared by the co-condensation of TEOS and 3-aminopropyltriethoxysilane, and used to immobilize the chiral salen Mn(III) complex. The effects of organosilane dosage on the catalytic performance were studied, thus the optimum dosage of 3-aminopropyltriethoxysilane was presented. The prepared heterogeneous catalysts exhibited comparable activity and enantioselectivity to those of homogeneous counterparts for the epoxidation of unfunctionalized olefins, even at lower dosage of catalysts (0.6mol%), thus providing the greatly increased catalytic efficiency.
     In addition, the multi-step grafting method was also used to immobilize the chiral salen Mn(III) complexes on inorganic mesoporous materials. This method is simple and can be applied to immobilize unsymmetrical chiral salen Mn(III) complexes. The as-synthesized heterogeneous catalyst exhibited excellent enantioselectivity (>99.9% ee) than homogeneous catalyst (49.8% ee) for the epoxidation ofα-methylstyrene. Moreover, these catalysts obtained comparable activity and enantioselectivity to those of homogeneous counterparts for the epoxidation of indene and 1-phenylcyclohexene. The heterogeneous catalysts were stable and could be recycled three times without loss of enantioselectivity.
引文
[1] Veloo R A, Koomen G J. Synthesis of enantiomerically pure (S)-(-)-propranolol from sorbitol. Tetrahedron: Asymmetry, 1993, 4(12): 2401~2404
    [2] Blaschke G, Kraft H P, Markgraf H. Chromatographic resolutions of racemates. X. Optical resolution of thalidomide and other glutarimide derivatives. Chem Ber, 1980, 113(6): 2318~2322
    [3] Stinson S C. Chiral pharmaceuticals. Chem & Eng News, 2001, 79(40): 79~97
    [4] Maureen R A. Chiral business. Chem & Eng News, 2003, 81(18): 45~55
    [5] Knowles W S, Sabacky M J. Catalytic asymmetric hydrogenation employing a soluble optically active rhodium complex. Chem Commun, 1968, (22): 1445~1446
    [6] Horner H, Siegel H, Buthe H. Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogeneous solution. Angew Chem Int Ed Engl, 1968, 7(12): 942~942
    [7] Knowles W S, Sabacky M J, Vineyard B D. L-Dopa process and intermediates. U S Patent, 4005127
    [8] Vineyard B D, Knowles W S, Sabacky M J, et al. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst. J Am Chem Soc, 1977, 99(18): 5946~5952
    [9] Ohta T, Takaya H, Kitamura M, et al. Asymmetric hydrogenation of unsaturated carboxylic acids catalyzed by BINAP-ruthenium(II) complexes. J Org Chem, 1987, 52(14): 3174~3176
    [10] Chan A S C. Asymmetric catalytic hydrogenation of alpha-arylpropenic acids. U S Patent, 4994607
    [11] Knowles W S. Asymmetric hydrogenation. Acc Chem Res, 1983, 16(3): 106~112
    [12] Vocke W, H?nel R, Fl?ther F-U. Development of a technique for the stereoselective hydrogenation of an intermediate in L-Dopa synthesis. Chem Tech (Leipzig), 1987, 39(3): 123~125
    [13] Mashima K, Matsumura Y, Kusano K, et al. Highly stereoselective asymmetric hydrogenation of 2-benzamidomethyl-3-oxobutanoate catalyzed by cationic BINAP-ruthenium(II) complexes. Chem Commun, 1991, (9): 609~610
    [14] Noyori R. Asymmetric catalysis by chiral metal complexes. ChemTech, 1992, 22(6): 360~367
    [15] Chan A S C. A new route to important chiral drugs. ChemTech, 1993, 23(3): 46~51
    [16] RajanBabu T V, Casalnoovo A L. Tailored ligands for asymmetric catalysis: the hydrocyanation of vinyl arenas. J Am Chem Soc, 1992, 114(15), 6265~6266
    [17] Chrisp P, Goa K L. Nafarelin. A review of its pharmacodynamic and pharmacokinetic properties, and clinical potential in sex hormone-related conditions. Drugs, 1990, 39(4): 523~551
    [18] Jones T K, Mohan J J, Xavier L C, et al. An asymmetric synthesis of MK-0417. Observations on oxazaborolidine-catalyzed reductions. J Org Chem, 1991, 56(2): 763~769
    [19] Aratani T. Catalytic asymmetric synthesis of cyclopropanecarboxylic acids: an application of chiral copper carbenoid reaction. Pure Appl Chem, 1985, 57(12): 1839~1844
    [20] Noyeri R. Chiral metal complexes as discriminating molecular catalysts. Science, 1990, 248(4960): 1194~1199
    [21] Sharpless K B. The discovery of titanium-catalyzed asymmetric epoxidation. ChemTech, 1985, 15(11): 692~700
    [22] Klunder J M, Onami T, Sharpless K B. Arenesulfonate derivatives of homochiral glycidol: versatile chiral building blocks for organic synthesis. J Org Chem, 1989, 54(6): 1295~1304
    [23] Lee N H, Muci A R, Jacobsen E N. Enantiomerically pure epoxychromans via asymmetric catalysis. Tetrahedron Lett, 1991, 32(38): 5055~5058
    [24] Akutagawa S. Asymmetric synthesis by metal BINAP catalysts. Appl Catal A: Gen, 1995, 128(2): 171~207
    [25] Papadogianakis G, Maat L, Sheldon R A. Catalytic conversions in water. Part 5: carbonylation of 1-(4-Isobutylphenyl) ethanol to ibuprofen catalysed by water-soluble palladium-phosphine complexes in a two-phase system. J Chem Tech Biotechnol, 1997, 70(1): 83~91
    [26] Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation. J Am Chem Soc, 1980, 102(18): 5974~5976
    [27] Rossiter B E, Katsuki T, Sharpless K B. Asymmetric epoxidation provides shortest routes to four chiral epoxy alcohols which are key intermediates in syntheses of methymycin, erythromycin, leukotriene C-1, and disparlure. J Am Chem Soc, 1981, 103(2): 464~465
    [28] Finn M G, Sharpless K B. Mechanism of asymmetric epoxidation. 2. Catalyst structure. J Am Chem Soc, 1991, 113(1): 113~126
    [29] Naruta Y, Tani F, Ishihara N, et al. Catalytic and asymmetric epoxidation of olefins with iron complexes of twin-coronet porphyrins. A mechanistic insight into the chiral induction of styrene derivatives. J Am Chem Soc, 1991, 113(18): 6865~6872
    [30] Collman J P, Zhang X M, Lee V J, et al. Asymmetric epoxidation catalyzed by an iron“binap capped”porphyrin. Chem Commun, 1992, (22): 1647~1649
    [31] Groves J T, Viski P. Asymmetric hydroxylation, epoxidation, and sulfoxidation catalyzed by vaulted binaphthyl metalloporphyrins. J Org Chem, 1990, 55(11): 3628~3634
    [32] Collman J P, Zhang X M, Hembre R T, et al. Shape-selective olefin epoxidation catalyzed by manganese picnic basket porphyrins. J Am Chem Soc, 1990, 112(13): 5356~5357
    [33] Srinivasan K, Michaud P, Kochi J K. Epoxidation of olefins with cationic (salen)MnIII complexes. The modulation of catalytic activity by substituents. J Am Chem Soc, 1986, 108(9): 2309~2320
    [34] Zhang W, Loebach J L, Wilson S R, et al. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc, 1990, 112(7), 2801~2803
    [35] Irie R, Noda K, Ito Y, et al. Catalytic asymmetric epoxidation of unfuctionalised olefins. Tetrahedron Lett, 1990, 31(50): 7345~7348
    [36] Zhang W, Jacobsen E N. Asymmetric olefin epoxidation with sodium hypochlorite catalyzed by easily prepared chiral manganese(III) salen complexes. J Org Chem, 1991, 56(7): 2296~2298
    [37] Jacobsen E N, Zhang W, Muci A R, et al. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J Am Chem Soc, 1991, 113(18): 7063~7064
    [38] Li Z, Lonser K R, Jacobsen E N. Asymmetric alkene aziridination with readily available chiral diimine-based catalysts. J Am Chem Soc, 1993, 115(12): 5326~5327
    [39] Zhang W, Lee N H, Jacobsen E N. Nonstereospecific mechanisms in asymmetric addition to alkenes result in enantiodifferentiation after the first irreversible step. J Am Chem Soc, 1994, 116(1): 425~426
    [40] Chang S, Galvin J M, Jacobsen E N. Effect of chiral quaternary ammonium salts on (salen)Mn-catalyzed epoxidation of cis-olefins. A highly enantioselective, catalytic route to trans-epoxides. J Am Chem Soc, 1994, 116(15): 6937~6938
    [41] Palucki M, Pospisil P J, Zhang W, et al. Highly enantioselective, low-temperature epoxidation of styrene. J Am Chem Soc, 1994, 116(20): 9333~9334
    [42] Palucki M, Finney N S, Pospisil P J, et al. The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J Am Chem Soc, 1998, 120(5): 948~954
    [43] Hinterding K, Jacobsen E N. Regioselective carbomethoxylation of chiral epoxides: a new route to enantiomerically pureβ-hydroxy esters. J Org Chem, 1999, 64(7): 2164~2165
    [44] End N, Pfaltz A. Enantioselective epoxidation catalysed by ruthenium complexes with chiral tetradentate bisamide ligands. Chem Commun, 1998, (5): 589~590
    [45] Katsuki T. Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coordin Chem Rev, 1995, 140: 189~214
    [46] McGarrigle E M, Gilheany D G. Chromium- and Manganese-salen promoted epoxidation of alkenes. Chem Rev, 2005, 105(5): 1563~1602
    [47] Lane B S, Burgess K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem Rev, 2003, 103(7): 2457~2473
    [48] Cozzi P G. Metal-salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev, 2004, 33(7): 410~421
    [49] Katsuki T. Unique asymmetric catalysis of cis-βmetal complexes of salen and its related Schiff-base ligands. Chem Soc Rev, 2004, 33(7): 437~444
    [50] Canali L, Sherrington D C. Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis. Chem Soc Rev, 1999, 28(2): 85~93
    [51] Fache F, Schulz E, Tommasino M L, et al. Nitrogen-containing ligands for asymmetric homogeneous and heterogeneous catalysis. Chem Rev, 2000, 100(6): 2159~2232
    [52] Song C E, Lee S G. Supported chiral catalysts on inorganic materials. Chem Rev, 2002, 102(10): 3495~3524
    [53] McMorn P, Hutchings G. Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem Soc Rev, 2004, 33(2): 108~122
    [54] Li C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal Rev -Sci Eng, 2004, 46(3-4): 419~492
    [55] Xia Q-H, Ge H-Q, Ye C-P, et al. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev, 2005, 105(5): 1603~1662
    [56] Baleiz?o C, Garcia H. Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev, 2006, 106(9): 3987~4043
    [57] Heitbaum M, Glorius F, Escher I. Asymmetric heterogeneous catalysis. Angew Chem Int Ed, 2006, 45(29): 4732~4762
    [58] Bianchini C, Barbaro P. Recent aspects of asymmetric catalysis by immobilized chiral metal catalysts. Top Catal, 2002, 19(1): 17~32
    [59] Fan Q H, Li Y-M, Chan A S C. Recoverable catalysts for asymmetric organic synthesis. Chem Rev, 2002, 102(10): 3385~3466
    [60] Corma A, Garcia H. Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Adv Synth Catal, 2006, 348(12-13): 1391~1412
    [61] Li C, Zhang H, Jiang D, et al. Chiral catalysis in nanopores of mesoporous materials. Chem Commun, 2007, (6): 547~558
    [62] Frunza L, Kosslick H, Landmesser H, et al. Host/guest interactions in nanoporous materials I. The embedding of chiral salen manganese(III) complex into mesoporous silicates. J Mol Catal A: Chem, 1997, 123(2-3): 179~187
    [63] Kim G-J, Kim S-H. Immobilization of new salen Mn complex over MCM-41 and its activity in asymmetric epoxidation of styrene. Catal Lett, 1999, 57(3): 139~143
    [64] Piaggio P, McMorn P, Langham C, et al. Asymmetric epoxidation of stilbene by manganese(III) chiral salen complex immobilized in Al-MCM-41. New J Chem, 1998, 22(11): 1167~1169
    [65] Piaggio P, McMorn P, Murphy D, et al. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)-salen complex: effect of immobilisation on MCM-41 on product selectivity. J Chem Soc, Perkin Trans 2, 2000, (10): 2008~2015
    [66] Piaggio P, Langham C, McMorn P, et al. Catalytic asymmetric epoxidation of stilbene using a chiral salen complex immobilized in Mn-exchanged Al-MCM-41. J Chem Soc, Perkin Trans 2, 2000, (1): 143~148
    [67] Fraile J M, Garcia J I, Massam J, et al. Clay-supported non-chiral and chiral Mn(salen) complexes as catalysts for olefin epoxidation. J Mol Catal A: Chem, 1998, 136(1): 47~57
    [68] Kureshy R I, Khan N H, Abdi S H R, et al. Immobilization of dicationic Mn(III) salen in the interlayers of montmorillonite clay for enantioselective epoxidation of nonfunctionalized alkenes. Catal Lett, 2003, 91(3-4): 207~210
    [69] Kureshy R I, Khan N H, Abdi S H R, et al. Dicationic chiral Mn(III) salen complexexchanged in the interlayers of montmorillonite clay: a heterogeneous enantioselective catalyst for epoxidation of nonfunctionalized alkenes. J Catal, 2004, 221(1): 234~240
    [70] Das P, Kuzniarska-Biernacka I, Silva A R, et al. Encapsulation of chiral Mn(III) salen complexes into aluminium pillared clays: Application as heterogeneous catalysts in the epoxidation of styrene. J Mol Catal A: Chem, 2006, 248(1-2): 135~143
    [71] Corma A, Garcia H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur J Inorg Chem, 2004, (6): 1143~1164
    [72] Sabater M J, Corma A, Domenech A, et al. Chiral salen manganese complex encapsulated within zeolite Y: a heterogeneous enantioselective catalyst for the epoxidation of alkene. Chem Commun, 1997, (14): 1285~1286
    [73] Ogunwumi S B, Bein T. Intrazeolite assembly of a chiral manganese salen epoxidation catalyst. Chem Commun, 1997, (9): 901~902
    [74] Gbery G, Zsigmond A, Balkus J K J. Enantioselective epoxidation catalyzed by zeolite MCM-22 encapsulated Jacobsen’s catalyst. Catal Lett, 2001, 74(1-2): 77~80
    [75] Heinrichs C, H?lderich W F. Novel zeolitic hosts for“ship-in-a-bottle”catalysts. Catal Lett, 1999, 58(2-3): 75~80
    [76] Schuster C, H?lderich W F. Modification of faujasites to generate novel hosts for“ship-in-a-bottle”complexes. Catal Today, 2000, 60(3-4): 193~207
    [77] Schuster C, M?llmann E, Tompos A, et al. Highly stereoselective epoxidation of (-)-α-pinene over chiral transition metal (salen) complexes occluded in zeolitic hosts. Catal Lett, 2001, 74(1-2): 69~75
    [78] Correa R J, Salomao G C, Olsen M H N, et al. Catalytic activity of MnIII(salen) and FeIII(salen) complexes encapsulated in zeolite Y. Appl Catal A: Gen, 2008, 336(1-2): 35~39
    [79] Yang H, Li J, Yang J, et al. Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chem Commun, 2007, (10): 1086~1088
    [80] Yang H, Zhang L, Su W, et al. Asymmetric ring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16 through the“ship-in-a-bottle”strategy. J Catal, 2007, 248(2): 204~212
    [81] Zhou X G, Yu X Q, Huang J S, et al. Asymmetric epoxidation of alkenes catalysed by chromium binaphthyl Schiff base complex supported on MCM-41. Chem Commun, 1999, (18): 1789~1790
    [82] Baleizao C, Gigante B, Sabater M J, et al. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioslective epoxide ring opening. Appl Catal A: Gen, 2002, 228(1-2): 279~288
    [83] Dioos B M L, Geurts W A, Jacobs P A. Coordination of CrIII(salen) on functionalized silica for asymmetric ring opening reactions of epoxides. Catal Lett, 2004, 97(3-4): 125~129
    [84] Zheng X M, Qi Y X, Zhang X M, et al. Chiral salen manganese complex immobilized on SBA-15: A new heterogenized enantioselective catalyst for the epoxidation of alkenes. Chin Chem Lett, 2004, 15(6): 655~658
    [85] Fu Z, Liao H, Xiong D, et al. A highly-efficient and environmental-friendly method for the preparation of Mn(III)-Salen complexes encapsulated HMS by using microwave irradiation. Micropor Mesopor Mater, 2007, 106(1-3): 298~303
    [86] Xiang S, Zhang Y L, Xin Q, et al. Enantioselective epoxidation of olefins catalyzed by Mn (salen)/MCM-41 synthesized with a new anchoring method. Chem Commun, 2002, (22): 2696~2697
    [87] Zhang H, Xiang S, Li C. Enantioselective epoxidation of unfunctionalised olefins catalyzed by Mn(salen) complexes immobilized in porous materials via phenyl sulfonic group. Chem Commun, 2005, (9): 1209~1211
    [88] Zhang H, Li C. Asymmetric epoxidation of 6-cyano-2,2-dimethylchromene on Mn(salen) catalyst immobilized in mesoporous materials. Tetrahedron, 2006, 62(28): 6640~6649
    [89] Zhang H, Zhang Y, Li C. Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials. J Catal, 2006, 238(2): 369~381
    [90] Zhang H, Xiang S, Xiao J, et al. Heterogeneous enantioselective epoxidation catalyzed by Mn(salen) complexes grafted onto mesoporous materials by phenoxy group. J Mol Catal A: Chem, 2005, 238(1-2): 175~184
    [91] Kureshy R I, Ahmad I, Khan N H, et al. New immobilized chiral Mn(III) salen complexes on pyridine N-oxide-modified MCM-41 as effective catalysts for epoxidation of nonfunctionalized alkenes. J Catal, 2005, 235(1): 28~34
    [92] Domínguez I, Fornés V, Sabater M J. Chiral manganese(III) salen catalysts immobilized on MCM-41 and delaminated zeolites ITQ-2 and ITQ-6 through new axial coordinating linkers. J Catal, 2004, 228(1): 92~99
    [93] Kim G J, Shin J H. The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation. Tetrahedron Lett, 1999, 40(37): 6827~6830
    [94] Kim G J, Shin J H. The catalytic activity of new chiral salen complexes immobilized on MCM-41 in the asymmetric hydrolysis of epoxides to diols. Catal Today, 2000, 63(2-4): 537~547
    [95] Kim G-J, Shin J-H. The synthesis of new chiral salen complexes immobilized on MCM-41 by grafting and their catalytic activity in the asymmetric borohydride reduction of ketones. Catal Lett, 1999, 63(3-4): 205~212
    [96] Park D-W, Choi S-D, Choi S-J, et al. Asymmetric epoxidation of styrene on the heterogenized chiral salen complexes prepared from organo-functionalized mesoporous materials. Catal Lett, 2002, 78(1-4): 145~151
    [97] Zhao D, Zhao J, Zhao S, et al. Preparation of MCM-41 supported heterogenized chiral salen Mn(III) complex and the catalytic activity in the asymmetric epoxidation. J Inorg Organomet Polym, 2007, 17(4): 653~659
    [98] Zhao J, Zhang Y, Zhang Y. Preparation of chiral salen-Mn(III) complex supported on MCM-41 and its catalytic properties for enantioselective epoxidation. Chin J Catal, 2007,28(1): 85~90
    [99] Zhao D, Zhao J, Zhao S, et al. Preparation of MCM-41-supported chiral salen Mn(III) catalysts and their catalytic properties in the asymmetric epoxidation of olefins. Chinese Sci Bull, 2007, 52(17): 2337~2344
    [100] Pini D, Mandoli A, Orlandi S, et al. First example of a silica gel-supported optically active Mn(III)-salen complex as a heterogeneous asymmetric catalyst in the epoxidation of olefins. Tetrahedron: Asymmetry, 1999, 10(20): 3883~3886
    [101] Kureshy R I, Ahmad I, Khan N H, et al. Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes. J Catal, 2006, 238(1): 134~141
    [102] Kureshy R I, Ahmad I, Khan N H, et al. Encapsulation of a chiral MnIII(salen) complex in ordered mesoporous silicas: an approach towards heterogenizing asymmetric epoxidation catalysts for non-functionalized alkenes. Tetrahedron: Asymmetry, 2005, 16(21): 3562~3569
    [103] Bigi F, Moroni L, Maggi R, et al. Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(III) complexes supported on amorphous or MCM-41 silica through a new triazine-based linker. Chem Commun, 2002, (7): 716~717
    [104] Ku?niarska-Biernacka I, Silva A R, Carvalho A P, et al. Organo-Laponites as novel mesoporous supports for manganese(III) salen catalysts. Langmuir, 2005, 21(23): 10825~10834
    [105] Lou L-L, Yu K, Ding F, et al. Covalently anchored chiral Mn(III) salen-containing ionic species on mesoporous materials as effective catalysts for asymmetric epoxidation of unfunctionalized olefins. J Catal, 2007, 249(1): 102~110
    [106] Silva A R, Wilson K, Clark J H, et al. Covalent attachment of chiral manganese(III) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Micropor Mesopor Mater, 2006, 91(1-3): 128~138
    [107] Serrano D P, Aguado J, Vargas C. A comparison of methods for the heterogenization of the chiral Jacobsen catalyst on mesostructured SBA-15 supports. Appl Catal A: Gen, 2008, 335(2): 172~179
    [108] Zhang X, Fu Y, Chen X, et al. The intercalation of transition metal salen complexes into layered MoS2. J Incl Phenom Macrocycl Chem, 2007, 59(3-4): 217~222
    [109] Bai R, Fu X, Bao H, et al. Chiral salen Mn(III) complex axial coordination immobilized on diamine modified ZSPP and their catalytic epoxidation of styrene. Catal Commun, 2008, 9(7): 1588~1594
    [110] Silva A R, Budarin V, Clark J H. et al. Chiral manganese(III) Schiff base complexes anchored onto activated carbon as enantioselective heterogeneous catalysts for alken epoxidation. Carbon, 2005, 43(10): 2096~2105
    [111] Cardoso M, Silva A R, Castro B, et al. Styrene epoxidation catalysed by manganese(III) salen complex supported on activated carbons. Appl Catal A: Gen, 2005, 285(1-2): 110~118
    [112] Canali L, Cowan E, Gibson C L, et al. Remarkable matrix effect in polymer-supproted Jacobsen’s alkene epoxidation catalysts. Chem Commun, 1998, (23): 2561~2562
    [113] Angelino M D, Laibinis P E. Synthesis and characterization of a polymer-supported salen ligand for enantioselective epoxidation. Macromolecules, 1998, 31(22): 7581~7587
    [114] Song C E, Roh E J, Yu B M, et al. Heterogeneous asymmetric epoxidation of alkenes catalysed by a polymer-bound (pyrrolidine salen)manganese(III) complex. Chem Commun, 2000, (7): 615~616
    [115] Sellner H, Karjalainen J K, Seebach D. Preparation of dendritic and non-dendritic styryl-substituted salens for cross-linking suspension copolymerization with styrene and multiple use of the corresponding Mn and Cr complexes in enantioselective epoxidations and hetero-Diels-Alder reactions. Chem Eur J, 2001, 7(13): 2873~2887
    [116] Smith K, Liu C H. Asymmetric epoxidation using a singly-bound supported Katsuki-type (salen)Mn complex. Chem Commun, 2002, (8): 886~887
    [117] Tan R, Yin D, Yu N, et al. A novel polymeric chiral salen Mn(III) complex as solvent-regulated phase transfer catalyst in the asymmetric epoxidation of styrene. J Mol Catal A: Chem, 2006, 259(1-2): 125~132
    [118] Mirkhani V, Moghadam M, Tangestaninejad S, et al. Biomimetic alkene epoxidation and alkane hydroxylation with sodium periodate catalyzed by Mn(III)-salen supported on amberlite IRA-200. Monatshefte für Chemie, 2007, 138(12): 1303~1308
    [119] Cho S-H, Gadzikwa T, Afshari M, et al. [Bis(catechol)salen]MnIII coordination polymers as support-free heterogeneous asymmetric catalysts for epoxidation. Eur J Inorg Chem, 2007, (31): 4863~4867
    [120] Zhao S, Zhao J, Zhao D. Enantioselective epoxidation of non-functionalized alkenes using carbohydrate based salen-Mn(III) complexes. Carbohyd Res, 2007, 342(2): 254~258
    [121] Hongfa C, Tian J, Andreatta J, et al. A phase separable polycarbonate polymerization catalyst. Chem Commun, 2008, (8): 975~977
    [122] Yuan M, Zhao F, Zhang W, et al. Hydrogencyanamide-bridged one-dimensional polymers built on MnIII-Schiff base fragments: synthesis, structure, and magnetism. Chem Eur J, 2007, 13(10): 2937~2952
    [123] Yuan M, Zhao F, Zhang W, et al. Azide-bridged one-dimensional MnIII polymers: effects of side group of Schiff base ligands on structure and magnetism. Inorg Chem, 2007, 46(26): 11235~11242
    [124] Vankelecom I F J, Tas D, Parton R F, et al. Chiral catalytic membranes. Angew Chem Int Ed Engl, 1996, 35(12): 1346~1348
    [125] Janssen K B M, Laquiere I, Dehaen W, et al. A dimeric form of Jacobsen's catalyst for improved retention in a polydimethylsiloxane membrane. Tetrahedron: Asymmetry, 1997, 8(20): 3481~3487
    [126] Pozzi G, Cinato F, Montanari F, et al. Effcient aerobic epoxidation of alkenes in perfluorinated solvents catalysed by chiral (salen) Mn complexes. Chem Commun, 1998, (8): 877~878
    [127] Pozzi G, Cavazzini M, Cinato F, et al. Enantioselective catalysis in fluorinated media-synthesis and properties of chiral perfluoroalkylated (salen)manganese complexes. Eur J Org Chem, 1999, (8): 1947~1955
    [128] Pozzi G, Shepperson I. Fluorous chiral ligands for novel catalytic systems. Coord Chem Rev, 2003, 242(1-2): 115~124
    [129] Cavazzini M, Manfredi A, Montanari F, et al. Second-generation fluorous chiral (salen) manganese complexes. Chem Commun, 2000, (21): 2171~2172
    [130] Cavazzini M, Manfredi A, Montanari F, et al. Asymmetric epoxidation of alkenes in fluorinated media, catalyzed by second-generation fluorous chiral (salen) manganese complexes. Eur J Org Chem, 2001, (24): 4639~4649
    [131] Song C E, Roh E J. Practical method to recycle a chiral (salen)Mn epoxidation catalyst by using an ionic liquid. Chem Commun, 2000, (10): 837~838
    [132] Lou L-L, Yu K, Ding F, et al. An effective approach for the immobilization of chiral Mn(III) salen complexes through a supported ionic liquid phase. Tetrahedron Lett, 2006, 47(37): 6513~6516
    [133] Corma A, Iglesias M, del Pino C, et al. Optically active complexes of transition metals(RhI, RuII, CoII and NiII) with 2-aminocarbonylpyrrolidine ligands. Selective catalysts for hydrogenation of prochiral olefins. J Organomet Chem, 1992, 431(2): 233~246
    [134] Wan Y, McMorn P, Hancock F E, et al. Heterogeneous enantioselective synthesis of a dihydropyran using Cu-exchanged microporous and mesoporous materials modified by bis(oxazoline). Catal Lett, 2003, 91(3-4): 145~148
    [135] Caplan N A, Hancock F E, Page P C B, et al. Heterogeneous enantioselective catalyzed carbonyl- and imino-ene reactions using copper bis(oxazoline) zeolite Y. Angew Chem Int Ed, 2004, 43(13): 1685~1688
    [136] Raja R, Thomas J M. Catalyst design strategies for controlling reactions in microporous and mesoporous molecular-sieves. J Mol Catal A: Chem, 2002, 181(1-2): 3~14
    [137] Raja R, Thomas J M, Jones M D, et al. Constraining asymmetric organometallic catalysts within mesoporous supports boosts their enantioselectivity. J Am Chem Soc, 2003, 125(49): 14982~14983
    [138] Blaser H U, Jalett H P, Lottenbach W, et al. Heterogeneous enantioselective hydrogenation of ethyl pyruvate catalyzed by cinchona-modified Pt catalysts: Effect of modifier structure. J Am Chem Soc, 2000, 122(51): 12675~12682
    [139] Kurahashi T, Kikuchi A, Tosha T, et al. Transient intermediates from Mn(salen) with sterically hindered mesityl groups: interconversion between MnIV-phenolate and MnIII-phenoxyl radicals as an origin for unique reactivity. Inorg Chem, 2008, 47(5): 1674~1686
    [1]王清廉,沈凤嘉.有机化学实验.北京:高等教育出版社, 1994
    [2] Larrow J F, Jacobsen E N. A practical method for the large-scale preparation of [N,N’-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)] manganese(III) chloride, a highly enantioselective epoxidation catalyst. J Org Chem, 1994, 59(7): 1939~1942
    [3] Kureshy R I, Khan N H, Abdi S H R, et al. Enantioselective epoxidation of non-functionalised alkenes using a urea-hydrogen peroxide oxidant and a dimeric homochiral Mn(III)-Schiff base complex catalyst. Tetrahedron: Asymmetry, 2001, 12(3): 433~437
    [4]陈卫平,杨福秋. (±)-1,2-二苯基乙二胺的合成及拆分的改进.中国医药工业杂志, 1993, 24(6): 280~281
    [5]潘建林,王爱团,包戚明,等人. (±)-1,2-二苯基乙二胺的合成与拆分.杭州师范学院学报(自然科学版), 2003, 2(4): 43~45
    [6]何松林,杨润升,曹映玉,等人. 1,2-二苯基-1,2-乙二胺的合成与拆分.天津师范大学学报(自然科学版), 2006, 26(1): 23~24
    [7] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710~712
    [8] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc, 1992, 114(27): 10834~10843
    [9] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57(4): 603~619
    [1] Kim G-J, Shin J-H. The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation. Tetrahedron Lett, 1999, 40 (37): 6827~6830
    [2] Kim G-J, Shin J-H. The synthesis of new chiral salen complexes immobilized on MCM-41 by grafting and their catalytic activity in the asymmetric borohydride reduction of ketones. Catal Lett, 1999, 63(3-4): 205~212
    [3] Zhang Y, Zhao J, He L, et al. Manganese(III) salen complex anchored onto MCM-41 as catalyst for the aerobic epoxidation of olefins. Micropor Mesopor Mater, 2006, 94(1-3): 159~165
    [4] Zhao D, Zhao J, Zhao S, et al. Preparation of MCM-41 supported heterogenized chiral salen Mn(III) complex and the catalytic activity in the asymmetric epoxidation. J Inorg Organomet Polym, 2007, 17(4): 653~659
    [5] Kim G-J, Park D-W. The catalytic activity of new chiral salen complexes immobilized on MCM-41 in the asymmetric hydrolysis of epoxides to diols. Catal Today, 2000, 63(2-4): 537~547
    [6] Park D-W, Choi S-D, Choi S-J, et al. Asymmetric epoxidation of styrene on the heterogenized chiral salen complexes prepared from organo-functionalized mesoporous materials. Catal Lett, 2002, 78(1-4): 145~151
    [7] Zhang W, Loebach J L, Wilson S R. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J Am Chem Soc, 1990, 112(7): 2801~2803
    [8] Srinivasan K, Michaud P, Kochi J K. Epoxidation of olefins with cationic (salen) MnIII complexes. The modulation of catalytic activity by substituents. J Am Chem Soc, 1986, 108(9): 2309~2320
    [9] Chang H R, Larsen S K, Boyd P D W, et al. Valence trapping in mixed-valence MnⅡMnⅢcomplexes of a macrocyclic binucleating ligand. J Am Chem Soc, 1988, 110(14): 4565~4576
    [10] Lopez J, Liang S, Bu X R. Unsymmetric chiral salen Schiff bases: a new chiral ligand pool from bis-Schiff bases containing two different salicylaldehyde units. Tetrahedron Lett, 1998, 39(24): 4199~4202
    [11] Janssen K B M, Laquiere I, Dehaen W, et al. A dimeric form of Jacobsen’s catalyst forimproved retention in a polydimethylsiloxane membrane. Tetrahedron: Asymmetry, 1997, 8(20): 3481~3487
    [12]孙杨,唐宁.一种新型手性二聚Salen配体的合成.化学通报(网络版), 2004, 67(10): w083
    [13] Park D W, Choi S D, Choi S J, et al. Asymmetric epoxidation of styrene on the heterogenized chiral salen complexes prepared from organo-functionalized mesoporous materials. Catal Lett, 2002, 78(1-4): 145~151
    [14] Ayala V, Corma A, Iglesias M, et al. Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxides: Isolation of a stable supported Mn(V)=O complex, responsible of the catalytic activity. J Mol Catal A: Chem, 2004, 221(1-2): 201~208
    [15] Guedes D F C, Mac Leod T C O, Gotardo M C A F, et al. Investigation of a new oxidative catalytic system involving Jacobsen’s catalyst in the absence of organic solvents. Appl Catal A: Gen, 2005, 296(1): 120~127
    [16] Zhang H, Xiang S, Li C. Enantioselective epoxidation of unfunctionalised olefins catalyzed by Mn(salen) complexes immobilized in porous materials via phenyl sulfonic group. Chem Commun, 2005, (9): 1209~1211
    [17] Kim G-J, Kim S-H. Immobilization of new Mn(salen) complex over MCM-41 and its activity in asymmetric epoxidation of styrene. Catal Lett, 1999, 57(3): 139~143
    [1] Pini D, Mandoli A, Orlandi S, et al. First example of a silica gel-supported optically active Mn(III)-salen complex as a heterogeneous asymmetric catalyst in the epoxidation of olefins. Tetrahedron: Asymmetry, 1999, 10(20): 3883~3886
    [2] Bigi F, Moroni L, Maggi R, et al. Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(III) complexes supported on amorphous or MCM-41 silica through a new triazine-based linker. Chem Commun, 2002, (7): 716~717
    [3] Domínguez I, Fornés V, Sabater M J. Chiral manganese(III) salen catalysts immobilized on MCM-41 and delaminated zeolites ITQ-2 and ITQ-6 through new axial coordinating linkers. J Catal, 2004, 228(1): 92~99
    [4] Kureshy R I, Ahmad I, Khan N H, et al. Encapsulation of chiral MnIII(salen) complex in ordered mesoporous silicas: an approach towards heterogenizing asymmetric epoxidation catalysts for non-functionalized alkenes. Tetrahedron: Asymmetry, 2005, 16(21): 3562~3569
    [5] Kureshy R I, Ahmad I, Khan N H, et al. Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes. J Catal, 2006, 238(1): 134~141
    [6] Silva A R, Wilson K, Clark J H, et al. Covalent attachment of chiral manganese(III) salen complexes onto functionalized hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Micropor Mesopor Mater, 2006, 91(1-3): 128~138
    [7] Casiraghi G, Casnati G, Cornia M, et al. Selective reactions using metal phenoxides. Part 1. Reactions with formaldehyde. J Chem Soc, Perkin Trans 1, 1978, (4): 318~321
    [8]孙杨,唐宁.一种新型手性二聚Salen配体的合成.化学通报(网络版), 2004, 67(10): w083
    [9] Canali L, Cowan E, Deleuze H, et al. Polystyrene and polymethacrylate resin-supported Jacobsen’s alkene epoxidation catalyst. J Chem Soc, Perkin Trans, 2000, (13): 2055~2066
    [10] Kureshy R I, Khan N H, Abdi S H R, et al. A highly potential analogue of Jacobsen catalyst with in-built phase transfer capability in enantioselective epoxidation of nonfunctionalized alkenes. J Catal, 2002, 209(1): 99~104
    [11] Minutolo F, Pini D, Petri A, et al. Heterogeneous asymmetric epoxidation of unfunctionalized olefins catalyzed by polymer-bound (salen)manganese complexes. Tetrahedron: Asymmetry, 1996, 7(8): 2293~2302
    [12] Park D W, Choi S D, Choi S J, et al. Asymmetric epoxidation of styrene on the heterogenized chiral salen complexes prepared from organo-functionalized mesoporous materials. Catal Lett, 2002, 78(1-4): 145~151
    [13] Ayala V, Corma A, Iglesias M, et al. Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxides Isolation of a stablesupported Mn(V)=O complex, responsible of the catalytic activity. J Mol Catal A: Chem, 2004, 221(1-2): 201~208
    [14] Guedes D F C, Mac Leod T C O, Gotardo M C A F, et al. Investigation of a new oxidative catalytic system involving Jacobsen’s catalyst in the absence of organic solvents. Appl Catal A: Gen, 2005, 296(1): 120~127
    [15] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57(4): 603~619
    [16] Zhang H, Zhang Y, Li C. Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials. J Catal, 2006, 238(2): 369~381
    [17] Silva A R, Budarin V, Clark J H, et al. Chiral manganese(III) Schiff base complexes anchored onto activated carbon as enantioselective heterogeneous catalysts for alkene epoxidation. Carbon, 2005, 43(10): 2096~2105
    [1] Minutolo F, Pini D, Petri A, et al. Heterogeneous asymmetric epoxidation of unfunctionalized olefins catalyzed by polymer-bound (Salen)manganese complexes. Tetrahedron: Asymmetry, 1996, 7(8): 2293~2302
    [2] Park D W, Choi S D, Choi S J, et al. Asymmetric epoxidation of styrene on the heterogenized chiral salen complexes prepared from organo-functionalized mesoporous materials. Catal Lett, 2002, 78(1-4): 145~151
    [3] Baleiz?o C, Gigante B, Das D, et al. Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. J Catal, 2004, 223(1): 106~113
    [4] Ayala V, Corma A, Iglesias M, et al. Mesoporous MCM41-heterogenised (salen)Mn and Cu complexes as effective catalysts for oxidation of sulfides to sulfoxides Isolation of a stable supported Mn(V)=O complex, responsible of the catalytic activity. J Mol Catal A: Chem, 2004, 221(1-2): 201~208
    [5] Guedes D F C, Mac Leod T C O, Gotardo M C A F, et al. Investigation of a new oxidative catalytic system involving Jacobsen’s catalyst in the absence of organic solvents. Appl Catal A: Gen, 2005, 296(1): 120~127
    [6] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57(4): 603~619
    [1] Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed, 2006, 45(20): 3216~3251
    [2] Hoffmann F, Cornelius M, Morell J, et al. Periodic mesoporous organosilicas (PMOs): past, present, and future. J Nanosci Nanotechnol, 2006, 6(2): 265~288
    [3]álvaro M, Ferrer B, Fornés V, et al. A periodic mesoporous organosilica containing electron acceptor viologen units. Chem Commun, 2001, (24): 2546~2547
    [4] Benitez M, Bringmann G, Dreyer M, et al. Design of a chiral mesoporous silica and its application as a host for stereoselective di-π-methane rearrangements. J Org Chem, 2005, 70(6): 2315~2321
    [5]álvaro M, Ferrer B, García H. Photochemical modification of the surface area and tortuosity of a trans-1,2-bis(4-pyridyl)ethylene periodic mesoporous MCM organosilica. Chem Commun, 2002, (18): 2012~2013
    [6] Song C-E, Lee S-G. Supported chiral catalysts on inorganic materials. Chem Rev, 2002, 102(10) 3495~3524
    [7] Fan Q-H, Li Y-M, Chan A S C. Recoverable catalysts for asymmetric organic synthesis. Chem Rev, 2002, 102(10): 3385~3466
    [8] Li C. Chiral synthesis on catalysts immobilized in microporous and mesoporous materials. Catal Rev -Sci Eng, 2004, 46(3-4): 419~492
    [9] McMorn P, Hutchings G J. Heterogeneous enantioselective catalysts: strategies for the immobilization of homogeneous catalysts. Chem Soc Rev, 2004, 33(2): 108~122
    [10] Xia Q-H, Ge H-Q, Ye C-P, et al. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev, 2005, 105(5): 1603~1662
    [11] Heitbaum M, Glorius F, Escher I. Asymmetric heterogeneous catalysis. Angew Chem Int Ed, 2006, 45(29): 4732
    [12] Baleiz?o C, Garcia H. Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem Rev, 2006, 106(9): 3987~4043
    [13] Baleiz?o C, Gigante B, Das D, et al. Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMo). Chem Commun, 2003 (15): 1860~1861
    [14] Baleiz?o C, Gigante B, Das D, et al. Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. J Catal, 2004, 223(1): 106~113
    [15]张翠.新型非均相手性加氢催化剂的合成与表征: [博士学位论文].天津:南开大学, 2005
    [16] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem, 1985, 57(4): 603~619
    [17] Palucki M, Finney N S, Pospisil P J, et al. The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction. J Am Chem Soc, 1998, 120(5): 948~954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700