无铝半导体激光器列阵及其组装技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于半导体激光器列阵及叠阵在军事上有很大应用,发达的资本主义国家在大功率半导体激光器线阵及叠阵方面对中国实施禁运,技术上处于绝对保密状态,因此我们必须依靠自己的力量研究。目前国内对半导体激光器列阵及叠阵的组装技术还不成熟,国内外还没有用于半导体激光器列阵及叠阵的组装设备,各个研制半导体激光器列阵及叠阵的机构对焊料的使用还互相保密,因此本人对半导体激光器的结构、组装技术、焊料、组装设备进行了如下研究:
     对无铝半导体激光器的结构进行了设计,在理论上对半导体激光器列阵及叠阵进行了研究。对它的各个参数进行了优化。对半导体激光器的性能进行了研究,对它的寿命、可靠性进行了研究。
     对半导体激光器线阵及叠阵的制作过程、工艺进行了研究,制作出半导体激光器线阵条。采用多层金属交替生长的方法,研制出一种新型的焊料结构,防止了焊料的氧化和上爬(已在国外刊物发表)。利用这种结构的焊料,我们成功地组装出单条无铝线阵脉冲功率100W的线阵,无铝叠阵脉冲功率为600W。
     使用化学方法制作出薄膜焊料,它可以用于管芯和子模块的焊接,薄膜焊料的厚度最薄可达2μm,组分可调(已申请发明专利),大小可任意剪裁。已成功地应用在半导体激光器线阵及叠阵的组装过程中。
     研究了钝化技术对光学灾变的影响,得出了钝化技术可提高半导体激光器抗光学灾变能力的结论。对半导体激光器的腔面进行钝化处理,分别采用几种不同的试剂对腔面进行处理,得出不同的结果。实验表明,用P_2S_5/NH_4OH和(NH_4)_2S_x共同处理的样品在较高功率时开始发生光学灾变。
     散热是半导体激光器列阵及叠阵组装技术中的一项极其关键的技术。通过对适于制作半导体激光器热沉的材料特性进行研究,制作出平板热沉、大通道热沉及微通道热沉。经实验证明,可以满足目前的功率(单条无铝线阵100W)需求。
     通过对半导体激光器列阵及叠阵组装过程中静电的防护进行研究,提高了成品率,减少了组装过程中由于静电造成的损失。
     目前,国内市场上还没有用于半导体激光器线阵及叠阵组装的设备,组装的成品率很低。国外用于半导体激光器列阵及叠阵对准的设备需要30-45万美元。我们研制出用于半导体激光器线阵和叠阵子模块组装的设备(已申请发明专利)。
    
    中国科学院博士学位论文:无铝半导体激光器列阵及其组装技术的研究
    该设备集组装和烧结于一体,可根据需要任意设定温度曲线,温度精度控制在
    1“C之内;组装时管芯自动对齐,减少了由组装者操作产生的偏差。还研制出了
    适于半导体激光器线阵组装的设备(已申请发明专利)。目前已有4台这样的设
    备投入使用。利用这种设备做出了无铝叠阵脉冲功率60Ow的叠阵,还做出了一
    些叠阵子模块。解决了组装过程中的关键技术问题。
As semiconductor laser arrays and stacks are greatly applied in military field, some developed countries have laid an embargo on high-power semiconductor laser arrays and stacks and strictly guarded the confidential technique. Therefore, China must rely on its own in carrying out researches in the field. Currently, the technique of semiconductor laser arrays and stacks assembly is not mature in China. There are no assembling equipment for semiconductor laser arrays and stacks in the world, and all
    institutions manufacturing semiconductor laser arrays and stacks kept usage of solder as secret. Consequently, assembling technique, solder and assembling equipment have been deemed as focal points of my studies. My studies in the three questions are as follows.
    Manufacturing process of semiconductor laser arrays and stacks is studied and semiconductor laser array bars are manufactured. A method of multi-metal-layer alternate growing is applied to develop a new type of solder structure, which prevents oxidation and creeping of the solder (the research of this field has been published in an English journal). Utilizing this kind of solder, we have assembled laser arrays with single-bar pulse power of 100W and stacks with pulse power of 600W each.
    Using chemical methods, we have manufactured thin-film solder that can be applied to soldering of tubes and sub-modules. The thinnest thin-film solder can reach 2um, and the constituents of the solder can be tuned (the research result has been applied a patent of invention). The thin-film solder can be cut as will and it has been successfully applied in the process of semiconductor laser arrays and stacks assembling.
    The effect of passivation technique on catastrophic optical damage is studied and a conclusion that passivation technique can improve the abilities of semiconductor lasers to resist catastrophic optical damage is drawn from the studies. Several different reagents have been used to treat the cavities of semiconductor lasers and different results have been achieved. The experiments show that specimen treated by and (NH4)2Sx produce catastrophic optical damage at a higher power.
    
    
    Heat dissipation is a key technology in semiconductor laser arrays and stacks assembling. Through studies of material characteristics suitable for making semiconductor laser heat sinks, we have manufactured panel heat sinks, large-channel heat sinks and micro-channel heat sinks. The experiments have shown that the heat sinks can meet the demand of power, i.e., 100W single-bar laser arrays.
    Through studies of electrostatic prevention in the process of semiconductor laser arrays and stacks assembling, we have increased rate of finished products and reduced the loss induced by electrostatic in the process of assembling.
    Currently, there are no equipment for semiconductor laser arrays and stacks assembling, and the rate of finished products assembled is rather low. Whereas, equipment for semiconductor laser arrays and stacks aligning produced by foreign companies costs 250000 dollars. We have developed equipment for semiconductor laser arrays and stacks sub-modules assembling (the equipment has been applied a patent of invention). The equipment incorporates assembling and sintering and the temperature curves can be set according to users' need. The accuracy of temperature control can be controlled within 1癈. In assembling, the tubes align automatically, thus reducing deviations of assemblers operation. In addition, equipment suitable for semiconductor laser arrays assembling has been developed (the research result has been applied a patent of invention). So far, 4 sets of such equipment have put into use. With this kind of equipment, we have manufactured stacks with pulse power of 600 W, and also some stacks sub-modules. So
    me key technique problems in the process of assembling have been solved.
引文
[1] 半导体物理学 刘恩科 等编著 国防工业出版社 北京,1994第4版 178-194,228-249
    [2] R.S.Vodhanel,R.I.Laming,V.Shah,L.Curtis. Highly efficient 978nm diode-pumped ernium-doped fiber amplifier with 24dB gain. Electron. Lett.vol.25. no.20. pp.1386-1388. 1989
    [3] M.Yamada, M.Shimizu, T.Takeshita. Er+3-doped fiber amplifier pumped by 0. 98um laser diode.Photon.Technol.Lett.vol.1. pp.422-424. Dec. 1989
    [4] S.Shimada. Impact of erbium-doped amplifiers on optical communication system.Opt.Photon.news.vol. 1 .nol .pp.6-12. 1990
    [5] H.C.casey.Jr., M.b.Panish. Heterostructure lasers. New York.Academic. 1978
    [6] Sumpf,Gert Beister, Tensile-Strained GaAsP-AlAsAs laser diodes for reliable 1. 2W continuous wave operation at 735nm. IEEE Photonics Technology Letters,
    
    Vol13,No.1. p7-9 January 2001
    [7] G.K.Kuang, G.Bohm,N.Graf High-Temperature performance of InGaAs-InGaAlAs-InP 1. 79μm diode lasers grown in solid-source molecular-beam epitaxy. IEEE Photonics Technology Letters, Vol. 13,No4, p275-277 April 2001
    [8] A.Al-Muhanna,L.j.Mawst,D.botez. High-power (>10W) continuous-wave operation from 100μm-aperture 0. 97μm-emitting Al-free diode lasers. Applied Physics letters Volume 73,Number 9 31 p1182-1184August 1998
    [9] K.Kobayashi.S.Kawata. Room temperature CW operation of AlGalnP double heterostructure visible laser. Electron. Lett.vol.21. pp.931-932. 1985
    [10] M.Ikeda.Y.Mori. Room temperature CW operation of an AlGalnP double heterostructure laser grown by atmospheric pressure metalorganic chemical vapor deposition.Appl.Phys.Lett..vol.47. pp.1027-1028. 1985
    [11] M.Ishikawa,Y.Ohba. Room temperature CW operation of InGaP/InGaAlP visible light laser diode on GaAs substrates grown by metalorganic chemical vapor deposition.Appl.Phys.Lett.vol.48. pp.207-208. 1986
    [12] A.Tahraoui, A.Matlis.S.Slivken. High-performance quantum cascade lasers(λ-11μm)operating at high temperature (t = 425K). Applied Physics Letters Volume78,Number4 22 p416-418Jaunary 2001
    [13] Stephen J.Matthews. Time to break out. Laser Focus World. P145-148May 2002
    [14] YArakawa, H.Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl.Phys.Lett.vol.40. pp.939-941. 1982
    [15] L.Goldstein. F.Glas. Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer supperlattics. Appl.Phys.Lett.vol.47. pp.1099-1101. 1985
    [16] G.Park.O.B.Shchekin. Low threshold oxide-confined 1. 3μm quantum dot laser. IEEE Photon.Technol.Lett. vol.33, pp.230-232. 2000
    [17] A.E.Zhukov. A.R.Kovsh. 3. 9W CW power from sub-monolayer quantum dot diode laser. Electron.Lett. vol .35. pp.1845-1846. 1999
    [18] L.V.asryan, R.A.Suris. Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser. Semicond.Sci.Tehnol.
    
    vol. 11 .pp.554-569.1996
    [19] A.E.Zhukov, V.M.Ustinov. Negative characteristic temperature of InGaAs quantum dot injection laser. Jpn.J.Appl.Phys.pt. 1. vol.36.pp.4216-4218.1997
    [20] G.Park. O.B.Shchekin. Room-temperature CW operation of a single-layered 1.3μm quantum dot laser. Appl.Phys. Lett: vol.75.pp.3267-3269.1999
    [21] 21世纪的半导体激光器.程东明编译.光机电信息,2002,1 8-14
    [22] 半导体激光器及其应用 黄德修,刘雪峰 国防工业出版社 北京,1999第1版1.7 40-65 161-175 215-220
    [23] 半导体器件的材料物理学基础 陈治明,王建农 科学出版社 北京,1999第1版 9-26
    [24] 半导体超晶格 夏建白,朱邦芬 上海科学技术出版社 上海,1995第1版1-20
    [25] 面发射激光器基础与应用[日] 伊贺健一,小山二三夫 编著 科学出版社共立出版北京,2002第1版3-4 23-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700