用于紫外光探测器的TiO_2及其复合氧化物的结构和光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Structural and Optical Properties of TiO_2 and Multiple Oxide for UV Detectors
  • 作者:张爽
  • 论文级别:博士
  • 学科专业名称:微电子学与固体电子学
  • 学位年度:2004
  • 导师:陈维友
  • 学科代码:080903
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-10-01
摘要
紫外光探测器无论在军用还是在民用上都有重要的应用价值,所以引起人们的极大关注。近年来,随着材料制备技术的发展而迅速发展。目前研究较多的是宽禁带半导体GaN基紫外光探测器,并且取得了大的进展。基于宽禁带半导体ZnO材料的紫外光探测器也受到的很大的关注。TiO2是一种宽禁带半导体,它不但具有很好的物理和化学性质,而且具备较好的光学性质。由于它的体材料禁带宽度为3.2eV,对应于紫外光波段,所以具有很大的制作紫外光探测器的潜力。本论文的主要内容之一就是探索性地制作以TiO2为基体材料的紫外光探测器。对于制作紫外光探测器来说,我们希望扩大材料的光吸收范围,从而增大探测器的可探测波长范围。要实现这一目的就必须制备出与TiO2具有相似结构且带隙可调的半导体材料。通过参考AlxGa1-xN和MgxZn1-xO等基材料的研究结果,我们发现:在基体材料中适当的引入其它组分元素而得到的三元或四元系合金材料不但具有与基体相似的结构和光学特性,而且其带隙宽度可以在一定范围内进行调节。这样我们就可以根据实际需要来设计基体材料,选用符合要求的基体材料。因此,如何选择和研制一种同时具有好的结构和光学性质的带隙宽
    
    
    度可以在一定范围内调节的合金半导体材料就成了一项十分重要的课题。
    本文利用溶胶-凝胶法制备了TiO2薄膜材料,研究了不同烧结温度对材料结构性质和光学性质的影响。初步探索性地利用TiO2作为基体材料制作了MSM型紫外光探测器。另外,利用溶胶-凝胶法分别制备了MnxTi1-xO2, SrxTi1-xO2,LaxTi1-xO2,NdxTi1-xO2合金薄膜,并深入研究了它们的结构和光学性质。通过各种表征手段对不同组分含量,不同热处理温度下的薄膜材料的性质进行研究,了解其结构和光学性质的变化规律,从而选择适宜的条件制备符合设计要求的基体材料。
    首先,利用溶胶-凝胶法制备了纳米晶TiO2薄膜材料。通过对不同烧结温度下制备样品的X-射线衍射分析可以看出,烧结温度为350-750℃时,材料具有锐钛矿型结构。当烧结温度升至850℃时,材料是由金红石和锐钛矿两种结构共存。而且随着烧结温度的升高,晶粒尺寸越来越大,材料的结晶度越来越好。我们又对650、750、850℃下制备的样品的紫外吸收特性进行测量,发现各样品在紫外波段均有较强的吸收,在可见光波段几乎不吸收。随着烧结温度的升高,材料的吸收光谱的吸收边出现红移现象。
    我们首次报道了以TiO2薄膜作为基体材料制作紫外光探测器。通过器件的光电流与照射光波长之间的关系曲线我们看出,器件对小于280nm波段的紫外光有较好的响应,截止边出现在360nm。由于实验条件的限制,目前我们还不能对器件的其他参数进行测量。
    为了实现探测器的响应波长范围可调,我们制备了组分可调的Ti系复合氧化物。首先在不同烧结温度下制备了具有不同Mn组分含量的复合氧化物MnxTi1-xO2薄膜。XRD研究结果表明,Mn0.1Ti0.9O2薄膜的锐钛矿和金红石型结构同时出现的温度为550℃,随着烧结温度升高,锐钛矿型的衍射峰逐渐减弱,金红石型的衍射峰逐渐加强。750℃时已经观察不到锐钛矿型的衍射峰。对于Mn0.2Ti0.8O2 、Mn0.33Ti0.67O2、 Mn0.5Ti0.5O2薄膜,在450℃时就观察不到锐钛矿型的衍射峰。随着烧结温度升高,金红石型衍射峰逐渐
    
    
    加强。观测结果表明组分Mn的引入不但保持TiO2的结构,而且对体系呈稳定的金红石相的相转变温度趋向降低。
    通过研究烧结温度对复合氧化物MnxTi1-xO2薄膜光学性质的影响我们发现,随着烧结温度的升高,各材料的吸收光谱的吸收边出现红移。通过研究各烧结温度下Mn含量对吸收光谱的影响发现,复合氧化物MnxTi1-xO2薄膜的吸收边较TiO2的吸收边红移。而且随着Mn含量的增加,红移的距离加大。这说明通过提高烧结温度和增加Mn的含量都可以使材料的光吸收范围向长波方向扩大。
     接下来,我们在不同烧结温度下制备了具有不同Sr组分含量的复合氧化物SrxTi1-xO2薄膜。我们发现只有当Sr的含量x值小于0.3时,材料才具备TiO2的结构。对这些具有TiO2结构的样品紫外吸收性质的研究发现,与TiO2相比它们的吸收光谱的吸收边蓝移,与复合氧化物MnxTi1-xO2薄膜的吸收边移动方向相反。这说明Sr的引入可以使材料的吸收范围向短波方向扩大,而Mn的引入可以使材料的吸收范围向长波方向扩大,这样我们就可以根据器件设计的要求来选择基体材料。
     另外,我们还制备了LaxTi1-xO2,NdxTi1-xO2合金薄膜。通过对其结构性质和光学性质的研究发现,这些材料不具备作为紫外光探测器基体材料的要求。但是它们可以为以后的实验研究提供参考数据。
Ultraviolet (UV) detectors have attracted intense in recent years because of military and civil value. Recently, many wide-band-gap semiconductors with good optical properties such as doped GaN and ZnO have been used for UV detectors. Titanium dioxide (TiO2) has been widely investigated for solar cell, photocatalyst, because they have good physical and chemical properties, especially optical properties. TiO2 is a wide band gap (Eg=3.2eV) semiconductor that can be used for ultraviolet detectors. In this paper, UV detectors used of TiO2 thin films is fabricated. In order to extend the range of sensing spectra, a new kind of material that exhibits the same material advantages as pure TiO2 is wanted. It’s optical band gap can be turned by varying the composition, just like AlxGa1-xN and MgxZn1-xO.
     In this thesis, TiO2 thin films were prepared by sol-gel method. Influence of different calcinations temperatures on the structural and optical properties of samples was researched. TiO2 UV detectors with MSM structure were fabricated. In addition, MnxTi1-xO2, SrxTi1-xO2,LaxTi1-xO2,NdxTi1-xO2 thin films were prepared. Their structures were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Optical properties of the films were examined by UV obsorption spectra.
     TiO2 thin films were prepared at various calcinations temperatures by sol-gel process. The XRD results showed that TiO2 thin film was anatase phase at 350-750℃, and further into rutile phase at 850℃. As the calcinations
    
    
    temperature increases, the TiO2 crystallites continue to grow. In optical spctra of samples calcined at 650,750,850℃, strong obsorbances were observed in UV region. Moreover, there is a gradual shift of obsorbance edge towards the longer wavelength region.
     TiO2 UV detector was firstly reported. The response potocurrent (PC) as a function of waveltngth for detector was measured. The OC spectrum showed an cut-off edge at around 360nm. The response photocurrent is very large in the range of 280 to 230nm.
     MnxTi1-xO2 thin films with different x were prepared at different calcination temperatures by sol-gel method. The XRD results indicate that Mn0.1Ti0.9O2 thin films was antase and rutil phase at 550℃. Mn0.2Ti0.8O2 thin films obtained with calcination temperatures as low as 550℃ were pure rutile, while TiO2 thin films calcined at 550℃ were anatase. Mn0.2Ti0.8O2 thin films present lower surface roughness than TiO2 thin films. As the calcinations temperature increases, the intensity of antase decreases and the intensity of rutile increases. Peaks of anatase were not observed at 750℃. For Mn0.2Ti0.8O2 、Mn0.33Ti0.67O2、 Mn0.5Ti0.5O2 thin films, peaks of anatase were not obserbed at 450℃.
     Influence of calcinations temperatures on optical properties of MnxTi1-xO2 thin films was studied. As the calcinations temperature increases, absorption edge red-shifted. Then influene of the Mn composition on optical properties of samples was researched. Absorption edges of MnxTi1-xO2 thin films shifted towards longer wavelengths than that of TiO2. Larger Mn composition, the absorption edge wavelength is longer. The results indicated that the range of sensing spectra extend towards longer wavelength by increasing calcinations temperatures and the Mn composition.
     Then SrxTi1-xO2 thin films with different x were prepared at different calcinations temperature by sol-gel method. The XRD results indicate that SrxTi1-xO2 thin films have the similar structural properties to TiO2, when x is less than 0.3. Their optical properties were studies by UV obsorption spectra. Absorption edges of SrxTi1-xO2 thin films shifted towards shorter wavelengths than that of TiO2. The results indicated that the range of sensing spectra extend towards shorter wavelength by inducting Sr.
     In additin, LaxTi1-xO2 thin films and NdxTi1-xO2 thin films were prepared.
    
    
    However, the XRD and UV obsorption spectra did not present good results. That proved that LaxTi1-xO2 thin films and NdxTi1-xO2 thin films were not suitable for Ultra
引文
[1] 阮圣平 吉林大学博士学位论文 2001
    [2] 李民乾,物理,1991,21(2):65
    [3] 林鸿溢,科学中国人,1994,3:176
    [4] 薛海林,吉林大学本科论文 2003
    [5] 赵振元,吉林大学本科论文 2004
    [6] Zhu X., Birringer R, Herr U. et al., Phys.Rev B, 17(35) (1978): 9085
    [7] 华中一, 第一届全国纳米科学与技术会议论文集,抚顺:中国真空学会,1992
    [8] 田清华 染料敏化二氧化钛薄膜电极的制备及性能研究 浙江大学硕士学位论文
    [9] R.E. Cavicchi, R.H. Silsbee, Phys.Rev.Letter,52(1984) 1453
    [10] Y.Maeda et al. Appl.Phys. Lett., 59 (1991)3168
    [11] Y. Osaka et al., Jpn.J.Appl.Phys. 31 (1992) 365
    [12] D.A. Redman et al. Appl.Phys.Lett. 65 (1994)2386
    [13] T.Takagahara et al. Phys.Rev. B46(1992) 15578
    [14] Y.Kanemitsa et al. Appl.Phys.Lett. 61 (1992)2187
    [15] C.Hamaguchi,T.Mori,T.Wada et al. Physics of nanometer structure devices,Microelectron.Eng. (Netherlands),2(l-3) (1984)34
    [16] A.A.Hirsch,T.Massalha,G.Galeczki Magnetic surface,size and time effects in granular films of iron,J. Magn.Mater.(Netherlands),(1988),75(3),209
    [17] T.Katsuyama,K.Hiruma,K.Ogawa,et al. Optical properties of GaAs nano-whiskers,Jpn.J.Appl.Phys. 34(I) (1994) 224
    [18] H.Weller Quantized semiconductor particles: a novel state of matter for materials science,Adv.Mater.(Germany) 5(2) (1993) 88
    
    [19] D.S.McCallum,X.R.Huang,M.D.Dawson,et al. Optical nonlinearities and ultrafast charge transport in all-binary InAs/GaAs strained hetero n-i-p-i’s,J.Appl.Phys. 70(11) (1991) 6891
    [20] YH.Xie,W.L.Wilson,F.M.Rosset al. Luminescence and structural study of porous silicon films,J.Appl.Phys. 71(5) (1992) 2403
    [21] 杨宗志,机械粉碎法制备超细TiO2粉体.现代化工,1 (1994) 38
    [22] 段波,赵兴中,李兴国等 纳米TiO2粉体的制备技术,材料工程,6 (1994) 5
    [23] C D Terwilliger,Y M Chiany The study of nanometer titanium dioxide prepared Mater.Res.Soc. 1993 (l) 15
    [24] S lwama et al. Prepared nanocrystal TiO2 using the physical method, J. Crystal Growth,1982,56(2) 265
    [25] 入谷繁树TiO2超微粒子的制备方法,固体物理,1997,12(4) 231
    [26] H.Oya et al. The technique of preparing ultrafine particle. J.J Appl Phys 1982,21(3) 554
    [27] 唐阳清,周馨我 纳米级TiO2的制备方法, 材料导报,1995(3) 20
    [28] 潘颐,吴希俊 纳米TiO2的气相合成方法.材料科学与工程,1997,11(4) 16
    [29] Siegels R.W. et al. The study of titania prepared in gas phase J. Mater. Res. 1998,3(6) 1367
    [30] Averback R S., Hofler H.J., Tao R. Nanometer TiO2 prepared in gas phase Mater Sci Eng,1993 A166
    [31] 胡黎明,郑柏存等 化学气相沉积反应器中的超细粒子的形态控制 华东化工学院学报,1992,18(4) 433
    [32] Kirkbir,Fikret et al. A mechanism for the production of nanometer particles of TiO2 by a gas phase reaction Chem Lett,1998(5) 791
    
    [33] Kaminishi Shigeru Production of ultrafine metal oxide aersol particles by thermal decomposition of metal alkoxide vapors. Chemical Abstract,1997,107 9906
    [34] M.K. Akhtar et al A micro-Raman study of iron-titanium oxides obtained by sol-gel synthesis nanostructure Mater. (USA),1994,4(5) 537
    [35] Casey JD, Haggerty J.S. Preparation of nanometer TiO2 by thermal decomposition method J. Mater. Sci. 1997 22 4307
    [36] Laura E. et al .J.Mater Res 1998 8(10) 2709
    [37] Curicio F. et al. The study of nanometer TiO2 preparation Appl Surf.Sci l995 46(l-4) 225
    [38] S. Barbowx-Doeuff et al. Preparation of nanometer TiO2 by sol-gel method. Mater Res Bull 1994,29 1
    [39] 包定华,顾豪爽等 液相法制备纳米TiO2 无机材料学报 1996 11(3) 453
    [40] K Nakano et al. Nano TiO2 prepared by sol-gel method. Corros Sci(UK) 1990 31 407
    [41] 胡黎明,顾燕芳,顾家建等 水解法制备纳米级TiO2 华东化工学院,1 999 16(3) 260
    [42] 陈代荣,孟永德,樊悦朋 由工业硫酸钛液制备纳米微粉 无机化学学报,1995 11(3) 228
    [43] 程黎放,戴松元等 用溶胶一凝胶法制备的纳米TiO2粉末的结构研究 材料研究学报,1996,10(4) 404
    [44] 王晓惠,李熙等 胶溶法合成TiO2超微粒子 材料科学进展1999 6(6) 553
    [45] Suzuki,Takehiko et al. J.P. 62(1997) 235215
    [46] 李炳生,中国科学院博士研究生学位论文,2002
    [47] 田芳,李建伟,王琛 原子力显微镜及其对DNA大分子的应用研究,
    
    
    物理 26(1997)238
    [48] 潘承璜,赵良仲 电子能谱基础 科学出版社
    [49] 黄昆,韩汝琦 固体物理学,高等教育出版社
    [50] 方容川 固体光谱学 中国科学技术大学出版社
    [51] B.S. Li, Y.C. Liu, D.Z. Shen et al. J. Vac.Sci.Technol.A 20(2002) 265
    [52] V.Srikant, D.R. Clarke J.Appl.Phys. 81(1997) 6357
    [53] 史常忻 金属-半导体-金属光电探测器 上海交通大学出版社
    [54] S.M.Sze et al. Solid State Electronics 14(1971)1209
    [55] T.Sugeta et al. J.J.Appl.Phys. 9(1980)459
    [56] W.Roth et al. IEEE Trans.on ED 32(1985)4034
    [57] O.Wado et al. J.Light Wave Technology 4(1986)1694
    [58] K.Nakajima et al. IEEE Trans. On ED 37(1990)31
    [59] M.Ito IEEE 5(1995) 531
    [60] K.Nakajima, IEEE J. of Quantum Electronics 26(1990)619
    [61] D.McIntuff IEEE Trans.On ED 34(1987)2383
    [62] W.P.Hong et al. IEEE Trans. On ED 36(1989)659
    [63] J.B.D.Soole et al. IEEE PTL 1(1989)250
    [64] L.Yang et al. IEEE PTL 2(1990)59
    [65] V.Hum et al. Electronics Lett. 33(1997)624
    [66] E.H. B?ttcher et al. IEEE PTL 8(1996)1226
    [67] 李志奇,王庆康,史常忻 固体电子学研究与进展 12(1992)
    [68] C-X.Shi et al. IEEE Trans on-ED 39(1992)1028
    [69] K.Kajiyama et al. Appl.Phys.Lett. 23(1973)458
    [70] 陈汉鸿 ZnO薄膜和ZnO紫外探测器 浙江大学硕士学位论文 2002
    [71] 陈小红 GaN材料及MSM结构紫外光电探测器的研究与制备 厦门大学硕士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700