高分散金属Ni-MCM-41分子筛催化剂的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MCM-41型介孔分子筛具有六方排列的规则孔道、大比表面积、大孔容、均匀分布的孔径、组分可调控等特点,但由于其骨架缺陷较少,催化活性中心较弱的缺陷,极大地限制其在催化领域的应用。在分子筛的众多改性方法中,引入杂原子是其改性的重要手段之一。杂原子的引入首先会对分子筛的结构产生调变作用,改变其孔径和比表面积大小;并且杂原子金属本身也会具有某些特殊的催化性能,为功能性催化剂的设计提供一种途径。催化剂活性组分通常为比较贵的金属元素,为了有效的利用这些活性组分,一般将活性组分分散在大比表面积的载体上。高温焙烧和高温还原易造成金属活性组分的迁移集聚,导致金属组分分散度降低,但这恰恰是金属催化剂传统制备方法中的必经步骤,会对催化材料的性能造成很不利的影响。
     本论文通过条件温和的水热合成法,以NH3作为配体和金属Ni2+形成配合物[Ni(NH3)6]2+,避免了金属Ni2+生成氢氧化物沉淀,以S+I-I+I-机理为理论基础合成出了一系列骨架金属Ni-MCM-41介孔分子筛,综合利用多种测试手段对样品的结构、Ni在分子筛中的配位状态及分子筛的稳定性能进行了表征。结果表明:高含量的Ni主要以四配位体的结合方式均匀分布于Ni-MCM-41分子筛样品的骨架中,完整的保持了MCM-41型介孔分子筛特有的六方孔道结构。在此基础上,以Ni-MCM-41为前驱体,利用其金属Ni高度分散于骨架,并与骨架硅原子有较强相互作用的特点,通过H2还原得到金属镍高度分散的介孔分子筛。论文的主要研究成果有:
     1、利用水热合成法,成功合成出了高Ni含量的介孔分子筛Ni-MCM-41,研究了分子筛的合成工艺条件。分析测试结果表明:Ni-MCM-41中金属Ni含量可高达16.3wt%,不同Ni含量分子筛的孔径约为2.77-3.16nm,孔容为1.05-1.22cm3g-1,比表面积为580-800m2g-1,并且该类分子筛具有MCM-41型介孔分子筛特有的六方孔道结构。
     2、以Ni-MCM-41为前驱体,通过H2还原制备得到金属型高分散Ni·MCM-41介孔分子筛。分析测试结果表明:金属Ni高度分散于介孔分子筛基体中,Ni金属的平均颗粒小于20nm,均匀分散,同时该类分子筛依然保持了MCM-41型介孔分子筛特有的六方孔道结构。
     3、以焦化蜡油为原料,考察了骨架型介孔分子筛Ni-MCM-41样品的加氢裂化催化性能。结果表明:该类催化剂对焦化蜡油加氢裂化显示出了较高的转化率(70.0~83.0%)和较高的低沸点烃类产物的选择性(78.0~81.3%)。
MCM-41is a type of mesoporous molecular sieve with uniformlyhexagonal pore structure, large specific surface area and excellentadsorption property.It is an important method to introducing heteroatominto molecular sieves for modification of the characters. On one hand, theintroduced heteroatoms may lead to the charge disequilibrium ofmolecular sieves bringing more acid sites. On the other hand, heteroatomwith inherent characteristics makes the molecular sieves asmulti-functional catalysts. Generally speaking, the active sites of catalystare noble metallic element. In order to take advantage of these active sites,those are dispered on the surface of carriers with large specific surfacearea. High-temperature calcination and reduction are essential in thetraditional preparation method of metal catalyst, which can make themetal components transfer and assemble reducing the dispersion andhaving bad effects on the catalyst.
     In this thesis, a series of Ni-MCM-41mesoporous molecular sieveswere synthesized through a facile hydro-thermal method basing onS+I-I+I-synthetic mechanism, in which NH3was used as coordination agent coordinating with Ni2+to form [Ni(NH3)6]2+avoiding theprecipitation of Ni2+. The structure of samples, the coordination status ofNi and the stability of molecular sieves were characterized with acollection of testing measures. The results turned out that the Ni contentis up to16.3wt%highly dispersed in the silica framework and the typicalhexagonal pore structure was still existed. Further more, in this thesis,highly dispersed metal catalysts were obtained using Ni-MCM-41asprecursor, taking advantages of the strong interaction between Ni and Siin the framework. The main research results are as following:
     1. Mesoporous molecular sieves with high Ni content Ni-MCM-41were successfully synthesized and the characterization results confirmthat the Ni content is up to16.3wt%, pore diameters are about2.77-3.16nm, pore volume are1.05-1.22cm3g-1and specific surface areas are580-800m2g-1. At the same time, the typical hexagonal pore structurewas still existed.
     2. Highly dispersed metal catalysts were obtained by reduction usingNi-MCM-41as precursors. The characterization results confirm that theNi particles under20nm were highly dispersed on the surfaces ofmesoporous molecular sieves, and the typical hexagonal pore structurewas still existed.
     3. In this thesis, the catalytical performance of Ni-MCM-41hasbeen investigated through hydrocracking of coker wax oil. The results reveal that these sort of catalysts showed high conversions (70.0~83.0%)and selectivity of low boiling point hydrocarbons (78.0~81.3%), these areexcellent catalysts for hydrogenation.
引文
[1]崔鹏.功能性氧化硅微纳米材料的制备与性质研究[D].济南:山东大学,2008.
    [2]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004,531.
    [3]钟玲.Sn掺杂MCM-41介孔分子筛的合成、表征及其催化环己酮Baeyer-Villiger氧化[D].长沙:湘潭大学,2008.
    [4]孟桂花,王绪根,郭海等.微波法合成MCM-41介孔分子筛及吸附性能研究[J].当代化工,2011,40(4):344-346.
    [5]关豪元.解废旧聚苯乙烯塑料的介孔分子筛催化剂研究[D].长沙:中南大学,2010.
    [6]周正阳,多孔有机-无机纳米复合材料的制备及其药物缓释性能研究[D].上海:上海交通大学,2007.
    [7]于素霞,杨建华,初乃波等.多级结构ZSM-5沸石分子筛的合成及其Mo基催化剂在甲烷无氧脱氢芳构化中的应用[J].催化学报,2009,30(010):1035-1040.
    [8]Liu Y, Zhang W, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds[J]. Journal of the American Chemical Society122,(2000):8791-8792.
    [9]朱金红.介孔及介微孔分子筛的合成、表征及催化性能研究[D].大连:大连理工大学,2004.
    [10]Liu Y, Zhang W, Pinnavaia T. et al. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5and zeolite beta seeds[J]. Angew. Chem.,113,2001:1295-1298.
    [11]Zhang Z, Han Y, Xiao F S. et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures[J]. J. Am. Chem. Soc.,123,2001:5014-5021.
    [12]Zhao D, Huo Q, Feng J. et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc.,1998,120(24):6024-6036.
    [13]Zhao D, Feng J, Huo Q. et al. Triblock copolymer syntheses of mesoporous silica with periodic50to300angstrom pores[J]. Science,279,1998,548.
    [14]Yang Y, Lim S, Du G. et al. Synthesis and characterization of highly ordered Ni-MCM-41mesoporous molecular sieves[J]. J. Phys. Chem. B.,2005,109(27):13237-13246.
    [15]Yang Y, Lim S, Du G. et al. Controlling of physicochemical properties of nickel-substituted MCM-41by adjustment of the synthesis solution pH and tetramethylammonium silicate concentration[J]. J. Phys. Chem. B.,2006,110(12):5927-5935.
    [16]Lim S, Ciuparu D, Pak C. et al. Synthesis and characterization of highly ordered Co-MCM-41for production of aligned single walled carbon nanotubes (SWNT)[J]. J. Phys. Chem. B.,2003,107(40):11048-11056.
    [17]Chen Y, Ciuparu D, Lim S et al. Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41:effects of the catalyst prereduction and nanotube growth temperatures [J]. J. Catal.,2004,225(2):453-465.
    [18]Ciuparu D, Chen Y, Lim S. et al. Uniform-diameter single-walled carbon nanotubes catalytically grown in cobalt-incorporated MCM-41[J]. J. Phy. Chem. B.,2004,108(2):503-507.
    [19]Lim S, Ciuparu D, Chen Y et al. Effect of Co-MCM-41conversion to cobalt silicate for catalytic growth of single wall carbon nanotubes[J]. J. Phy. Chem. B.,2004,108(52):20095-20101.
    [20]Araujo A, Aquino J, Souza M. et al. Synthesis, characterization and catalytic application of cerium-modified MCM-41[J]. J. Solid State Chem.,171,(2003):371-374.
    [21]党富民,甄新平,牛春革等.介孔分子筛Al-MCM-41制备及催化合成二芳基乙烷[J].应用化学,2009,26(012):1404-1408.
    [22]乔亏,张富民,潘多丽等.高钛Ti-MCM-41分子筛的合成,表征与催化氧化性能考察[J].无机化学学报,2008,24(005):748-754.
    [23]梁文惠.杂原子FeY分子筛高岭土复合杂化材料的合成与表征[D].北京:北京化工大学,2011.
    [24]Russo P A, Carrott M M L, Carrott P J M et al. Effect of hydrothermal treatment on the structure, stability and acidity of Al containing MCM-41and MCM-48synthesised at room temperature [J]. Colloids Surf., A2007,310(1-3):9-19.
    [25]Luan Z, He H, Zhou W et al. Effect of structural aluminium on the mesoporous structure of MCM-41[J]. J. Chem. Soc., Faraday Trans.,1995,91(17):2955-2959.
    [26]Lindlar B, Kogelbauer A, Prins R. Chemical, structural, and catalytic characteristics of Al-MCM-41prepared by pH-controlled synthesis[J]. Microporous Mesoporous Mater.,2000,38(2-3):167-176.
    [27]Chatterjee M, Iwasaki T, Onodera Y et al. Characterization of ordered mesoporous gallium MCM-41synthesized at room temperature[J]. Chem. mater.,2000,12(6):1654-1659.
    [28]何静,朱月香Ti-MCM-41的结构特征与芳烃羟化反应的化学亲和选择性[J].燃料化学学报,2001,29(005):417-421.
    [29]Xiao F S, Han Y, Yu Y et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites[J]. J. Am. Chem. Soc,2002,124(6):888-889.
    [30]Luo Y, Lu G, Guo Y et al. Study on Ti-MCM-41zeolites prepared with inorganic Ti sources:Synthesis, characterization and catalysis[J]. Chem. Commun.,2002,3(3):129-134.
    [31]Corma A, Navarro M, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41and its application as a catalyst for selective oxidation of hydrocarbons[J]. J. Chem. Soc., Chem. Commun.,1994,2:147-148.
    [32]Shen S, Guo L. Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41as visible light photocatalysts for water splitting[J]. Catal. Today,2007,129(3-4):414-420.
    [33]Dzwigaj S, Krafft J M, Che M. et al. Photoluminescence study of the introduction of V in Si-MCM-41:Role of surface defects and their associated SiO-and SiOH groups [J]. J. Phys. Chem. B.,2003,107(16):3856-3861.
    [34]Lim S, Haller G L. Preparation of highly ordered vanadium-substituted MCM-41:stability and acidic properties [J]. J. Phys. Chem. B.,2002,106(33):8437-8448.
    [35]Parvulescu V, Su B L. Iron, cobalt or nickel substituted MCM-41molecular sieves for oxidation of hydrocarbons [J]. Catal. Today,2001,69(1-4):315-322.
    [36]Samanta S, Giri S, Sastry P et al. Synthesis and characterization of iron-rich highly ordered mesoporous Fe-MCM-41[J]. Ind. Eng. Chem. Res.,2003,42(13):3012-3018.
    [37]Amama P B, Lim S, Ciuparu D et al. Synthesis, characterization, and stability of Fe-MCM-41for production of carbon nanotubes by acetylene pyrolysis[J]. J. Phys. Chem. B.,2005,109(7):2645-2656.
    [38]Lim S, Li N, Fang F et al. High-Yield Single-Walled Carbon Nanotubes Synthesized on the Small-Pore (C10) Co-MCM-41Catalyst[J]. J. Phys. Chem. C.,2008,112(32):12442-12454.
    [39]Lim S, Ciuparu D, Yang Y et al. Improved synthesis of highly ordered Co-MCM-41[J]. Microporous Mesoporous Mater.,2007,101(1-2):200-206.
    [40]El Haskouri J, Cabrera S, G C J et al. High cobalt content mesoporous silicas. Chem. Mater.,2004,16(14):2805-2813.
    [41]Liu D, Lau R, Borgna A et al. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41catalysts[J]. Appl. Catal. A.,2009,358(2):110-118.
    [42]Chen Y, Ciuparu D,Yang Y et al. Single-wall carbon nanotube synthesis by CO disproportionation on nickel-incorporated MCM-41[J]. Nanotechnology,2005,16, S476.
    [43]Du G, Lim S, Yang Y et al. Methanation of carbon dioxide on Ni-incorporated MCM-41catalysts:The influence of catalyst pretreatment and study of steady-state reaction[J]. J. Catal.,2007,249(2):370-379.
    [44]胡冰,施剑林,陈航榕.镧系金属掺杂MCM-41分子筛的合成与表征[J].无机材料学报,19(2004):329-334.
    [45]张燕,李湘祁,陈琼霞等.微波法合成有序Co-M CM-41介孔分子筛[J].化工时刊,2008,22(2):12-15.
    [46]Jiang T, Tang Y, Zhao Q et al. Effect of Ni-doping on the pore structure of pure silica MCM-41mesoporous molecular sieve under microwave irradiation[J]. Colloids Surf. A.,2008,315(1-3):299-303.
    [47]Jiang T, Zhao Q, Chen K et al. Synthesis and characterization of Co (Ni or Cu)-MCM-41mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method[J]. Appl. Surf. Sci.,2008,254(9):2575-2580.
    [48]李春生,周春晖,葛忠华ZnC12/Si-MCM-41催化剂的制备,表征及催化性能研究[J].浙江工业大学学报,2003,31,496-500.
    [49]Kim D J, Kim J W, Choung S J et al. The catalytic performance of Pt impregnated MCM-41and SBA-15in selective catalytic reduction of NOx[J]. J. hid. Eng. Chem.,2008,14,308-314.
    [50]Nares R, Rami rez J, Gutie rrez-Alejandre A. Characterization and Hydrogenation Activity of Ni/Si (Al)-MCM-41Catalysts Prepared by Deposition-Precipitation[J]. Ind. Eng. Chem. Res.,2008,48,1154-1162.
    [51]Li X, Wang A, Zhang S et al. Effect of surface Na+or K+ion exchange on hydrodesulfurization performance of MCM-41-supported Ni-W catalysts[J]. Appl. Catal. A.,2007,316,134-141.
    [52]Lang N, Aouine M, Tuel A. Incorporation of Co in various MCM-41compounds by ion exchange of the template[J]. Stud. Surf. Sci. Catal.,2005,158,439-446.
    [53]Liu D, Quek X Y, Wah H H A et al. Carbon dioxide reforming of methane over nickel-grafted SBA-15and MCM-41catalysts[J]. Catal. Today,2009,148(3-4):243-250.
    [54]许俊强.掺杂介孔MCM-41分子筛的制备,表征及其催化性能研究[D].成都:四川大学,2007.
    [55]Stucky G D, Huo Q, Firouzi A et al. Directed synthesis of organic/inorganic composite structures [J]. Stud. Surf. Sci. Catal.,1997,105,3-28.
    [56]王媛.层状前体法高分散镍催化剂的制备及其裂解汽油加氢性能研究[D].北京:北京化工大学.2007.
    [57]Feng J T, Lin Y J, Evans D G et al. Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3catalyst derived from layered double hydroxides[J]. J. Catal.,2009,266(2):351-358.
    [58]白璐,项顼,李峰.杂化复合前驱体制备高分散金属镍纳米粒子的研究[J].工业催化,2008,16(10):66-70.
    [59]Gao J, Hou Z, Guo J et al. Catalytic conversion of methane and CO2to synthesis gas over a La2O3-modified SiO2supported Ni catalyst in fluidized-bed reactor[J]. Catal. Today,2008,131,278-284.
    [60]宋焕玲,杨建,赵军等.CO2在高分散Ni/La2O3催化剂上的甲烷化[J].催化学报,2010,31(1):21-23.
    [61]周丽梅,付海燕,李强等.高分散Ru/MMT催化剂的制备及其催化喹啉加氢性能[J].催化学报,2010,31(6):695-700.
    [62]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004,567.
    [63]Liu Z, Sakamoto Y, Ohsuna T et al. TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41[J]. Angew. Chem.,2000,112(17):3237-3240.
    [64]Wang W, Song M. Preparation of high nickel-containing MCM-41-type mesoporous silica via a modified direct synthesis method[J]. Mater, res. bull.,2005,40(10):1737-1744.
    [65]Lensveld D J, Gerbrand Mesu J, Jos van Dillen A et al. Synthesis and characterisation of MCM-41supported nickel oxide catalysts[J]. Microporous Mesoporous mater.,2001,44,401-407.
    [66]Burattin P, Che M, Louis C. Characterization of the Ni (II) Phase Formed on Silica Upon Deposition-Precipitation[J]. J. Phys. Chem. B.,1997,101(36):7060-7074.
    [67]Guo X, Lai M, Kong Y et al. Novel coassembly route to Cu-SiO2MCM-41-like mesoporous materials[J]. Langmuir,2004,20(7):2879-2882.
    [68]于健强,许磊.以硅溶胶和三氯化钛为原料合成Ti-MCM-41分子筛-II.Ti-MCM-41分子筛的表征[J].催化学报,2001,22(4):331-334..
    [69]Burattin P, Che M, Louis C. Ni/SiO2Materials Prepared by Deposition-Precipitation: Influence of the Reduction Conditions and Mechanism of Formation of Metal Particles[J]. J. Phys. Chem. B.,2000,104(45):10482-10489.
    [70]Tan Q, Bao X, Song T et al. Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-micro-porous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin[J]. J.Catal.,2007,251(1):69-79.
    [71]Ashok J, Reddy P S, Raju G et al. Catalytic Decomposition of Methane to Hydrogen and Carbon Nanofibers over Ni-Cu-SiO2Catalysts[J]. Energy&Fuels,2008,23(1):5-13.
    [72]Blanchard P E R, Grosvenor A P, Cavell R G et al. X-ray Photoelectron and Absorption Spectroscopy of Metal-Rich Phosphides M2P and M3P (M=Cr-Ni)[J]. Chem. Mater.,2008,20(22):7081-7088.
    [73]Rousset J, Aires F J C S, Sekhar B et al. Comparative X-ray photoemission spectroscopy study of Au, Ni, and AuNi clusters produced by laser vaporization of bulk metals[J]. J. Phys. Chem. B.,2000,104(23):5430-5435.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700