实验性脉络膜新生血管发生机制及Bevacizumab(Avastin)抑制CNV的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.建立氪激光引导的BN大鼠CNV(choroidal neovascularization,脉络膜新生血管)模型,观察4W时间内CNV的生长情况。
     2.用RT-PCR方法检测VEGF(vascular endothelial growth factor,血管内皮生长因子)在试验过程中的表达情况。检测FⅧ-RAg(FactorFⅧ-Related Antigen,Ⅷ因子相关抗原)表达来对新生血管进行半定量研究,观察CNV的生长情况,研究VEGF与CNV生长的关系,从而探讨在CNV生长中的作用。
     3.光凝后一周,FFA检查显示有CNV形成,玻璃体腔内注射Bevacizumab(Avastin),观察3W时间内CNV的生长情况,从而对Bevacizumab(Avastin)治疗试验性CNV的疗效做一初步的探讨。
     方法
     1.对5组40只BN大鼠应用氪激光(波长647nm)实验眼视网膜进行光凝,功率360mW、光斑直径50um、曝光时间0.05s,围绕视盘等距光凝8个点,创建CNV模型。
     2.于光凝后3d,14d,21d,28d行FFA检查,造影早期计算CNV面积。在上述时间各处死动物8只,摘除眼球。光镜下对HE染色切片进行CNV形态学改变的评价。应用免疫组化方法,检测FⅧ-RAg表达来对新生血管进行半定量研究,观察CNV的生长情况。观察各组大鼠光凝区和正常视网膜中VEGF的表达,并用RT-PCR方法对VEGFmRNA的表达做半定量分析。分析VEGF在CNV形成中的作用。
     3.对48只BN大鼠单眼进行氪激光光凝,建立CNV模型,随机分为治疗组及对照组。一周后,经FFA证实有CNV形成,药物治疗组玻璃体腔内注射1μl Avastin(25μg/1μl),对照组则在光凝眼行玻璃体腔内注射BSS1μl。注射后1W、2W、3W行FFA检查,造影早期计算CNV面积。在上述各时间各处死动物6只,摘除眼球,制作石蜡切片。免疫组化对FⅧ-Rag蛋白的表达进行半定量检测。
     4.实验数据以均值±标准差表示,行方差分析和t检验等统计学处理。
     结果
     1. FFA光凝斑盘状荧光素渗漏,证实CNV形成。在4W时间里,FFA造影结果和FⅧ-RAg免疫组化结果显示,CNV呈持续增长(P<0.05),21d达到高峰。
     2.在CNV形成的4W时间里,FⅧ-Rag蛋白表达增加(P<0.05)。VEGFmRNA的表达也显著增加。VEGF的蛋白质在正常BN大鼠视网膜神经节细胞层、内核层、色素上皮层、视网膜和脉络膜血管内皮细胞表达。试验眼光凝后,在激光损伤区,VEGF的蛋白质表达于视网膜神经节细胞层、内核层、外核层缺损区、色素上皮层、视网膜和脉络膜血管内皮细胞、CNV增殖区。
     3.在BN大鼠CNV动物模型采用玻璃体腔内注射1μl Avastin(25μg/1μl)后,在1W、2W、3W时间里,与对照组相比,CNV面积及荧光渗漏明显降低(P<0.05),FⅧ-Rag蛋白表达较对照组降低(P<0.05),证实CNV的形成较对照组明显降低。
     结论
     1.氪激光诱导BN大鼠产生CNV模型,病理结构稳定。
     2. VEGF诱导内皮细胞分化,在CNV的形成过程中起着主要作用。
     3.玻璃体腔内注射Bevacizumab(Avastin)可以抑制氪激光诱导的BN大鼠CNV的形成和发展
Objective
     1. This study was designed to establish an experimental CNV model in BN rats by laser infusion in order to establish the foundation for studying the mechanism of CNV during 4 weeks.
     2. The total mRNA of VEGF was detected by RT-PCR. Exam FⅧ-Rag protein expression in CNV and investigate the relationship between VEGF and CNV development.
     3. Study the evolution of CNV during 3 weeks with intravitreal injection of Bevacizumab(Avastin)1μl(25μg/1μl), so make a preliminary investigation of the treatment effect of Bevacizumab(Avastin)on experimental CNV.
     Methods
     1. Five groups of 40 BN rats was photocoagulated by krypton laser in one eye to induce CNV, the laser spots were placed separately using a setting of 50 um diameter, 0.05 second duration ,and 360 mW intensity, surrounding the optic nerve at the posterior pole.
     2. Fluorescein angiography was performed from 3 day to 4 weeks after laser photocoagulation .The CNV area was measured by early phase FFA. Then the rats were sacrificed immediately, the eyes were enucleated and processed for histopathologic examination and RT-PCR. Exam the FⅧ-Rag protein expression in CNV .Observe the expression of VEGF protein in rat retinal and the lesion of CNV.
     3. Tow groups of 48 BN rats was photocoagulated by krypton laser in one eye to induce CNV model in one eye, in which 1 group received intravitreal injection of Bevacizumab(Avastin)1μl(25μg/1μl)after photocoagulation one week and the other group received the same volume intravitreal injection of BSS as control. FFA examinations occurred on 1,2,3 week and the eyes were enucleated and processed for histopathologic examination. The area of CNV were measured in early phase FFA. FⅧ-Rag were investigated with immunohistochemistry and were semiquantitatively analyzed.
     4. The experimental data were expressed as the mean±S.D. and statistical significance was determingd by t-test.
     Results
     1. Disciform fluorescein leakage was observed and confirmed the formation of CNV.The immunostaining of FⅧ-Rag and FFA show the persistent increase of the CNV development during 4 weeks.
     2. During the CNV development,the expression of FⅧ-Rag and VEGF increase gradually. V EGF expression was mainly observed in the Vascular endothelial cells , the ganglion cells , the inner nuclear layers , the retinal pigment epithelial cells in normal retina and the vascular endothelial cells of normal choroids of BN rat . VEGF expressed in the ganglion cells , the inner nuclear layers , lesion of outer nuclear layers inretina after photocoagulation .
     3. The area and the leakage of CNV in Bevacizumab(Avastin)treated BN rat eyes obviously reduced compared with the control group at each interval. In the treatment group,the expression of FⅧ-Rag depressed. The examination of FⅧ-Rag and FFA verified the depression of CNV compared with the control group at each interval.The density of treatment is lower than that of control group(P<0.05)
     Conclusion
     1. krypton laser photocoagulation can be successfully used to produce CNV experimental model in the BN rat. CNV pathologic structure possesses stability.
     2. VEGF play the important role in CNV development.
     3. Intravitreal Bevacizumab(Avastin)Injection can inhibit the development of CNV
引文
1. Dobi ET , Puliafito CA , Destro M. A new model of experimental choroidal neovascularization in the rat. Arch Ophthalmol,1989,107(2):264-9.
    2.赵世红,何守志。氪激光诱导的大鼠脉络膜新生血管模型研究。中华眼科杂志,2003,39(5):298-302。
    3. Miller H,Miller B,Ishibashi T,et al.Pathogenesis of laser-induced choroidal subretinal neovascularization.Invest Ophthalmol Vis Sci,1990,31(5):899-908
    4.于锡欣,李孟军。肿瘤微血管研究方法进展。中国矫形外科杂志2000;7:267-269
    5. Adamis AP, Shima DT. The role of vascular endothelial growth factor in ocular health and disease. Retina. 2005;25:111–118.
    6. Ferrera N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.
    7. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites. Science. 1983;219:983–985.
    8. Leung DW, Cachianes G, Kuang W, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–1309.
    9. Keck PJ, Hauser WJ, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science. 1989;246:1309–1312.
    10. Levy AP, Levy NS, Wegner S, et al. Transcriptional regulation of the rat endothelial growth factor gene by hypoxia. J Biol Chem. 1995;270:13333–13340
    11. de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992;255:989–991.
    12. Terman BI, Dougher Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun. 1992;187:1579–1586.
    13. Gille H, Kowalski J, Li B, et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific VEGF mutants. J Biol Chem. 2001;276:3222–3230.
    14. Carmeliet P, Ferreira V, Breir G, et al. Abnormal blood vessel development and lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:435–439.
    15. Ferrara N, Carver-Moore K, Chen H, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439–442.
    16. Ferrara N, Houck K, Jakeman L, et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13:18–31.
    17. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–1309.
    18. Shima D, Adamis AP, Ferrara N, et al. Hypoxic induction of endothelial cell growth factors in retinal cells: Identification and characterization of vascular endothelial growth factor (VEGF) as the sole mitogen. Mol Med. 1995;2:182–193.
    19. Adamis AP, Miller JW, Bernal M, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118:445–450.
    20. Aiello LP, Pierce EA, Foley ED, et al. Vascular endothelial growth factor and the eye: Biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res.1997;29:354–362.
    21. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxiamay mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–845.
    22. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluids of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331:1480–1487.
    23. Malecaze F, Clamens S, Simorre-Pinatel V, et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol. 1994;112:1476–1482.
    24. Pe’er J, Shweiki D, Itin A, et al. Hypoxia- induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. LabInvest. 1995;72:638–645.
    25. Aiello LP. Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res. 1997;29:354–362.
    26. Lip PL, Blann AD, Hope-Ross M, et al. Age-related macular degeneration is associatedwith increased vascular endothelial growth factor, hemorheology and endothelial dysfunction.Ophthalmology. 2001;108:705–710.
    27. Blaauwgeers HGT, Holtkamp GM, Rutten H, et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Am J Pathol. 1999;155:421–428.
    28. Husain D, Ambati B, Adamis AP, et al. Mechanism of age related macular degeneration.Ophthalmol Clin North Am. 2002;15:87–91.
    29. Lopez FP, Sippy BD, Lambert HM, et al. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1996;37:855–868.
    30. Frank RN, Amin RH, Eliott D, et al. Basic fibroblast growth factor and vascular endothelial growth factor are present in epiretinal and choroidal neovascular membranes. Am J Ophthalmol. 1996;122:393–403.
    31. Spilsbury K, Garrett KL, Shen WY, et al. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol. 2000;157:135–144.
    32. Klein R, Klein BEK, Linton KLP. Prevalence of age-related maculopathy: the Beaver Dam eye study. Ophthalmology. 1992;99:933–943.
    33. Ambati J, Ambati BK, Yoo SH, et al. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003;48:257–293
    34. Ferris FL III, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 1984;102:1640–1642.
    35. Macular Photocoagulation Study Group. Argon laser photocoagulation for neovascular maculopathy: five-year results from randomized clinical trials. Arch Ophthalmol. 1991;109:1109–1114.
    36. Macular Photocoagulation Study Group. Recurrent choroidal neovascularization after argon laser photocoagulation for neovascular maculopathy. Arch Ophthalmol. 1986; 104:503–512.
    37. Freund KB, Yannuzzi LA, Sorenson JA. Age-related macular degeneration and choroidal neovascularization. Am J Ophthalmol. 1993;115:786–791.
    38. Flower RW. Experimental studies of indocyanine green dye-enhanced photocoagulation of choroidal neovascularization feeder vessels. Am J Ophthalmol. 2000;129:501–512.
    39. Staurenghi G, Orzalesi N, La Capria A, et al. Laser treatment of feeder vessels in subfoveal choroidal neovascular membranes: a revisitation using dynamic indocyanine green angiography. Ophthalmology. 1998;105:2297–2305.
    40. Shiraga F, Ojima Y, Matsuo T, et al. Feeder vessel photocoagulation of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology. 1998;105:662–669.
    41. Desatnik H, Treister G, Alhalel A, et al. ICGA-guided laser photocoagulation of feeder vessels of choroidal neovascular membranes in age-related macular degeneration. Retina. 2000;20:143–150.
    42. Woodburn KW, Engelman CJ, Blumenkranz MS. Photodynamic therapy for choroidal neovascularization: a review. Retina. 2002;22:391–405.
    43. Husain D, Kramer M, Kenny AG, et al. Effects of photodynamic therapy using verteporfin on experimental choroidal neovascularization and normal retina andchoroids up to 7 weeks after treatment. Invest Ophthalmol Vis Sci. 1999;40:2322–2331.
    44. Lim JI. Photodynamic therapy for choroidal neovascular disease: photosensitizers and clinical trials. Ophthalmol Clin North Am. 2002;15:473–478.
    45. Ferrara N, Hillan KJ, Gerber H, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3:391–400.
    46. Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Bevacizumb(Avastin)), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333:328–335.
    47. Michels S, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Bevacizumb(Avastin)) therapy for neovascular age-related macular degeneration: twelve-week results of anuncontrolled open-label clinical study. Ophthalmology. 2005;112:1035–1047.
    48. Michels S, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Bevacizumb(Avastin)) therapy for neovascular age-related macular degeneration: twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112:1035–1047.
    49 Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Bevacizumb(Avastin)) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36:331–335.
    50 Rich RM, Rosenfeld PJ, Puliafito CA, et al. Short-term safety and efficacy of intravitreal bevacizumab (Bevacizumb(Avastin)) for neovascular age-related macular degeneration.Retina. 2006;26:495–511.
    51. Krzystolik MG, Afshari MA, Adamis AP, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Opthalmol. 2002;120:338–346.
    52. Shahar J, Avery RL, Heilweil G, et al. Electrophysiologic and retinal penetration studies following intravitreal injection of bevacizumab (Bevacizumb(Avastin)). Retina.2006;26:262–269.
    53. Saurabh Luthra,Raja Narayanan,L. Eduardo A,et al.Bvaluation of in vitro effects of Bevacizumab(Avastin) on retinal pigment epithelial ,neurosensory retinal,and microvascular endothelial cells,Retinal2006;26:512-518
    54. Roberta P.A. Manzano,Gholam A, et al. Testing intravitreal toxicity of Bevacizumab(Avastin). Retinal2006;26:257-261
    1. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.
    2. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851–858.
    3. Connolly DT, Olander JV, Heuvelman D, et al. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem 1989;264:20017–20024.
    4. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.
    5. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246:1309–1312.
    6. Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991;5:1806–1814.
    7. Tischer E, Mitchell R, Hartman T, et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991;266:11947–11954.
    8. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J 1989;8:3801–3808.
    9. Houck KA, Leung DW, Rowland AM, et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem1992;267:26031–26037.
    10. Park JE, Keller G-A, Ferrara N. The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993;4:1317–1326.
    11. Keyt BA, Berleau LT, Nguyen HV, et al. The carboxylterminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996;271:7788–7795.
    12. Lee S, Jilani SM, Nikolova GV, et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 2005; 169:681–691.
    13. Hoffmann S, F riedrich s U , EichlerW , et al. A dvanced glycation end products induce choroidal endothelial cell proliferation, matrix metalloproteinase22 and VEGF up regulation in vitro. Graefe′s A rch Clin Exp Oph thalmo l, 2002, 240:996-1002.
    14.V eikko la T, A litalo K. V EGF s, recep to rs and angiogenesis. Cancer Bio logy, 1999, 9: 211-220.
    15. Witmer AN , Vrensen GF, Van Noo rden CJ , et al. Vascular end thelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res, 2003, 22: 1229.
    16. Kinose F, Roscilli G, Lamartina S, et al. Inhibition of retinal and choroidal neovascularization by a novel KDR k inase inhibito r. Mol Vis, 2005 11: 366-73.
    17.Cross MJ , Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, bio logical responses and therapeutic inhibition. T rends Pharmacol Sci, 2001, 22: 201-207.
    18.Oh H. A novel molecular mechanism involving neuropilin-1 for vascular endothelial growth factor-induced retinal angiogenesis. N ippon Ganka Gakkai Zasshi, 2003, 107: 651-656.
    19.Martin G, Sch lunck G, Hansen LL , et al. Differential expression of angio regulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefe′s A rch ClinExp Oph thalmol, 2004, 242: 321-326.
    20.汪浩,王文吉.脉络膜新生血管的治疗进展.国外医学眼科分册,2001, 25: 288-295.
    21.张鹏,王雨生,惠延年,等.缺氧诱导因子1与眼内新生血管.眼科新进展, 2004, 24: 224-226.
    22. Sch lingemann RO. Ro le of grow th facto rs and the wound healing response in age-related macular degeneration. Graefe′s A rch Clin Exp Oph thalmo l, 2004, 242: 91-101.
    23.Mazure NM , Brahimi-Horn MC, Pouyssegur J. P rotein kinase and the hypoxia-inducible factor-1, two switches in angiogeesis. Curr Pharm Des, 2003, 9: 531-541.
    24.Ohno-M atsui K. Molecular mechanism for choroidal neovascularization in age-related macular degeneration. NipponGanka Gakkai Zasshi, 2003, 107: 6572673
    25. Ida H, Ish ibashi K, Reiser K, et al. U ltrastructural aging of theRPE-Bruch′s membrane-choriocap illaris complex in the D-galactose-treated mouse. Invest Ophthalmol Vis Sci, 2004, 45:2348-54
    26.朱洁,王雨生,惠延年.细胞外基质与脉络膜新生血管.中华眼底病杂志, 2005, 21: 85-88.
    27.Sounni NE, Roghi C, Chabo ttaux V , et al. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J Bio l Chem, 2004, 279: 13564-13574.
    28.Kang TS, Go rti GK, Quan SY, et al. Effect of hyperbaric oxygen on the growth factor profile of fibroblasts. A rch Facial Plast Surg, 2004, 6: 31-35.
    29.Kranenburg O , Gebbink M F, Voest EE. Stimulation of angiogenesis by Ras proteins. Biochem BiophysActa, 2004, 1654:23-37.
    30.Santos SC, D ias S. Internal and external autocrine V EGF/KDR loops regulate survival of acute leukemia through distinct signalling pathways. Blood, 2004, 103: 3883-3889
    31.Boguslawski G, McGlynn PW , Harvey KA , et al. SU 1498, an inhibito r of VEGFR2, causes accumulation of pho sphorylated ERK kinases and inh ibits their activity in vivo and in vitro. J Biol Chem, 2004, 279: 5716-5724.
    32.Zachary I, Gliki G. Signalling transduction mechanism smediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res, 2001, 49: 568-581.
    33.Rousseau S, Houle F, Landry J , et al. p38MA Pk inase activation by vascular endothelial growth factormediates actin reorganization and cell migration in human endothelial cells. Oncogene, 1997,15: 2169-2177.
    34. Dejneka N S, Kuroki AM , Fosnot J , et al. System ic rapamycin inhibits retinal and choroidal neovascularization in mice. MolVis,2004, 10: 964-72
    35. AbidMR, Guo S, Minam i T, et al. Vascular endothelial growth factor activates PI3K/A kt/ forkhead signalling in endothelial cells.Arterio scler Thromb V asc Biol, 2004, 24: 294-300.
    36.Kaneko Y, Kitazato K, Basaki Y. Integrin-linked kinase regulates vascular morphogenesis induced by vascular endothelial growth factor. J Cell Sci, 2004, 117: 407-415.
    37.Riesterer O , Zingg D, Hummerjohann J , et al. Degradation of PKB/A KT protein by inhibition of the VEGF receptor/m TOR pathway in EC. Oncogene, 2004, 23:4624-4635.
    38.Kwak N , Okamo to N , Wood JM , et al. VEGF is major stimulator in model of choroidal neovascularization. Invest Oph thalmolVis Sci, 2000, 41: 3158-3164.
    39.Cho CH, L ee CS, ChangM , et al. Localization of VEGFR-2 and PLD2 in endothelia caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am J Physio l Heart Circ Physiol, 2004, 286: 1881-1888.
    40.Hoffmann S, He S, W iedemann P. Carboxyam ido-triazole inhibits substeps of choroidal neovascularization on retinal pigmentepithelial cells and cho ro idal endo thelial cells in vitro.Op thalmologe, 2004, 101: 993-997
    41. Huang Q , Yuan Y. Interaction of PKC and NOS in signal transduction ofmicrovascular hyperpermeability. Am J physio l, 1997, 273: 2442-2451.
    42.H irai S I, Izumi Y, H iga K, et al. Ras-dependent signaltransduction is indispensable but no tsufficient for the activation ofA P1/ JUN by PKCD. EMBO J , 1994, 13: 2331-2340.
    43.Lai CM ,Spilsbury K ,Brankov M , Zaknich T , Rak oczy PE. Inhibition of corneal neovas cularization by recombinant adenovirus mediated se V EGF RNA . J Ex p EyeRes 2002 ; 75 (6) :625-634.
    44.Shen WY, Garrett KL ,Wang CG , e t al . Preclinical evaluation of aphosphorothioate oligonucleotide in the retina of rhesus monkey J. Lab Invest 2002 ; 82 (2) :167-182.
    45.Tolentino MJ,Brucker AJ, Fosnot J , e t al . Intra vitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. J . Retina 2004 ; 24 ( 1) : 132-138.
    46.Fabbro D , Ruetz S , Bodis S , e t al . PKC4122a proteinkinase inhibitor with a broad therapeutic potential. J Anticancer Drug Des 2000;15(1) :17-28.
    47.Takeda A , Hata Y, Shiose S , e t al . Suppression of experimental choroidal neovas cularization utilizing KDR selective rece ptor tyrosine kinas inhibitor . J Graefes Arc h Clin Exp Oph hal mol2003 ; 241 (9) :765-772.
    48.Krzystolik MG , Afshari MA , Adamis AP , e t al . Prevention of experimental choroidal neovascularization with intravitreal anti-vascularendothelial growth factor antibody fragment. Arch Ophthalmol 2002 ; 120 (3) :338-346.
    49.Saishin Y,Saishin Y, Takahashi K , e t al . VEGF-T RA P ( R1 R2 ) suppresses choroidal neovascularization and V EGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 2003 ;195 (2) :241-248.
    50.Bilak MM, Corse AM, Bilak SR, Lehar M, Tombran Tink J, Kuncl RW. Pigment epithelium derived factor (PEDF) protects motor neurons from chronic glutamate mediated neurodegeneration. J Neuropathol Exp Neurol ,1999;58:719- 728
    51.Tombran-Tink J, Chader GG, Jonson LV. PEDF:a pigment epithelium derived factorwith potent neuronal differentiative activity.Exp Eye Res,,1991;53(3):411- 414
    52. Steele FR, Chader GJ, Johnson LV, Tombran Tink J. Pigment epithelium derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Nat I Acad Sci USA ,1993;90:1526- 1530
    53.Tombran- Tink J, Johnson lV. Neuronal differentiation of retinoblastoma cells induced by medium conditioned by human RPE cells. Invest Ophthalmol Vis Sci , 1989;30(8):1700- 1707
    54.Tombran- Tink J, Shivaram SM, Chader GJ, Johnson LV, Bok D. Expression, secretion, and age- related downregulation of pigment epithelium- derived factor, a serpin with neurotrophic activity. J Neurosci ,1995;15(7):4992- 5003
    55. Wu YQ, Notario V, Chader GJ, Becerra SP. Identification of pigment epithelium-derived factor in the interphotoreceptor matrix of bovine eyes. Protein Expr Purif ,1995;6(4):447- 456
    56.Ortego J, Escribano J, Becerra SP, Coca- Prados M. Gene expression of the neurotrophic pigment epithelium- derived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest Ophthalmol Vis Sci ,1996; 37(13):2759- 2767
    57.张雷,王康孙,王玲.色素上皮衍生因子mRNA和蛋白在小鼠视网膜和小鼠脉络膜新生血管组织中的表.中华眼底病杂志,2004;20:253-254
    58.金姬,关明,马建兴.PEDF和VEGF在翼状胬肉组织中的不平衡表达.国际眼科杂志,2003;3(4):32-34
    59.Eichler W, Yafai Y. PEDF derived from glial M!ller cells: a possible regulator of retinal angiogenesis. Experimental Cell Research ,2004;299:68- 78
    60.Awson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W, Bouck NP. Pigment epithelium- derived factor: a potent inhibitor of angiogenesis. Science , 1999;285(5425):245- 248
    61.Holekamp NM, Bouck N, Volpert O. Pigment epithelium derived factor is decient in the vitreous of patients with choroidal neovascularization due to age- related macular degeneration. Am J Ophthalmol ,2002;134(2):220- 227
    62.Spranger J, Osterhoff M, Reimann M, Mohlig M, Ristow M, Francis MK, Cristofalo V. Loss of the antiangiogenic pigment epithelium- derived factor in patients with angiogenic eye disease. Diabetes ,2001;50(12):2641- 2645
    63.Gao G, Li Y, Gee S, Dudley A, Fant J, Crosson C, MaJ X. Down regulation of vascular endothelial growth factor and up regulation of pigment epithelium derived factor:a possible mechanism for the anti- angiogenic activity of plasminogen kringle. J Biol Chem ,2002;277(11):9492- 9497
    64.Stellmach V, Crawford SE, Zhou W, Bouck N. Prevention of ischemia- induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium derived factor. Proc Natl Acad Sci ,2001;98(5):2593- 2597
    65.Alberdi E. Binding of pigment epithelium- derived factor (PEDF) to retinoblastoma cells and cerebellar granule neurons.J Biol Chem ,1999;274(44): 31605- 31612
    66.Aymerich MS. Evidence for pigment epithelium- derived factor receptors in the neural retina. Invest Ophthalmol Vis Sci ,2001;42(13):3287- 3293
    67.Stellmach V, Grawford SE, ZhouW, et al. Prevention of ischemia2induced retinopathy by the natural ocular antiangiogenic agent p igment epithelium-derived factor[ J ]. Proc NatlAcad SciUSA, 2001, 98∶2593 -2597
    68.Dawson DW, Volpert OV, Gillis P, et al. Pigment ep ithelium2derived factor: a potent inhibitor of angiogenesis[ J ]. Science, 1999, 285 (5425)∶245 - 248
    69. Ap te RS,Barreiro RA,Duh E, et al. Stimulation of neovascularization by the anti2angiogenic factor PEDF[ J ]. InvestOphthalmolVis Sci, 2004, 45 (12)∶4491 - 4497
    70. Mori K, Duh E, Gehlbach P, et al. Pigment ep ithelium2derived factor inhibits retinal and choroidal neovascularization [ J ]. J Cell Physiol, 2001, 188 (2)∶253 - 263
    71.Rasmussen H, Chu KW, Campochiaro P, et al. Clinical p rotocol. An open-label, phase I, single administration, dose2escalation study of ADGVPEDF. 11D ( ADPEDF ) in neovascular age2related macular degeneration (AMD) [ J ]. Hum Gene Ther, 2001, 12 (16)∶2029 - 2032
    72.Mori K, Gehlbach P, Ando A, et al. Regression of ocular neovascularization in response to increased exp ression of p igment epithelium2derived factor[ J ]. Invest Ophthalmol Vis Sci, 2002, 43 ( 7)∶2428 - 2434
    73.Wong WT, Rex TS, Auricchio A, et al. Effect of over2exp ression of pigment epithelium derived factor ( PEDF ) on develop ing retinal vasculature in the mouse[ J ]. Mol Vis, 2004, 10∶837 - 844
    74.Mori K, Gehlbach P, Yamamoto S, et al. AAV2mediated gene transfer ofpigment epithelium2derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci, 2002, 43 (6)∶1994 - 2000
    75.Takita H, Yoneya S, Gehlbach PL, et al. Retinal neurop rotection against ischemic injury mediated by intraocular gene transfer of pigment epithelium-derived factor.Invest Ophthalmol Vis Sci, 2003, 44 (10)∶4497 - 4504
    76.Imai D, Yoneya S, Gehlbach PL, et al. Intraocular gene transfer of pigment epithelium-derived factor rescues photorecep tors from light-induced cell death. J Cell Physiol, 2005, 202 (2)∶570 - 578
    77.ReichelMB, Bainbridge J, Baker D, et al. An immune response after intraocular administration of an adenoviral vector containing aβgalactosidase reporter gene slows retinal degeneration in the rd mouse. Br J Ophthalmol, 2001, 85∶341 - 344
    78.Gehlbach P,Demetriades AM, Yamamoto S, et al. Periocular injection of an adenoviral vector encoding p igment ep ithelium2derived factor inhibits choroidal neovascularization. Gene Ther, 2003, 10 (8)∶637– 646

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700