基于多目标遗传算法的项目调度及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
项目管理至少可以追溯到4500年以前埃及金字塔以及1800年以前南美玛雅墓的建成,它们依靠的是最简单最原始的工具。后来慢慢发展到始于美国杜邦公司的CPM技术、始于美国海军开发“北极星导弹计划”的PERT技术。时至今日,大量关于项目管理的研究如雨后春笋般涌现:从原理、算法到系统(包括相关的软件),从简单到复杂,以充分帮助管理人员对各种项目进行计划、安排、监督和控制。
     项目调度问题,是项目管理的一个重要研究领域,自20世纪60年代被提出之后,就引起了各行各界专家和学者们的广泛关注。随着现代化技术广泛应用于生产,具有较高自动化水平的生产系统,在使生产过程更加合理、高效运行的同时,也使得项目调度问题变得更加困难,其复杂性往往超出人脑的决策能力。
     大多数项目调度问题是一类组合优化问题,计算复杂性理论已经证明大多数组合优化问题是NP-hard问题。传统的运筹学求解方法往往无法在多项式时间范围内寻求到这些NP-hard问题的最优解,随之人们开始尝试在多项式时间范围内求解的近似算法即启发式方法。
     目前对复杂的项目调度问题的求解算法主要集中在对元启发式方法即智能优化方法的研究。智能优化算法是模拟某一自然现象或过程而建立起来的具有高度并行、自组织、自学习与自适应特征的适于复杂的高度非线性问题求解的算法。这类算法包括模拟煺火、禁忌搜索、粒子群算法、蚁群算法和进化计算等等。
     理论和算法是为应用服务的,建筑行业,作为项目管理应用的主要应用行业之一,也针对项目管理提出更多更高的要求。为了帮助建筑行业的施工单位更好的控制施工过程,增强项目的可预见性,避免不必要的损失,虚拟施工技术因此而产生。
     鉴于以上的考虑,本文以多模式资源约束的项目调度及其应用研究为对象,以多目标遗传算法为手段展开研究。目前主要存在如下的问题:
     (1)尽管智能优化算法能同时处理一组解,以及很好的逼近非凸或不连续的最优前端面,然而对设计的参数进行动态调整和自适应改变依然是值得探讨的方向。
     (2)多目标遗传算法的求解质量和求解效率还有待于提高。基于Pareto的多目标遗传算法在每一次迭代时都要构造Pareto最优解集,有必要寻找构造Pareto最优解集的最少时间复杂度。
     (3)项目时间成本质量历来是项目管理的三大控制点,决定着项目的成败。然而更多的研究却集中在时间费用的优化,而缺少对质量因素的考虑。或者即使考虑了质量,而往往限定其中的一个或两个因素作为常量来考虑。因此建立合理的项目时间成本质量的多目标优化模型并加以解决是当务之急。
     (4)在实际的项目调度过程中更多的存在着不确定性因素,这些不确定因素使得项目调度在本质上成为一个动态的过程。对不确定性因素的研究更加贴近实际,如何针对考虑不确定性因素的问题建立随机或者模糊网络模型并采用合适的机制去解决也是我们亟待思考的问题。
     因此,本文结合这些问题,具体做了如下方面的研究工作:
     (1)在探讨组合优化问题、计算复杂性等相关原理的基础上,总结和比较了各种优化算法的优缺点,指出元启发式方法即智能优化算法是目前研究的趋势。在与实际应用相关的难解组合优化问题方面,智能优化方法使得在合理的时间范围内明显提高了找到高质量解的能力,尤其对于大型的或了解甚少的问题而言,智能优化算法的作用更加显著。
     (2)结合组合优化理论,介绍了资源约束的项目调度的一般模型、规范分类以及基于不同求解方法的已有文献,指明多模式资源约束的项目调度是可行的研究方向。
     (3)研究了多目标遗传算法及其基本概念:非支配集构造、种群保留机制以及遗传操作等等。对多目标遗传算法作了合理的改进,对分布系数采用多项式逼近获得交叉系数的概率分布,找出了交叉系数合适的改进方案,同时证明了种群大小的下限。
     (4)分别以时间、成本和质量进行建模分析,指出了各个因素之间的相互关系及其研究思路,同时形成时间-成本-质量的多目标权衡数学模型。并用多目标遗传算法加以求解及其仿真实现,最后比较了不同方法的优劣,从收敛性和分布性方面证明了改进的方法的有效性。同时给出了基于不同偏好的建筑项目调度问题的决策者决策过程。
     (5)对项目调度中涉及到的随机变量的分布、数字特征进行分析,指出了PERT网络分析法往往低估了项目完成时间,给项目的完成带来不必要的损失。研究了随机多目标决策问题的数学模型及其等价问题的处理,提出了随机条件下多目标多模式资源约束的项目调度建模、算法分析,并给出了仿真结果。
     (6)基于虚拟建筑机理的分析,对虚拟原型(CVP)系统涉及的集成平台、开发环境、设计步骤等方面进行研究,说明项目调度及其优化理论在虚拟建筑中的应用,并以一个实例进行应用分析。
     论文的主要创新点:
     (1)修正了NSGA-Ⅱ算法中原有的固定交叉系数,使得该交叉系数能够动态调整和自适应改变,并给出算法中种群大小的下限值并加以证明。
     (2)将多目标遗传算法应用到考虑时间成本质量权衡问题的多目标多模式资源约束的项目调度问题中,给出了优化机制分析,并从收敛性和分布性方面证明方法的有效性。
     (3)基于活动时间的随机变化引起活动成本和质量的动态改变,结合机会约束规划设计了概率转换机制和随机数模拟,以提高多目标遗传算法求解多目标多模式资源约束的随机项目调度问题的能力。
     总体来说,就算法而言,本文以多目标遗传算法的NSGA-Ⅱ算法为着眼点,提出了两种修改策略,并通过实验证明了算法的有效性,充实了多目标优化算法理论。就项目调度而言,对项目的绩效评估综合考虑了质量因素,丰富了常规的时间费用分析理论;对项目调度的研究考虑了随机因素,弥补了不确定性网络分析理论。
Managing projects dates back at least4500years. From building the pyramids inEgypt and the Maya temples in South America with the simplest tools, CPM first usedby America DuPont Company and PRET in Polaris Missile Project by America navy,till now, a large number of project management problems on models, algorithms andsystems including some software have been studied to help managers plan, schedule,supervise and control projects.
     Project scheduling problems, as one of the most important research areas inproject management, dating back to the1960s, have received wide attention from allkinds of specialists and scholars. With the application of modern technology,automation production system makes production more convenient and efficient butmakes project scheduling more difficult almost beyond the wisdom of human.
     Most project scheduling problems belong to a kind of combinational optimization.The computational complexity theory indicates that many combinatorial optimizationsare NP-hard. Traditional optimization methods in operations research are difficult tosolve these NP-hard with the polynomial computing time needed. Thus theapproximate algorithms, also called heuristic methods, are required.
     At present, solving the most complex project scheduling problems mainly focuson the study of the meta-heuristic methods, that is, intelligence optimization algorithm,including simulated annealing, tabu search, particle swarm optimization, ant colonyoptimization and evolutionary computation etc.. Intelligence optimization algorithmmimics nature’s phenomenon or procedure to drive its search towards an optimalsolution, appropriate to much more complex nonlinear problems with thecharacteristics of parallel, self-organization, self-learning and self-adaption.
     Anyway, the researched theories and algorithms serve for their application.Construction industry, as one of the main application area in project management, demands more aiming to itself. In order to help construction enterprises better controlconstructing and improve forecasting so as to avoid unnecessary loss, constructionvirtual prototype technology comes into being.
     In view of the above mentioned factors, this dissertation tries its best to takemulti-mode resource-constrained project scheduling and its application as researchobjects, and multi-objective genetic algorithm as instrument. The main problems in theresearch are as follows.
     (1) Though intelligence optimization algorithm can deal with a population ofsolutions, and better approach non-convex or discontinuous Pareto-optimal front, thedynamic adjustment and self-adaptive modification of the designed parameters are stillunder discussion.
     (2) Solution quality and solving efficiency should be improved further. Based onPareto theory the multi-objective genetic algorithm must construct Pareto optimal setin every run, thus it is necessary to find the least time complexity to design the Paretooptimal set.
     (3) Time, cost and quality are the important factors in managing projects and canbring the success or failure of the projects. More literatures focus on time-cost tradeoff,and few quality of a project is considered. Though in some studies project schedulingwith time, cost and quality considerations has been mentioned, researchers did not givean all-around design among the three but bounding one or two variables as constant. Itis urgent to build a suitable time-cost-quality tradeoff model and resolve it.
     (4) Quite a number of uncertain factors exist in the project scheduling problems,which makes them form a dynamic procedure. The research on uncertain is morepractical. It is worth of our thinking to build stochastic or fuzzy network modelsaccording to uncertain state and resolve it.
     So, with the problems above considered, the main research work and contributionof this dissertation includes:
     (1) Based on the research on combinatorial optimization and computational complexity, the dissertation compares the positive and negative outcomes from allkinds of different optimization methods, and concludes that the intelligenceoptimization methods are becoming the research tend at present. In resolvingcombinatorial optimization which is quite hard to deal with, the intelligenceoptimization methods improve the ability to find high quality of solutions in thesuitable range of time. Especially, the intelligence optimization methods take muchmore effects on large-scale problems and problems seldom unknown by people.
     (2) Integrating the theory of combinatorial optimization, the dissertationintroduces a general model of resource-constrained project scheduling problems andtheir classification, gives literatures review based on different methods. It alsoindicates that researching the multi-mode resource-constrained project schedulingproblem is feasible.
     (3) The dissertation discusses the multi-objective genetic algorithm, including theconstruction of non-dominated sorting, the mechanics of crowding distance assignmentand genetic operations etc.. At the same time, we give a suggestion of self-adaptiveprocedure of multi-objective genetic algorithm by modifying the distribution index andthe population size.
     (4) Based on analysis of minimizing time, minimizing cost and maximizingquality individually, the interrelation among them and the research scheme are pointedout before the multi-objective models on time-cost-quality tradeoff are formed. Thenthe multi-objective genetic algorithm is applied to the kind of models. Finally theresults gained by simulation show the validity of the applied method. Meanwhile, adecision-making scheme is given based on preference of time, cost and qualityindividually for scheduling a construction project.
     (5) The dissertation gives a description on models and algorithms of projectscheduling problems under stochastic state, including distribution function and numbercharacteristics of the random variables. It also shows that PERT often undervalues theproject duration which will necessarily bring the risk for managing project. Then, the stochastic multi-objective problems and its mathematics models, resolving methods arestudied. Finally, simulations and conclusions on multi-objective multi-moderesource-constrained scheduling problems are made from the study.
     (6) Based on the analysis of construction mechanism, the dissertation gives aconsideration on how to integrate the relative scheduling theory into constructionvirtual prototype system from the aspects of integrated platform, developmentenvironment, design steps, and a practical case is made and analyzed in the last.
     The main innovative researches are included as follows:
     (1) This dissertation modifies the fixed crossover distribution index, whichmakes the index be capable of self-adaptive adjustment. At the same time also provesthe lower limit of the population size.
     (2) This dissertation applies multi-objective genetic algorithm to time-cost-qualitytradeoff problems which belong to the type of multi-mode resource-constrained projectscheduling problems, analyzes the optimization mechanism, and proves the validity ofthe improved algorithm from the convergence and distribution.
     (3) Based on the dynamic change of activity cost and quality with the stochasticactivity duration, the dissertation designs a mechanism of probability conversion andsimulation of random number with integrating the chance-constrained programming,so as to improve the ability of resolving the multi-objective multi-moderesource-constrained stochastic project scheduling problems.
     As a whole, in case of algorithms, the dissertation starts from the mathematicalmodel of multi-objective genetic algorithms, puts forward two kinds of modificationstrategy. As far as project scheduling is concerned, the dissertation considered thefactor of quality and stochastic environment. The experiments testify theireffectiveness and practicality. The contribution of the dissertation enhances thetheoretical basement of multi-objective optimization theory, enriches the time-costmodels and uncertain network models.
引文
1. Alcaraz J., Maroto C., and Ruiz R. Solving the multi-mode resource-constrained projectscheduling problem with genetic algorithms. Journal of the Operational Research Society,2003,54(6):614-626.
    2. Artigues C., Michelon P., and Reusser S. Insertion techniques for static and dynamicresource-constrained project scheduling. European Journal of Operational Research,2003,149(2):249-267.
    3. Azaron A., and Tavakkoli-Moghaddam R. Multi-objective time-cost trade-off in dynamicPERT networks using an interactive approach. European Journal of Operational Research,2007,180(3):1186-1200.
    4. Azaron A., Katagiri H., Sakawa M., Kato K., and Memariani A. A multi-objective resourceallocation problem in PERT networks. European Journal of Operational Research,2006,172(3):838-854.
    5. Azaron A., Perkgoz C., and Sakawa M. A genetic algorithm approach for the time-costtradeoff in PERT networks. Applied Mathematics and Computation,2005,168(2):1317-1339.
    6. Baar T., Brucker P., and Knust S. Tabu-search algorithms and lower bounds for theresource-constrained project scheduling problem. In Voss S., Martello S., Osman I., et al (eds.),Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization.Amsterdam: Kluwer,1998,1-18.
    7. Babu A.J.G., and Suresh N. Project management with time, cost, and quality considerations.Journal of Operational Research,1996,88(2):320-327.
    8. Banaszak Z.A., and Zaremba M.B. Project-driven planning and scheduling support for virtualmanufacturing. Journal of Intelligent Manufacturing,2006,17(6):641-651.
    9. Bartusch M., Mohring R.H., and Radermacher F.J. Scheduling project networks with resourceconstraints and time windows. Annals of Operations Research,1988,16(1):201-240.
    10. Beck J.C. Heuristics for scheduling with inventory: dynamic focus via constraint criticality.Journal of Scheduling,2002,5:43-69.
    11. Bein W.W., Kamburowski J., and Stallmann M.F.M. Optimal reduction of two-terminaldirected acyclic graphs. SIAM Journal on Computing,1992,21(6):1112-1129.
    12. Belfares l., Klibi W., Lo N., and Guitouni A. Multi-objectives Tabu Search based algorithm forprogressive resource allocation. European Journal of Operational Research,2007,177(3):1779-1799.
    13. Bell C.E., and Park K. Solving resource-constrained project scheduling problems by a search.Naval Research Logistics,1990,37:61-84.
    14. Bloomer F., and Gunther H.O. LP-based heuristics for scheduling chemical batch processes.International Journal of Production Research,2000,35:1029-1052.
    15. Boctor F.F. A new and efficient heuristic for scheduling projects with resource restriction andmultiple execution modes. European Journal of Operational Research,1996,90:349-361.
    16. Boctor F.F. Heuristics for scheduling projects with resource restrictions and severalresource-duration modes. International Journal of Production Research,1993,31(11):2547-2558.
    17. Bottcher J., Drexl A., Kolisch R., and Salewski F. Project Scheduling Under PartiallyRenewable Resource Constraints, Management Science,1999,45(4):544-559.
    18. Bouleimen K., and Lecocq H. A new efficient simulated annealing algorithm for theresource-constrained project scheduling problem and its multiple mode version. EuropeanJournal of Operational Research,2003,149(2):268-281.
    19. Brealey R.A., and Myers S.C. Principles of Corporate Finance. McGraw-Hill, Irwin,2002.
    20. Brinkmann K., and Neumann K. Heuristic procedures for resource-constrained projectscheduling with minimal and maximal time lags: The resource levelling and minimumproject-duration problems. Journal of Decision Systems,1996,5:129-156.
    21. Brucker P., and Knust S. A linear programming and constrained propagation-based lowerbound for RCPSP. European Journal of Operational Research,2000,127(2):355-362.
    22. Brucker P., and Knust S. Lower bounds for resource-constrained project scheduling problems.European Journal of Operational Research,2003,149(2):302-313.
    23. Brucker P., Drexl A., M hring R., and Neumann K. Invited Review: Resource-constrainedproject scheduling: Notation, classification, models, and methods. European Journal ofOperational Research,1999,112(1):3-41.
    24. Brucker P., Drexl A., Mohring R., Neumann K., and Pesch E. Resource-constrained projectscheduling: Notation, classification, models, and methods. European Journal of OperationalResearch,1999,112(1):3-41.
    25. Brucker P., Knust S., Bhattacharya S., et al. A branch and dound algorithm for theresource-constrained project scheduling problelm. European Journal of Operational Research,1998,107:272-288.
    26. Buddhakulsomsiri J., and Kim D.S. Priority rule-based heuristic for multi-moderesource-constrained project scheduling problems with resource vacations and activitysplitting. European Journal of Operational Research,2007,178(2):374-390.
    27. Buddhakulsomsiri J., and Kim D.S. Properties of multi-mode resource-constrained projectscheduling problems with resource vacations and activity splitting. European Journal ofOperational Research,2006,175(1):279-295.
    28. Carlier J., and Neron E. Computing redundant resources for the resource constrained projectscheduling problem. European Journal of Operational Research,2007,176(3):1452-1463.
    29. Carlier J., and Neron E. On linear lower bounds for the resource constrained projectscheduling problem. European Journal of Operational Research,2003,149(2):314-324.
    30. Carravilla M.A., and de Sousa J.P. Hierarchical production planning in a make-to-ordercompany: a case study. European Journal of Operational Research,1995,86:43-56.
    31. Carruthers J.A., and Battersby A. Advances in critical path methods. Operational ResearchQuarterly,1966,17(4):359-380.
    32. Cerny V. A thermodynamical approach to the traveling salesman problem. Journal ofOptimization Theory and Applications,1985,45(1):41-51.
    33. Cesta A., Oddi A., and Smith S.F. A constraint-based method for project scheduling with timewindows. Journal of Heuristics,2002,8:109-136.
    34. Chelaka M., Abeyasinghe L., and Greenwood D.J. An efficient method for schedulingconstruction projects with resource constraints.International Journal of Project Management,2001,19(1):29-45.
    35. Cho J.H., and Kim Y.D. A simulated annealing algorithm for resource constrained projectscheduling problem. Journal of the Operational Research Society,1997,48:736-744.
    36. Christofides N., Alvarez-Valdes R., and Tamarit J.M. Project scheduling with resourceconstraints: a branch and bound approach. European Journal of Operational Research,1987,29:262-273.
    37. Damay J., Quilliot A., and Sanlaville E. Linear programming based algorithms for preemptiveand non-preemptive RCPSP. European Journal of Operational Research,2007,182(3):1012-1022.
    38. Davis E.W., and Heidorn G.E. An algorithm for optimal project scheduling under multipleresource constraints. Management Science,1971,17(12): B803-B816.
    39. De Reyck B., and Herroelen W. The multi-mode resource-constrained project schedulingproblem with generalized precedence relations. European Journal of Operational Research,1999,1119(2):538-556.
    40. De Wit J., and Herroelen W.S. An evaluation of microcomputer-based software packages forproject management. European Journal of Operational Research,1990,49:102-139.
    41. Deb K., and Agrawal R.B. Simulated binary crossover for continuous search space. ComplexSystem,1995,9(2):115-148.
    42. Deb K., and Jain S. Running performance metrics for evolutionary multi-objectiveoptimization. Kangal Report No.2002004.2002a.
    43. Deb K., Pratap A., Agarwal S., and Meyarivan T. A fast and elitist multiobjective geneticalgorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation,2002b,6(2).
    44. Deb K. Multi-objective optimization using evolutionary algorithms. Englind: John Wiley&Sons, Ltd.,2002.
    45. Deckro R.F., and Hebert J.E., Verdini W.A., Grimsrud P.H., and Venkateshwar S. Nonlineartime/cost tradeoff models in project management. Computers&Industrial Engineering,1995,28(2):219-229.
    46. Demassey S., Artigues C., and Michelon P. Constraint propagation based utting lanes: anapplication to the resource-constrained project scheduling problem. INFORMS Journal onComputing,2005,17(1):52-65.
    47. Demeulemeester E.L., and Herroelen W.S. A branch-and-bound procedure for the multipleresource-constrained project scheduling problem. Management Science,1992,38(12):1803-1818.
    48. Demeulemeester E.L., and Herroelen W.S. Benchmark results for the resource-constrainedproject scheduling problem. Management Science,1997,43:1485-1492.
    49. Demeulemeester E.L., and Herroelen W.S. Project Scheduling: A Research Handbook. Kluwer,Boston,2002.
    50. Demeulemeester E.L., De Reyck B., Foubert B., Herroelen W., and Vanhoucke M. Newcomputational results on the discrete time/cost trade-off problem in project networks. Journalof the Operational Research Society,1998,49(11):1153-1163.
    51. Demeulemeester E.L., Herroelen W.S., and Elmaghraby S.E. Optimal procedures for thediscrete time/cost trade-off problem in project network. European Journal of OperationalResearch,1996,88:50-68.
    52. Dev K. Optimal for Engineering Design: Algorithms and Examples, Prentice-Hall of IndiaPrivate Limited, New Delhi.1995.
    53. Diao X.D., Zeng S.X., Tam Vivian W.Y. Development of an optimal trajectory model for spraypainting on a free surface. Computers&Industrial Engineering,2009,57(1).
    54. Drexl A., Juretzka J., Salewski F., Schirmer A., and Kiel U. New Modelling Concepts andTheir Impact on Resource-Constrained Project Scheduling. Edited by J. Welglarz, ProjectScheduling-Recent Models, Algorithms and Applications, Bosson: Kluwer,1999,413-432.
    55. Elmaghraby S.E. Activity Networks: Project Planning and Control by Network Models. NewYork: Wiley,1977.
    56. Elmaghraby S.E. Resource allocation via Dynamic programming in activity networks.European Journal of Operational Research,1993,64:199-215.
    57. El-Rayes K.,and Kandil A. Time-Cost-Quality trade-off analysis for highway construction.Journal of Construction Engineering and Management,2005,131(4):477-486.
    58. Erenguc S.S., Ahn T., and Conway D.G. The resource constrained project scheduling problemwith multiple crashable modes: An exact solution method. Naval Research Logistics,2001,48(2):107-127.
    59. Eshtehardian E., Afshar A., and Abbasnia R. Fuzzy-based MOGA approach to stochastictime–cost trade-off problem. Automation in Construction,2009,18(5):692-701.
    60. Fleszar K., and Hindi K.S. Solving the resource-constrained project scheduling problem by avariable neighbourhood search. European Journal of Operational Research,2004,155(2):402-413.
    61. Fonseca C.M., and Fleming P.J. Genetic algorithms for multi-objective optimization:formulation, discussion and generalization. In Genetic Algorithms: Proceedings of the FifthInternational Conference (S. Forrest, ed.), San Mateo, CA: Morgan Kaufmann, July,1993,416-423.
    62. Gardiner P.D., and Stewart K. Revisiting the golden triangle of cost, time and quality: the roleof NPV in project control, success and failure. International Journal of Project Management,2000,18(4):251-256.
    63. Glover F. Future paths for integer programming and links to artificial intelligence. Computersand Operations Research,1986,13(5):533-549.
    64. Goldberg D.E. Genetic algorithms in search. Optimization and Machine Leaning.Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.1989.
    65. Gomez-Skarmeta A.F., Jimenez F., and Ibanez J. Pareto-optimality in scheduling problems.Computational Intelligence: Theory and Applications. Lecture Notes in Computer Science,1999,1625:177-185.
    66. Halman N., Li C.L., and Simchi-Levi D. Fully polynomial-time approximation schemes fortime–cost tradeoff problems in series–parallel project networks. Operations Research Letters,2009,37(4):239-244.
    67. Hapke M., Jaszkiewicz A., and Slowinski R. Interactive analysis of multi-criteria projectscheduling problems. European Journal of Operational Research,1998,107:315-324.
    68. Hardie N. The prediction and control of period duration: a recursive model. InternationalJournal of Project Management,2001,19:401-409.
    69. Hartmann S. A competitive algorithm for resource-constrained project scheduling. NavalResearch Logistics,1998,45:733-750.
    70. Hartmann S. Project scheduling with multiple modes: a genetic algorithm. Annals ofOperations Research,2001,102:111-135.
    71. Harvey R.T., and Patterson J.H. An implicit enumeration algorithm for the time/cost tradeoffproblem in project network analysis. Found Control Engineering,1979,4:107-117.
    72. Hastings N.A.J. On resource allocation in project networks. Operational Research Quarterly,1972,23(2):217-221.
    73. Haz r., Haouari M., and Erel E. Discrete time/cost trade-off problem: Adecomposition-based solution algorithm for the budget version. Computers&OperationsResearch,2010,37(4):649-655.
    74. Heilmann R. A branch-and-bound procedure for the multi-mode resource-constrained projectscheduling problem with minimum and maximum time lags. European Journal of OperationalResearch,2003,144(2):348-365.
    75. Heilmann R. Resource-constrained project scheduling: a heuristic for the multi-mode case.Operational Resourch Spectrum,2001,23(3):335-357.
    76. Herroelen W.S., and Leus R. Project scheduling under uncertainty: survey and researchpotentials. European Journal of Operational Research,2005,165:289-306.
    77. Herroelen W.S., and Leus R. Robust and reactive project scheduling: a review andclassification of procedures. International Journal of production Research,2004,42:1599-1620.
    78. Herroelen W.S., De Reyck B., and Demeulemeester E.L. Resource-constrained projectscheduling: a survey of recent developments. Computers and Operations Research,1998,25:279-302.
    79. Herroelen W.S., Demeulemeester E., and De Reyck B. A Classification Scheme for ProjectScheduling. Project Scheduling: Recent Models, Algorithms, and Applications, Edited by J.Welglarz,1999,1-26.
    80. Hindlang T.J., and Muth J.F. A dynamic programming algorithm for decision CPM networks.Operations Research,1979,27:225-241.
    81. Huang T., Kong C.W., Guo H.L., Baldwin A., and Li H. A virtual prototyping system forsimulating construction processes. Automation in Construction,2007,16(5):576-585.
    82. Hwang C, and Yoon K. Multiple Attribute Design Making: Methods and Applications,Springer-Verlage, Berlin.1981.
    83. Inamdar S.V., Gupta S.K., and Saraf D.N. Multi-objective optimization of an industrial crudedistillation unit using the elitist non-dominated sorting genetic algorithm.ChemicalEngineering Research and Design,2004,82(5):611-623.
    84. Jahan-Shahi H., Shayan E., and Masood S. Cost/time estimation in flat plate processing usingfuzzy modeling. Computers&Industrial Engineering,2002,42(2-4):555-566.
    85. Jirachai B. Multi-mode resource-constrained project scheduling problem with resourcevacations and task splitting. Ph.D. dissertation, Oregon State University,2003.
    86. Jozefowska J., Mika M., Rozycki R., Waligora G., and Weglarz J. Simulated annealing formulti-mode resource-constrained project scheduling. Annals of Operations Research,2001,102:137-155.
    87. Ke H., and Liu B.D. Project scheduling problem with stochastic activity duration times.Applied Mathematics and Computation,2005,168(1):342-353.
    88. Ke H., Ma W.M., and Ni Y.D. Optimization models and a GA-based algorithm for stochastictime-cost trade-off problem. Applied Mathematics and Computation, In Press.2009.
    89. Kelley J.E. Jr. The critical path method: resource planning and scheduling. In Muth J.F.,Thompson G.L.(eds.), Industrial Scheduling, Englewood Cliffs: Prentice-Hall,1963.
    90. Khang D.B., and Myint Y.M. Time, cost and quality tradeoff in project management: a casestudy. International Journal of Project Management;1999,17(4):249-256.
    91. Kin K., Yun Y.S., Yoon J.M., Gen M., and Yamazaki G. Hybrid genetic algorithm withadaptive abilities for resource-constrained multiple project scheduling. Computers in Industry,2005,56(2):143-160.
    92. Kin K.W., Gen M., and Yamazaki G. Hybrid genetic algorithm with fuzzy logic forresource-constrained project scheduling. Applied Soft Computing,2003,2(3):174-188.
    93. Kirkpatrick S., Gelatt C.D. Jr.&Vecchi M.P. Optimization by simulated annealing. Science,1983,220(4598):671-680.
    94. Klein R., and Scholl A. Computing lower bounds by destructive improvement: an applicationto resource-constrained project scheduling.1999,112:322-346.
    95. Kolisch R. Serial and parallel resource-constrained project scheduling methods revisited:theory and computation. European Journal of Operational Research,1996,90:320-333.
    96. Kolisch R., and Drexl A. Local search for nonpreemptive multi-mode resource-constrainedproject scheduling. IIE Transactions,1997,29(11):987-999.
    97. Kolisch R., and Hartmann S. Experimental investigation of heuristics for resource-constrainedproject scheduling: an update. European Journal of Operational Research,2006,174(1):23-27.
    98. Kolisch R., and Padman R. An integrated survey of deterministic project scheduling. Omega,2001,29(3):249-272.
    99. Kolisch R., and Sprecher A. PSPLIB-A project scheduling problem library. European Journalof Operational Research,1997,96(1):205-216.
    100. Kolisch R., Schwindt C., and Sprecher A. Benchmark instances for project schedulingproblems. In Weglarz J (ed.), Handbook on Recent Advances in Project Scheduling.Amsterdam: Kluwer,1998.
    101. Kumar Y., Das B., and Sharma J. Service restoration in distribution system usingnon-dominated sorting genetic algorithm. Electric Power Systems Research,2006,76(9-10):768-777.
    102. Kuriakose S., and Shunmugam M.S. Multi-objective optimization of wire-electro dischargemachining process by Non-Dominated Sorting Genetic Algorithm. Journal of MaterialsProcessing Technology,2005,170(1-2):133-141.
    103. Laslo Z. Activity time–cost tradeoffs under time and cost chance constraints. Computers&Indstrial Engineering,2003,44(3):365-384.
    104. Law J.S., and Chu H.W. Models to predict efficiency of two network flow based algorithmson the Time-Cost Trade-Off problem. Computers&Industrial Engineering,1987,12(2):91-97.
    105. Lawrence S.R., and Morton T.E. Resource-constrained multi-project scheduling with tardycosts: comparing myopic, bottleneck, and resource pricing heuristics. European Journal ofOperational Research,1993,64:168-187.
    106. Leu S.S., Chen A.T., and Yang C.H. A GA-based fuzzy optimal model for constructiontime-cost tradeoff. International Journal of Project Management,2001,19(1):47-58.
    107. Li H, Cao J.N., and Love P.E.D. Using machine learning and GA to solve time–cost trade–offproblems. Journal of Construction Engineering and Management,1999,125(5):347-353.
    108. Li H., Chan N., Huang T., Guo H.L., Lu W.S., Skitmore M. Optimizing construction planningschedules by virtual prototyping enabled resource analysis. Automation in Construction,2009,18(7):912-918.
    109. Li H., Huang T., Kong C.W, Guo H.L., Andrew Baldwin et al. Integrating design andconstruction through virtual prototyping. Automation in Construction,2008,17(8):915-922.
    110. Li X.Y, Zheng J. H., and Xue J. A diversity metric for multi-objective evolutionary algorithms.The Congress on Natural Computation, China,2005.
    111. Liberatore M.J., and Pollack-Johnson B. Extending project time–cost analysis by removingprecedence relationships and task streaming. International Journal of Project Management,2006,24(6):529-535.
    112. Lourenco H., and Serra D. Adaptive search heuristics for the generalized assignment problem.Mathware and Soft Computing,2002,9(2-3):209-234.
    113. Martin O., Otto S.W., and Felten E.W. Large-step Markov chains for the traveling salesmanproblem. Complex Systems.1991,5(3):299-326.
    114. Mendes J.J.M., Goncalves J.F., and Resende M.G.C. A random key based genetic algorithmfor the resource constrained problem scheduling problem. Computers&Operations Research,2009,36(1):92-109.
    115. Mika M., Waligora G., and Weglarz J. Simulated annealing and tabu search for multi-moderesource-constrained project scheduling with positive discounted cash flows and differentpayment models. European Journal of Operational Research,2005,164(3):639-668.
    116. Mingozzi A., Maniezzo V., Ricciardelli S., et al. An exact algorithm for theresource-constrained project scheduling problem based on a new mathematical formulation.Management Science,1998,44(5):714-729.
    117. Mori M., and Tseng C.C. A genetic algorithm for multi-mode resource constrained projectscheduling problem. European Journal of Operational Research,1997,100(1):134-141.
    118. Morton T.E.,and Pentico D.W. Heuristic scheduling systems: with applications to productionsystems and project management. New York: John Wiley&Sons,1993.
    119. Nazareth T., Verma S., Bhattacharya S., et al. The multiple resource constrained projectscheduling problem: a breadth-first approach. European Journal of Operational Research,1999,112:347-366.
    120. Neumann K., and Zimmermann J. Resource leveling for projects with schedule dependenttime windows. European Journal of Operational Research,1999,117:591-605.
    121. Ozdamar L. A genetic algorithm approach to a general category project scheduling problem.IEEE. Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,1999,29:44-59.
    122. Ozdamar L., and Dundar H. A flexible heuristic for a multi-mode capital constrained projectscheduling problem with probabilistic cash inflows. Computers&Operations Research,1997,24(12):1187-1200.
    123. Ozdamar L., and Ulusoy G. A local constraint based analysis approach to project schedulingunder general resource constraints. European Journal of Operational Research,1994,79:287-298.
    124. Ozdamar L., and Ulusoy G. A Survey on the Resource-Constrained Project SchedulingProblem. IIE Transactions,27:574-586.
    125. Patterson J.H. A comparison of exact approaches for solving the multiple constrained resourceproject scheduling problem. Management Science,1984,7:854-867.
    126. Patterson J.H., Slowinski R, Talbot F.B., et al. An algorithm for a general class of precedenceand resource and resource constrained scheduling problem. In Slowinski R., Weglarz J(EDs.),Advances in Project Scheduling, Amsterdam: Elsevier,1989,3-28.
    127. Patterson J.H., Talbot F.B., Slowinski R, et al. Computational experience with a backtrackingalgorithm for solving a general class of precedence and resource-constrained schedulingproblems. European Journal of Operational Research,1990,49:768-798.
    128. Peng W.l., and Wang Ch.g. A multi-mode resource-constrained discrete time–cost tradeoffproblem and its genetic algorithm based solution. International Journal of Project Managemen,2009,27(6):600-609.
    129. Pinedo M. L. Planning and Scheduling in Manufacturing and Services. Springer ScienceBusiness Media, Inc.2005, p57.
    130. Pinedo M.张智海译.调度:原理、算法和系统(第2版).北京:清华大学出版社.2007.
    131. Prabuddha D.E., Dunne E.J., Ghosh J.B., et al. Complexity of the discrete time-cost tradeoffproblem for project networks. Operations Research,1997,45(2):302-306.
    132. Prabuddha D.E., Dunne E.J., Ghosh J.B., et al. The discrete time-cost tradeoff problemrevisited. European Journal of Operational Research,1995,81:225-238.
    133. Raghuwanshi M. M., and Kakde O. G. Survey on multiobjective evolutionary and real codedgenetic algorithms. Proceedings of the8th Asia Pacific Symposium on Intelligent andEvolu-tionasy Systems,2004, pp.150–161.
    134. Reda R., and Carr R.I. Time-cost tradeoff among related activities. Journal of ConstructionEngineering and Management,1989,115(3):475-486.
    135. Reddy J.P., Kumanan S., and Chetty O.V.K. Application of Petri nets and a genetic algorithmto multi-mode multi-resource constrained project scheduling. International Journal ofAdvanced Manufacturing Technology,2001,17(4):305-314.
    136. Robinson D.R. A dynamic programming solution to cost-time tradeoff for CPM. ManagementScience,1975,22:158-166.
    137. Rykov L.A. Polynomial approximation algorithms for solving resource-constrained projectscheduling problem. Electronic Notes in Discrete Mathematics,2006,27(1):93-94.
    138. Sakellaropoulos S., and Chassiakos A.P. Project time–cost analysis under generalisedprecedence relations. Advances in Engineering Software,2004,35(10-11):715-724.
    139. Salewski F. Heuristics for flexible employee scheduling. OR Spectrum,1999,21(3):361-379.
    140. Salewski, F., Schirmer, A., and Drexl, A. Project scheduling under resource and mode identityconstraints: Model, complexity, methods, and application. European Journal of OperationalResearch,1997,102(1):88-110.
    141. Schirmer A. Case-based reasoning and improved adaptive search for project scheduling. NavalResearch Logistics,2000,47:201-222.
    142. Schirmer A. Resource-constrained project scheduling: an evaluation of adaptive controlschemes for parameterized sampling heuristics. International Journal of Production Research,2001,39:1343-1365.
    143. Schultmann F., Frohling M., and Rentz O. Fuzzy approach for production planning anddetailed scheduling in paints manufacturing. International Journal of Production Research,2006,44(8):1589-1612.
    144. Schwindt C., and Trautmann N. Batch scheduling in process industries: an application ofresource-constrained project scheduling. OR Spektrum,2000,22:501-524.
    145. Senouci A., and AI-Derham H.R. Genetic algorithm-based multi-objective model forscheduling of linear construction projects. Advances in Engineering Software,2008,39(12):1023-1028.
    146. Senouci A., and Al-Derham H.R. Genetic algorithm-based multi-objective model forscheduling of linear construction projects. Advances in Engineering Software,2008,39(12):1023-1028.
    147. Simpson W.P., and Patterson J.H. A multiple-tree search procedure for theresource-constrained project scheduling problem. European Journal of Operational Research,1996,89:525-542.
    148. Slowinski R. Multiobjective network scheduling with efficient use of renewable andnonrenewable resources. European Journal of Operational Research,1981,7(3):265-273.
    149. Slowinski R. MultlobjeCtlve project scheduling under multiple-category resource constraints,in: Advances in Project Scheduling, Slowinski R., Weglarz J.(eds.), Amsterdam: Elsevier,1989:151-167.
    150. Slowinski R. Two Approaches to Problems of Resource Allocation among Project Activities:A Comparative Study. Journal of the Operational Research Society,1980,31(8):711-723.
    151. Slowinski R., Soniewicki B., and Weglarz J. DSS for multiobjective project scheduling.European Journal of Operational Research,1994,79:220-229.
    152. Sprecher A. A competitive branch-and-bound algorithm for the simple assembly linebalancing problem. International Journal of Production Research,1999,37(8):1787-1816.
    153. Sprecher A. Scheduling resource-constrained projects competitively at modest memoryrequirements. Management Science,2000,46(5):710-723.
    154. Sprecher A., and Drexl A. Multi-mode resource-constrained project scheduling by a simple,general and powerful sequencing algorithm. European Journal of Operational Research,1989,107(2):431-450.
    155. Sprecher A., Hartmann S., and Drexl A. An exact algorithm for project scheduling withmultiple modes. OR Spectrum,1997,19(3):195-203.
    156. Srinivas N., and Deb K. Multi-Objective function optimization using non-dominated sortinggenetic algorithms. Evolutionary Computation,1995,2(3):221–248.
    157. Stadler W. A comprehensive bibliography on multi-criteria decision making and related areas,Technical report, University of California-Berkeley.1981.
    158. Stadler W. A survey of multi-criteria optimization or the vector maximization problem, part I:1776-1960. Journal of Optimization Theory and Applications,1979,29(1):1-52.
    159. Steuer R.E. Multiple Criteria Optimization: Theory, Computation, and Application, Wiley,New York.1986.
    160. Stinson J.P., Davis E.W., and Khumawala B.M. Multiple resource constrained schedulingusing branch and bound. AIIE Transactions,1978,10(3):252-259.
    161. Suresh N, and Babu A.J.G. Software development: Enhancing quality and cost-effectiveness.In: Proceedings of the International Conference on Software Quality, ASQC.1993.
    162. Tareghian H.R., and Taheri S.H. A soulution procedure for the discrete time, cost and qualitytradeoff problem using electromagnetic scatter search. Applied Mathematics and Computation,2007,190(2):1136-1145.
    163. Tareghian H.R., and Taheri S.H. On the discrete time, cost and quality trade-off problem.Applied Mathematics and Computation,2006,181(2):1305-1312.
    164. Thomas P.R., and Salhi S. An investigation into the relationship of heuristic performance withnetwork-resource characteristics. Journal of the Operational Research Society,1997,48(1):34-43.
    165. Tseng L.Y., and Chen Sh.Ch. A hybrid metaheuristic for the resource-constrained projectscheduling problem. European Journal of Operational Research,2006,175(2):707-721.
    166. Uetz M. When greediness fails: Examples from stochastic scheduling. Operations ResearchLetters,2003,31:413-419.
    167. Ulusoy G., and Cebelli S. An equitable approach to the payment scheduling problem in projectmanagement. European Journal of Operational Research,2000,127(2):262-278.
    168. Ulusoy G., and Ozdamar L. A framework for an interactive project scheduling system underlimited resources. European Journal of Operational Research,1996,90:362-375.
    169. Ulusoy G., and Ozdamar L. Heuristic performance and network resource characteristics inresource-constrained project scheduling. Journal of the Operational Research Society,1989,40(12):1145-1152.
    170. Ulusoy G.. Sivrikaya-Serifoglu F., and Sahin S. Four payment models for the multi-moderesource constrained project scheduling problem with discounted cash flows. Annals ofOperations Research,2001,102:237-261.
    171. Valls V., Ballestín F., and Quintanilla S. A hybrid genetic algorithm for theresource-constrained project scheduling problem. European Journal of Operational Research,2008,185(2):495-508.
    172. Valls V., Quintanilla S., and Ballestin F. Resource-constrained project scheduling: a criticalactivity reordering heuristic. European Journal of Operational Research,2003,149(2):282-301.
    173. Vanhoucke M. New computational results for the discrete time/cost trade-off problem withtime-switch constraints; European Journal of Operational Research,2005,165(2):359-374.
    174. Vanhoucke M., Demeulemeester E.L., and Herroelen W.S. An exact procedure for theresource-constrained weighted earliness-tardiness project scheduling problem. Annals ofOperations Research,2001,102:179-196.
    175. Veldhuizen D.V. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and NewInnovations. Ph.D. Thesis, Dayton, OH: Air Force Institute of Technology.1999, TechnicalReport No. AFIT/DS/ENG/99-01.
    176. Viana A., and Sousa J.P. Using meta-heuristics in multi-objective resource constrained projectscheduling. European Journal of Operational Research,2000,120:359-374.
    177. Voss S., and Witt A. Hybrid flow shop scheduling as a multi-mode multi-project schedulingproblem with batching requirements: A real-world application. International Journal ofProduction Economics,2007,105(2):445-458.
    178. Wang W.C. Supporting project cost threshold decisions via a mathematical cost model.International Journal of Project Management,2004,22(2):99-108.
    179. Weglarz J. On Certain Models of Resource Allocation Problems. Kybernetes,1980,9(1):61-66.
    180. Weglarz J. Project Scheduling with Discrete and Continuous Resources. Systems, Man andCybernetics, IEEE Transactions on,1979,9(10):644-650.
    181. Wei C.C., Liu P.H., and Tsai Y.C. Resource-constrained project management using enhancedtheory of constraint. International Journal of Project Management,2002,20(7):561-567.
    182. Yan Y., Kuphal T., and Bode J. Application of multi-agent systems in project management.International Journal of Production Economics,2000,68(2):185-197.
    183. Yang I.T., Chang Ch.Y. Stochastic resource-constrained scheduling for repetitive constructionprojects with uncertain supply of resources and funding. International Journal of ProjectManagement,2005,23:546-553:
    184. Zhou X.S., and Zhong M. Bicriteria train scheduling for high-speed passenger railroadplanning applications. European Journal of Operational Research,2005,167(3):752-771.
    185.柴国荣,徐渝,张静文,何正文.多模式柔性资源约束型折现流项目进度问题研究.系统工程,2005,23(2):14-18.
    186.韩大卫.管理运筹学.大连:大连理工大学出版社.2003.
    187.胡振中,张建平,周毅,张永利.青岛海湾大桥4D施工管理系统的研究和应用.施工技术,2008,37(12):84-87.
    188.虎仕成,徐晓飞,战德臣.一种面向成本优化的生产计划调度算法,2003,9(9):735-739.
    189.杰克.R.梅瑞狄斯,小塞缪尔.J.曼特尔.项目管理:管理新视角(第6版).周晓红等译.北京:电子工业出版社,2006.
    190.雷德明,严新平.多目标智能优化算法及其应用.北京:科学出版社.2009.
    191.刘士新,王梦光,唐加福.一种求解资源约束的工程调度问题的遗传算法.系统工程学报,2002,17(1):1-7.
    192.刘士新,王梦光.一种求解多执行模式工程调度中资源水平问题的遗传算法.控制与决策,2001,16(1):111-113.
    193.刘振元,王红卫.活动成本目标MMRCPSP并行调度方案.系统工程与电子技术,2007,29(8):1295-1298.
    194.马国丰,尤建新,杜学美.项目进度的制约因素管理.北京:清华大学出版社.2007.
    195.王凌.车间调度及其遗传算法.北京:清华大学出版社.2003.
    196.王万良,吴启迪.生产调度智能算法及其应用.北京:科学出版社.2007.
    197.邢文训,谢金星.现代优化计算方法(第二版).北京:清华大学出版社.2005.
    198.玄光男,程润伟著,于歆杰,周根贵译.遗传算法与工程优化/.北京:清华大学出版社.2004.
    199.杨耀红,张俊华.模式约束和资源约束下的多模式时间-费用交换问题研究.华北水利水电学院学报,2006,27(1):35-38.
    200.张建平,王洪钧.建筑施工4D++模型与4D项目管理系统的研究.土木工程学报,2003,36(3):70-78.
    201.郑金华.多目标进化算法及其应用.北京:科学出版社.2007.
    202.周树发,刘莉.工程网络计划中的多目标优化问题.华东交通大学学报,2004,21(2):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700