提速和高速铁路曲线轨道轮轨动态相互作用性能匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于提速和高速带来的曲线轨道轮轨系统相互作用问题,在实际运营中更显突出,对轮轨动力学性能匹配技术提出了更高的要求。本论文基于车辆—轨道耦合动力学理论,针对提速和高速铁路,开展了曲线轨道轮轨动态相互作用性能匹配研究。
     论文首先基于车辆—轨道耦合动力学理论,以铁路线路为研究对象,提出了曲线轨道轮轨动态相互作用性能匹配技术,包括:曲线轨道轮轨动态相互作用分析模型、实测轮轨型面的轮轨接触几何关系、轮轨动态相互作用计算机仿真分析软件TTISIM、主要动力性能指标评价标准、曲线轨道轮轨动态相互作用匹配原理及研究思路。
     接着,分析了轨道结构振动及轨道结构关键参数对曲线轨道轮轨动力性能的影响,并讨论了钢轨翻转运动对曲线轨道轮轨动力性能的影响。结果表明:考虑轨道结构参振,轮轨相互作用性能指标均大于不考虑轨道结构振动的值;对于轨道结构振动模型,不考虑钢轨扭转变形时的轮轨动力性能指标值大于考虑扭转变形时的值,且两者之间差异在10%以内;轨下支承横向及垂向刚度对曲线轨道轮轨动力性能有较明显的影响。
     运用曲线轨道轮轨动态相互作用性能匹配技术,分析了既有提速铁路曲线轨道的轮轨动态相互作用性能。结果表明,提速列车通过既有铁路曲线轨道时,轮轨动态相互作用较剧烈;牵引力可改变轮轨纵向蠕滑力的大小和方向,影响轮轨动态相互作用性能;列车提速到200-250km/h速度后,轮重减载较明显,其主因是轨道上存在1-2.5m波长范围不平顺,降低1-2.5m波长范围的高低不平顺幅值可以有效减小轮重减载率,提高列车的运行安全性能,该研究结果为铁路提速工程提供了理论支撑。
     采用理论分析与现场试验相结合的方法,分析了山区铁路小半径曲线强化轨道动力性能。结果表明:强化改造技术方案有利于控制轨道结构振动位移或变形,有利于提高轨道结构稳定性,因而能够减少线路养护维修工作量。该研究结果为山区铁路小半径曲线轨道提速对策的制订及推广应用提供了理论与试验依据。
     最后,分析了高速铁路曲线轨道的轮轨动态相互作用性能匹配。结果表明:高速运营条件下曲线轨道外侧轮轨接触范围较大,而内侧轮轨接触点范围较窄;在波浪形磨耗不平顺激扰下,曲线轨道的轮轨动力作用明显加剧;在轨道随机不平顺激扰下,对于本文设置的高速铁路平纵断面零距离衔接工况,所有安全性指标及舒适性指标均满足要求。最后以广深港客运专线设计阶段的珠江段平纵断面比选的工程为例,介绍了高速铁路曲线轨道轮轨动态相互作用性能匹配的工程应用情况。
With the increase of train speeds and the development of high-speed railway, the wheel-rail interaction on the curved track will unavoidably be reinforced, as requires more advanced technique to match the wheel-rail dynamic performance. So, from the point view of the wheel-rail coupled dynamics, this thesis tries to investigate the performance matching of wheel-rail dynamic interaction on the curved track of the speed-raised and high-speed railways.
     Firstly, based on the theory of the wheel-rail coupled dynamics, this thesis puts forward the technique of the performance matching of wheel-rail dynamic interaction on the curved track of the speed-raised and high-speed railways, which includes the model of the wheel-rail dynamic performance of curve negotiation, the geometric contact relationship of measured wheel/rail profiles, the TTISIM simulation software of vehicle-track coupled dynamics, the evaluation and standard of main indices of dynamic performance, and the principle of the performance matching as well as the research framework.
     Secondly, the effects of the vibration and parameters of track structure on the performance of curve negotiation are analyzed, and the influence of the rail twist on wheel-rail dynamic interaction on the curved track is also discussed. Results show that, the values of indices simulated by the model with track vibration are lower than thoses by the model without track vibration. For the model with track vibration, dynamic results without consideration of the rail twist are bigger than those being taken the rail twist into account and the difference in the results is lower than10%, and the factors, including the lateral and vertical stiffness of the rail pad, have much effect on the dynamic performance of curve negotiation.
     Applied this technique of the performance matching, the research on the wheel-rail dynamic performance on the curved track of speed-raised lines is carried out. Results show that when speed-raised trains pass through curved tracks, the lateral dynamic interaction between wheels and rails will be enhanced. Under the condition of the traction, the value and the direction of the creep force in longitudinal can be changed, as affects the wheel-rail dynamic performance. If the speed of train is raised to200-250km/h, the wheel load will reduce obviously. The main reason is that there are track irregularities with the wavelength ranging from1m to2.5m. So, to reduce the amplitude of this type of track irregularities can help to improve the running safety of train. This part of the theory study will provide the theoretic support for the project of raising speed on existing railway lines.
     Then, the dynamic performance of small-radius curved track for mountain strengthened railway is investigated with the method of theory and experiment. Results show that the strengthened track can help to decrease the displacements of all components of track structures obviously, to reinforce the stability of the line, and to reduce the maintenance workload of railway. This part of the study will supply the theoretic and experimental support for the project of proposing measures and popularizing applications of the strengthened track.
     Lastly, an investigation on the wheel-rail dynamic performance on the curved track of high-speed railway is carried out. Results show that, the area of wheel-rail contact in outer rail is bigger than that in inner rail. Excited by the rail corrugation, the dynamic interaction of the curved track will inevitably be enhanced. Excited by the random irregularity, all of the safety and comfort performance can meet the requirements if the lap length of the plan and profile section is zero. Additionally, taking an engineering of dedicated passenger line (Guangzhou-Shenzhen-Hongkong) for an example, the application of the technique of the performance matching is introduced in the scheme comparison of plan and profile section.
引文
[1]翟婉明.车辆—轨道耦合动力学[M].第一版.北京:中国铁道出版社,1997.
    [2]翟婉明.车辆—轨道耦合动力学[M].第二版.北京:中国铁道出版社,2002.
    [3]翟婉明.车辆—轨道耦合动力学[M].第三版.北京:科学出版社,2007.
    [4]Newland D E. Steering characteristics of bogies[J]. Railway Gazette,1968,124:745-750.
    [5]Boocock D. Steady-state motion of railway vehicles on curved track[J]. Journal of Mechanics Engineering Science,1969,1:556-566.
    [6]Wickens A H. Steering and dynamics stability of railway vehicles[J]. Vehicle System Dynamic,1975, 5:15-46.
    [7]Elkins J A, Oosfling R J. General quasi-static curving theory for railway vehicles[C]. Proceeding of 5th IAVSD-IUTAM Symposiums, Dynamics of Vehicles on Roads and Tracks, Swets and Zeitlinger, Lisse, The Netherlands,1977:388-406.
    [8]松田信夫(日).转向架车辆静态曲线通过性能的实用计算方法[J].国外铁道车辆,1980,(6):17-28.
    [9]Anderson R J. A non-linear steady-state curving model for steerable axle railway vehicles[C]. Proceeding of 10th IMACS Word Congress, Systems Simulation and Scientific Computation, Concordia University Montreal,1982:138-140.
    [10]Piotrowski J. Contact loading of high rail in curves-physical simulation method to investigate shelling[J]. Vehicle System Dynamic,1988,17:57-79.
    [11]Sheffel H, Frohling R D, Heyns P S. Curving and stability analysis of self-steering bogies having a variable yaw constraints[J]. Vehicle System Dynamic,1993, (Suppl.):425-436.
    [12]Zboinski K. Dynamical investigation of railway vehicles on a curved track[J]. European Journal of Mechanics, A Solids,1998, (17):1001-1020.
    [13]Yoshihiro S,等(日).非对称悬挂转向架曲线通过性能[J].国外铁道车辆,1998,(2):15-18.
    [14]弘津,哲二,等(日).摆式车辆曲线通过仿真[J].国外铁道车辆,2003,40(3):26-33.
    [15]Yugat O J, Miralles M J, et al. Analytical model of wheel-rail contact force due to the passage of a railway vehicle on a curved track[J], Revista De Facultad De Ingenieria Universidad Antioquia,2009, (50):135-144.
    [16]Banerjee N, Saha A K, Karmakar R, et al. Bond graph modeling of a railway truck on curved track[J]. Simulation Modelling Practice and Theory,2009, (17):22-34.
    [17]Sugiyama H, Suda Y. On the contact search algorithms for wheel rail contact problems[J]. Journal of Computational and Nonlinear Dynamics,2009, (4):1-7.
    [18]Kurzeck B. Combined friction induced oscillations of wheelset and track during the curving of metros and their influence on corrugation[J]. Wear,2011, (271):299-310.
    [19]Tudor A, Sandu N, Tountas E. Wheel/rail friction power in curved track[J]. U. P. B. Sci. Bull., Series D,2009,71(3):75-88.
    [20]Grassie S L, Elkins J A. Tractive effort, curving and surface damage of rails[J]. Wear,2005, (258): 1235-1244.
    [21]Dukkipati R V, Swamy S N. Non-linear steady-state curving analysis of some unconventional rail trucks[J]. Mechanism and Machine Theory,2001, (36):507-521.
    [22]Escalona J L, Valverde J, Chamorro R. Application of multibody dynamics to the curving behaviour of railroad vehicles[C]. Proceeding of 12th IFToMM World Congress,2007.
    [23]Cheng Y C, Lee S Y, Chen H H. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks[J]. Journal of Sound and Vibration,2009, (324):139-160.
    [24]Zboinski K, Dusza M. Self-exciting vibrations and Hopf s bifurcation in non-linear stability analysis of rail vehicles in a curved track[J]. European Journal of Mechanics, A Solids,2010, (29):190-203.
    [25]沙永正.长大货物车多导向几何曲线通过及其图解[J].铁道学报,1979,(1):17-31.
    [26]沈志云.铁路机车车辆非线性稳态曲线通过的简化计算[J].西南交通大学学报,1982,(3):1-12.
    [27]毛家驯,严隽耄,沈志云.迫导向转向架的原理及应用(上)[J].铁道车辆,1985,(11):22-27.
    [28]黄皖初.车辆几何曲线通过的理论分析[J].铁道车辆,1981,(8):22-30.
    [29]刘晓云,吕澎民.机车车辆曲线通过力学方程的数学分析及解法[J].甘肃工业大学学报,1994,20(1):92-102.
    [30]沈刚.机车车辆非线性稳态曲线通过的逐步逼近法[J].上海铁道大学学报,1998,19(3-4):17-20.
    [31]舒兴高,车辆动态曲线通过的轨道几何约束[J].铁道学报,1999,21(1):23-26.
    [32]吕可维,曾京,张卫华.车辆稳态曲线通过性能的延续算法[J].铁道学报,2002,24(2):30-34.
    [33]吕可维,曾京.铁道车辆系统曲线通过稳态解的延续计算[J].西南交通大学学报,2003,38(4):384-388.
    [34]吕可维,曾京.基于延续算法的车辆稳态曲线通过性能的参数研究[J].铁道车辆,2004,42(1):6-8.
    [35]王文涛,米彩盈.参数化机车几何曲线通过计算[J].内燃机车,2007,(11):17-20.
    [36]王璐科.引入“等效曲线半径”概念进行机车车辆几何曲线通过计算[J].电力机车与城轨车辆,2008,31(6):5-11.
    [37]葛党朝.稳态下轮对曲线导向机理研究及转向架设计优化措施[J].城市轨道交通研究,2011,(4):95-98.
    [38]丁长权,陈喜红,陶功安,等.基于VB的铁道车辆几何曲线通过参数化计算[J].电力机车与城轨车辆,2012,35(1):33-35.
    [39]鲜荣.滚动振动试验台曲线通过试验方法研究[D].硕士学位论文,成都:西南交通大学,2004.
    [40]任尊松,金学松.轮轨多点接触计算新方法曲线通过验证[J].机械工程学报,2010,46(16):1-7.
    [41]李芾,傅茂海,黄运华.车辆径向转向架发展及其动力学特性[J].交通运输工程学报,2003,3(1):1-6.
    [42]李亨利.货车径向转向架动力学特性及轮轨磨耗研究[D].硕士学位论文,成都:西南交通大学,2006.
    [43]王开云,翟婉明,封全保.机车牵引状态下曲线通过导向特性研究[J].中国铁道科学,2006,27(2):71-76.
    [44]De Pater A D. Optimal design of railway vehicles[J]. Ingenieur Archiv,1987, (59):25-38.
    [45]DeLorenzo M. NUCARS modeling of a freight locomotive with steerable trucks[D]. Dissertation, Virginia Polytechnic Institute and State University,1997.
    [46]Dukkipati R V, Swamy S N. lateral stability and steady state curving performance of unconvertional rail truck[J]. Mechanism and Machine Theory,2001, (36):577-587.
    [47]Iwnicki S. Handbook of railway vehicle dynamics[M]. CRC, Baca Raton, London, NewYork,2006.
    [48]Nejlaoui M, Affi Z, Houidi A, et al. Analytical modeling of rail vehicle safety and comfort in short radius curved tracks[J]. C. R. Mecanique,2009, (337):303-311.
    [49]Sugiyama H, Yamashita S, Suda Y. Curving simulation of ultralow-floor light rail vehicles with independently rotating wheelsets[C]. Proceeding of International Mechanical Engineering Congress, 2010.
    [50]Sugiyama H, Matsumura R, Suda Y, et al. Dynamics of independently rotating wheel system in the analysis of multibody railroad vehicles[J]. Journal of Computational and Nonlinear Dynamics,2011, (6):1-8.
    [51]Sebesan I. Dynamics of the railway vehicles[M]. MATRIXROM Publishing House, Bucharest, Romanian,2011.
    [52]舒兴高,洪嘉振,贺启庸.可倾式车辆的动态曲线通过与控制[J].中国铁道科学,1996,17(4):19-25.
    [53]刘宏友,曾京,邬平波.摆式客车曲线通过动力学研究[J].铁道学报,2001,23(5):22-26.
    [54]陈天利,曾京.可控径向转向架客车曲线通过动力学性能研究[J].铁道车辆,2003,41(5):5-9.
    [55]李芾,傅茂海,卜继玲.200km/h提速客车径向转向架动力学性能研究[J].铁道学报,2004,26(1):22-27.
    [56]刘彬彬.铁道车辆曲线通过性能主动控制[D].硕士学位论文,成都:西南交通大学,2010.
    [57]陆正刚,赵惠祥.柔性耦合单轮对走行系统的曲线性能分析和参数设计原则[J].中国铁道科学,2004,25(6):32-37.
    [58]邢璐璐,李芾,付政波.弹性车轮车辆临界速度及曲线通过性能分析[J].电力机车与城轨车辆, 2012,35(1):25-28.
    [59]池茂儒,王开文,傅茂海,等.磁流体耦合轮对转向架曲线通过性能的研究[J].铁道学报,2002,24(4):28-33.
    [60]倪平涛,王开文,陈健.磁流变耦合轮对车辆高速曲线通过性能研究和探讨[J].机械工程学报,2007,43(11):173-176.
    [61]倪平涛,张洪,王开文.磁流变耦合轮对车辆的超高速曲线通过性能[J].西南交通大学学报,2008,43(3):373-376.
    [62]龙许友,魏庆朝,赵金顺.直线电机地铁车辆曲线通过建模与仿真[J].系统仿真学报,2007,19(13):3105-3114.
    [63]刘彬彬,罗仁,曾京,邬平波.地铁直线电机车辆曲线通过仿真[J].城市轨道交通研究,2011,(2):56-61.
    [64]罗世辉.轨道车辆独立车轮的动力学分析[J].内燃机车,1999,(6):13-17.
    [65]黄运华,李芾,傅茂海.独立旋转车轮转向架曲线通过性能研究[J].中国铁道科学,2001,22(6):7-11.
    [66]李创,孙守光,任尊松.独立车轮转向架车辆曲线通过性能分析[J].北方交通大学学报,2003,27(5):86-89.
    [67]罗文俊,雷晓燕.后轮对独立回转新型转向架曲线通过性能的研究[J].中国铁道科学,2006,27(2):93-97.
    [68]蒯荣生,李爱姣.独立车轮转向架车辆曲线通过性能研究[J].现代城市轨道交通,2008,(6):37-39.
    [69]王渊,孙守光,任尊松.橡胶轮转向架车辆动态曲线通过行为研究[J].铁道学报,2003,25(3):40-44.
    [70]王渊,孙守光,任尊松.橡胶轮转向架对车辆曲线通过性能的影响[J].电力机车与城轨车辆,2003,26(4):38-40.
    [71]卢海强,孙守光.橡胶轮低地板拖车转向架车辆动态曲线通过分析[J].北方交通大学报,2004,28(4):98-101.
    [72]田光荣,张卫华,池茂儒.重载列车曲线通过性能研究[J].铁道学报,2009,31(4):98-103.
    [73]王新锐,陈雷.货车低速通过小半径曲线动力学性能试验分析[J].铁道机车车辆,2009,29(4):7-11.
    [74]温克学,马玉坤,李善坡,等.100m长钢轨普通平车运输道岔及曲线通过问题仿真与试验研究[J].中国铁道科学,2011,32(2):90-96.
    [75]高恩远,肖守讷,阳光武.12轴大型货车曲线通过能力分析[J].铁道车辆,2007,45(6):8-10.
    [76]枚文深,孙骥,巫世晶.D19E型内燃机车曲线通过动力学性能研究[J].机电工程,2012,29(7):846-849.
    [77]张继和.SS3型电力机车动力曲线通过[J].机车电传动,1995,(1):24-32.
    [78]王开云,孟宏,翟婉明.120km/h交流传动货运电力机车动力学性能仿真分析及评估[J].铁道机车车辆,2004,24(1):1-5.
    [79]王开云,封全保,孟宏,等.时速140km轨道车动力学性能仿真分析[J].铁道车辆,2004,42(5):1-4.
    [80]王开云,孟宏.SS7E机车与SS7E模块化机车动力学性能比较与分析[J].机车电传动,2004,(5):4-5.
    [81]罗文俊,雷晓燕.轮对通过曲线轨道的横向稳定研究[J].交通运输工程与信息学报,2005,3(1):14-18.
    [82]王开云,刘鹏飞.铁路货车通过曲线轨道时的非线性运动稳定性研究[J].中国铁道科学,2011,32(2):85-89.
    [83]Garg V K, Dukkipati R V. Dynaamics of railway vehicle systems[M]. Academic Press, Canada,1984.
    [84]Ahmed K W, Sankar S. Steady-state curving performance of railway freight truck with damper-coupled wheelsets[J]. Vehicle System Dynamics,1988,17(6):295-315.
    [85]Zboinski K. Dynamical investigation of railway vehicles on a curved track[J]. European Journal of Mechanics, A Solids,1998,17(6):1001-1020.
    [86]Cataldi-Spinola E, Glocker C, Stefanelli R, et al. Influence of the wheel diameter on the curve squealing of railway vehicles[C]. Proceeding of the 5th European Conference on Noise Control, Naples, Italy, May.19-21,2003.
    [87]Stefanelli R, Dual J, Cataldi-Spinola E, et al. Investigation of the influence of angle of attack, lateral displacement and moisture on rails on the occurrence of curve squealing[C]. Proceeding of the 5th European Conference on Noise Control, Naples, Italy, May.19-21,2003.
    [88]Goodall R, Kortum W. Active controls in ground transportation-a review of the state-of-the-art and future potential[J]. Vehicle System Dynamics,1983,12:225-257.
    [89]Goodall R. Active railway suspensions:implementation status and technological trends[J]. Vehicle System Dynamics,1997,28:87-117.
    [90]Conde Mellado A, Casanueva C, Vinolas J, et al. A lateral active suspension for conventional railway bogies[J]. Vehicle System Dynamics,2009,47(1):1-14.
    [91]Michalek T, Zelenka J. Reduction of lateral forces between the railway vehicle and the track in small-radius curves by means of active elements[J]. Applied and Computational Mechanics,2011,5: 187-196.
    [92]Lee S Y, Cheng Y C. Influences of the vertical and the roll motions of frames on the hunting stability of trucks moving on curved tracks[J]. Journal of Sound and Vibration,2006,294:441-453.
    [93]Grencik J, Suda Y. Influence of traction/brake torque on curving dynamics of trucks with unsymetric suspension of rail vehicles[J]. Seisan Kenkyn,1994,46(6):360-363.
    [94]Polach O. Influence of locomotive tractive effort on the forces between wheel and rail[J]. Vehicle System Dynamics,2001, (Suppl.):7-22.
    [95]Karim H, Khan R A. Railway carriage model to study the influence of vertical secondary stiffness on ride comfort of railway carbody running on curved tracks[J]. Modern Applied Science,2011,5(2): 11-24.
    [96]董仲美,王自力,蒋海波.车轮踏面外形对机车曲线通过性能的影响[J].电力机车与城轨车辆,2006,29(2):13-15.
    [97]谷学思.不同踏面及轮径差对高速动车组曲线通过性能的影响[D].硕士学位论文,北京:北京交通大学,2011.
    [98]张剑,孙丽萍.车轮型面动态高速曲线通过性比较[J].交通运输工程学报,2007,7(6):6-11.
    [99]王娜娜,罗世辉,马卫华.轮径差对车辆动态曲线通过的影响[J].铁道机车车辆,2010,30(2):47-49.
    [100]黄志辉.轮对横动量对机车曲线通过性能的影响[J].内燃机车,1995,(7):22-23.
    [101]戴焕云.高速铁道车辆稳态曲线通过研究[J].西南交通大学学报,1991,(1):67-73.
    [102]任尊松,孙守光.系统参数对独立轮对轻轨车辆动力学性能的影响[J].电力机车与城轨车辆,2003,26(4):22-24.
    [103]倪平涛,王开文,陈健,等.抗蛇行减振器对磁流变耦合轮对车辆的临界速度与高速曲线通过性能的影响[J].铁道学报,2007,29(3):34-39.
    [104]罗仁,曾京,邬平波.空气弹簧对车辆曲线通过性能的影响[J].交通运输工程学报,2007,7(5):15-18.
    [105]毕鑫,罗世辉,马卫华.抗侧滚扭杆安装方式对城轨车辆曲线通过性能影响[J].机车电传动,2011,(6):58-60.
    [106]杨飞,池茂儒,郭文浩,等.空气弹簧支撑控制模式对车辆曲线通过性能的影响[J].设计与研究,2011,(8):1-4.
    [107]王卫东,李金森.转向架装配误差对车辆动力学性能影响的分析[J].铁道机车车辆,1996,(1):11-16.
    [108]阳光武,肖守讷,张卫华.曲线通过时车钩偏角对机车车体横向载荷的影响[J].中国铁道科学,2008,29(6):55-59.
    [109]翟婉明,王开云,蔡成标,等.改善SS7E电力机车动力学性能参数优化研究报告[R].成都:西南交通大学列车与线路研究所,2003.
    [110]翟婉明,王开云,蔡成标,等.200km/h交流传动电力机车动力学性能综合研究报告[R].成都:西南交通大学列车与线路研究所,2002.
    [111]翟婉明,王开云,封全保,等HXD2B重载机车动力学性能研究报告[R].成都:西南交通大学列 车与线路研究所,2009.
    [112]Lindahl M. Track geometry for high speed railway[R]. TRITA FKT Report,2001:54.
    [113]Gialleonardo E D, Braghin F, Bruni S. The influence of track modelling options on the simulation of rail vehicle dynamics[J]. Journal of Sound and Vibration,2012, (331):4246-4258.
    [114]Sun Y Q, Simson S. Wagon-track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track[J]. Wear,2008, (265):1193-1201.
    [115]Ishida M, Ban T, Iida K, et al. Effect of moderating friction of wheel-rail interface on vehicle track dynamic behavior[J]. Wear,2008, (265):1497-1503.
    [116]Oyarzabal O, Gomez J, Santamaria J, et al. Dynamic optimization of track components to minimize rail corrugation[J]. Journal of Sound and Vibration,2009, (319):904-917.
    [117]Cherkashin Y M, Pogorelov D Y, Simonov V A. Influence of rolling stock and track parameters on train traffic safety[J]. Vestnik VNIIZhT,2010, (2):11-20.
    [118]Pevzner V O, Petropavlovskaya I B. Unification of track gauge on Russian railways:history and results[J]. Vestnik VNIIZhT,2010, (2):45-56.
    [119]龙许友,魏庆朝,王英杰,等.直线电机轮轨交通线路最小平曲线半径研究[J].北京交通大学学报,2009,33(4):110-114.
    [120]郑凯锋,杜子学.车速和轨道半径对跨座式单轨车辆曲线通过性的影响[J].电力机车与城轨车辆,2011,34(3):23-30.
    [121]秦方方.高速铁路圆曲线参数动力性能仿真研究[D].硕士学位论文,成都:西南交通大学,2011.
    [122]宋晓文,马卫华,罗世辉.缓和曲线长度对车辆曲线通过性能的影响[J].电力机车与城轨车辆,2007,30(4):5-8.
    [123]司道林,王继军,孟宏.钢轨轨底坡对重载铁路轮轨关系影响的研究[J].铁道建筑,2010,(5):108-110.
    [124]张旭久.高速铁路轨道不平顺限值及曲线通过关键动力参数取值研究[D].硕士学位论文,长沙:中南大学,2009.
    [125]练松良.改变超高对曲线钢轨侧磨的影响[J].铁道建筑,1990,(7):5-9.
    [126]练松良.轨道结构对曲线钢轨侧面磨耗的影响[J].铁道工程学报,1988,(1):113-116.
    [127]马培德.轨道结构几何参数对曲线轨道侧面磨耗影响的分析[J].石家庄铁道学院学报,1991,4(4):9-16.
    [128]沈钢,张定贤.轨底坡对曲线钢轨侧磨影响的研究[J].铁道学报,1994,16(3):95-99.
    [129]吕澎民,刘盛勋.曲线轨道参数对轮轨磨耗的影响[J].兰州铁道学院学报,1993,12(4):45-54.
    [130]陈忠华.基于车辆动力学的重载铁路曲线磨耗钢轨型面改进设计与分析[D].硕士学位论文,成都:西南交通大学,2009.
    [131]曾树谷,刘增杰.既有线提速过程中的曲线轨道问题[J].中国铁道科学,1997,18(3):1-14.
    [132]陈鹏,高亮.线路参数对高速车辆曲线通过性能的影响[J].市政、交通及水利工程设计,2007,(6):66-67.
    [133]刘宏友,曾京.轨道整体刚度和阻尼对车辆系统动力学性能的影响[J].铁道车辆,2004,42(4):1-5.
    [134]龙许友.高速铁路线路参数对车线动力响应影响分析及参数优化与匹配研究[D].博士学位论文,北京:北京交通大学,2008.
    [135]何华武,刘增杰,刁晓明,等.既有线提速200km/h平纵断面技术标准研究与验证[J].铁道学报,2007,29(2):64-70.
    [136]龚增进,冯毅杰.客运专线无砟轨道线路平纵断面主要技术参数的研究[J].铁道工程学报,2007,(增刊):170-173.
    [137]刘增杰,吴敬朴,孙加林,等.客运专线纵断面最小坡段长度设计优化动力学仿真计算研究[C].铁路客运专线建设技术交流会论文集,2005.
    [138]周志华.基于ADAMS/Rail的高速客运专线平纵断面设计参数动力分析[D].硕士学位论文,长沙:中南大学,2010.
    [139]周志华,向俊,刘新元,等.广珠城际铁路线路平纵断面设计参数动力学评估[J].铁道科学与工程学报,2009,6(5):21-25.
    [140]白宝英.高速铁路线路纵断面设计标准及其应用研究[J].铁道标准设计,2010,(7):4-7.
    [141]吴勇锋.萧甬线线路平纵断面优化设计研究[J].上海铁道科技.2012,(1):105-107.
    [142]张文健.福厦铁路时速200公里客货混运线路平纵面设计标准研究[D].硕士学位论文,成都:西南交通大学,2004.
    [143]王开云,周维俊,翟婉明,等.基于动力学理论对高中速客运专线和高低速客货共线铁路平纵面合理匹配的研究[J].铁道标准设计,2005(7):1-3.
    [144]王开云,周维俊.高中速客专和高低速客货共线铁路不同坡段组合的动力学性能之比较研究[J].铁道工程学报,2005,(5):1-4.
    [145]翟婉明,王开云,蔡成标,等.福厦铁路高中速客车混跑与高低速客货混跑时的动力学性能研究报告[R].成都:西南交通大学列车与线路研究所,2003.
    [146]翟婉明,王开云,罗震.广深港高速客运专线珠江段设计安全性与平稳性评估报告[R].成都:西南交通大学列车与线路研究所,2005.
    [147]翟婉明,蔡成标,王开云.高速铁路线路平纵断面设计的动力学评估方法[J].高速铁路技术,2010,1(1):1-5.
    [148]陈果.车辆—轨道耦合系统随机振动分析[D].博士学位论文,成都:西南交通大学,2000.
    [149]王开云.车辆与轨道的横向相互作用分析[D].硕士学位论文,成都:西南交通大学,2000.
    [150]王开云,翟婉明.直线与曲线轨道上车辆悬挂相对位移的计算[J].西南交通大学学报,2003, 38(2):122-126.
    [151]Slivsgaard E C. On the interaction between wheels and rails in railway dynamics[D]. Dissertation, Denmark:Technical University of Denmark,1995:13-15.
    [152]王开文.车轮接触点迹线及轮轨接触几何参数的计算[J].西南交通大学学报,1984,(1):89-99.
    [153]Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[C]. Proceeding of 8th IAVSD Symposium, MIT, Cambridge,1983,591-605.
    [154]王开云,翟婉明.实测型面的轮轨接触几何关系研究[J].西南交通大学学报,2005(增刊):51-56.
    [155]邓建中,葛仁杰,程正兴.计算方法[M].西安:西安交通大学出版社,1985.
    [156]王开云,翟婉明,蔡成标.轮轨型面及系统参数对轮轨空间接触几何关系的影响[J].铁道车辆,2002,40(2):14-18.
    [157]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994.
    [158]王开云,翟婉明.车辆—轨道耦合动力学仿真软件TTISIM及其试验验证[J].中国铁道科学,2004,25(6):48-53.
    [159]铁道部科学研究院,北京铁路局.京秦客运通道提速改造工程第一次实车运行试验研究报告[R].北京,2000.
    [160]铁道部科学研究院,上海铁路局,济南铁路局,铁道部通号公司设计院.胶济线、浙赣线和鹰厦线提速试验研究报告[R].北京,1999.
    [161]翟婉明,王开云,蔡成标,等.山区小半径曲线强化轨道的动力试验[R].成都:西南交通大学列车与线路研究所,2003.
    [162]铁道部科学研究院.DJ交流传动客运电力机车性能试验报告[R].北京,2001.
    [163]GB5599-85.铁道车辆动力学性能评定和试验鉴定规范[S].北京:中国计划出版社,1985.
    [164]TB/T2360-93.铁道机车动力学性能试验鉴定方法及评定标准[S].北京:中国铁道出版社,1993.
    [165]铁道部.CRH3动车组项目合同文件—附件7:动车组供货技术条件[Z].北京,2005.
    [166]翟婉明.货物列车动力学性能评定标准的研究与建议方案(一)—防脱轨安全性评定标准[J].铁道车辆,2002,40(1):13-18.
    [167]翟婉明.货物列车动力学性能评定标准的研究与建议方案(二)—轮轨横向力评定标准[J].铁道车辆,2002,40(2):9-10.
    [168]翟婉明.货物列车动力学性能评定标准的研究与建议方案(三)—轮轨垂向力及车钩力的评定标准[J].铁道车辆,2002,40(3):10-13.
    [169]王开云,翟婉明,蔡成标.轮轨结构参数对运动稳定性影响的研究[J].中国铁道科学,2003,24(1):43-48.
    [170]王开云,翟婉明,蔡成标.钢轨扭转运动对轮轨相互作用的影响.中国铁道科学[J],2008,29(3):68-72.
    [171]王开云,翟婉明,刘建新,等.提速列车与曲线轨道横向相互动力作用研究[J].中国铁道科学, 2005,26(6):38-43.
    [172]王开云,翟婉明,曾京,等.线路不平顺(线路谱)对CRH动车组行车安全性影响分析[R].成都:西南交通大学牵引动力国家重点实验室,2007.
    [173]王斌.山区铁路曲线轨道综合强化技术的理论与实践[J].铁道标准设计,2005,(3):65-67.
    [174]翟婉明,王开云,蔡成标,等.山区铁路小半径曲线强化轨道强度与动力性能的理论分析与研究报告[R].成都:西南交通大学列车与线路研究所,2003.
    [175]Zhai W M, Wang K Y. Lateral interactions of trains and tracks on small-radius curves:simulation and experiment[J]. Vehicle System Dynamics,2006,44(Suppl.):520-530.
    [176]王开云,翟婉明,刘建新,等.山区铁路小半径曲线强化轨道动力性能[J].交通运输工程学报.2005,5(4):15-19.
    [177]王开云,司道林,陈忠华.高速列车轮轨动态相互作用特征[J].交通运输工程学报,2008,8(5):15-18.
    [178]翟婉明,王开云,高建敏.我国某高速铁路轨道受力状态仿真分析[R].成都:西南交通大学列车与线路研究所,2011.
    [179]Wen Z F and Jin X S. Elastic-plastic finite element analysis of repeated, two-dimensional wheel-rail rolling contact under time-dependent load[C]. Proc. Instn Mech. Engrs Part C,2006,220(5):603-613.
    [180]熊嘉阳,金学松.铁路曲线钢轨横向凹坑对初始波磨形成的影响[J].工程力学,2006,23(1):135-141.
    [181]翟婉明,蔡成标,王开云,等.武广、郑西客运专线平纵断面组合优化及轨道过渡段研究报告[R].成都:西南交通大学列车与线路研究所,2003.
    [182]翟婉明,王开云,蔡成标,等.新建胶济客运专线行车安全性及舒适性仿真分析和评估研究报告[R].成都:西南交通大学列车与线路研究所,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700