陆基增强系统定位与完好性监测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为使陆基增强系统作用范围内的航空用户能够满足垂直引导进近及以上等级所需导航性能要求,有必要提高用户端和地面站系统的完好性监测性能,即从精度、完好性、可用性和连续性四个方面改进陆基增强系统的完好性监测性能。由于完好性监测本质上是对影响用户定位潜在误差源的置信度分析,而陆基增强系统是以差分定位技术为基础,因此从定位技术到完好性监测技术,论文都是围绕如何抑制和监测地面站系统和用户端主要误差源展开论述。
     由于航空用户和地面站系统所处导航环境的差异性,即使同种误差对用户端和地面站系统的干扰原理也不尽相同,因此有必要从用户端和地面站系统分别进行论述。根据陆基增强系统所需实现的目的,本文在定位技术和完好性监测技术两个方面深入研究和改进,以努力满足高等级的所需导航性能。论文主要研究内容如下:
     1.分析了单点定位模式下多误差源对载波相位平滑伪距平滑误差的影响,将Kalman滤波引入到载波相位平滑伪距中,利用极大似然准则推导了一种新的应用于载波相位平滑伪距的自适应Kalman滤波算法,这种滤波算法利用新息方差分别对系统过程噪声方差和量测噪声方差实时自适应估计和调整,研究在保证系统滤波稳定性的前提下,得到适用于动态单点定位载波相位平滑伪距所需的最优平滑时间。
     2.研究电离层延迟误差和多径误差的空时效应对差分模式下载波相位平滑伪距的影响,提出一种新的自适应载波相位平滑伪距算法,以抑制差分修正量中的非共性误差。该算法通过分析差分修正量的误差方差,利用极值理论得到地面基站和动态用户的自适应平滑时间,以抑制非共性误差中的电离层延迟误差和多径误差,实现提高差分修正量精度的目的。飞行测试实验证明了所提出算法对非共性误差的优化作用。
     3.采用基于多普勒观测量的“滑动窗”自适应钟差预测模型和解分离算法相结合辅助传统接收机自主完好性监测算法,通过调节钟差预测模型的平滑时间可有效提高定位精度及可用性水平。为进一步满足航空用户对垂直方向导航性能的需求,采用基于地图匹配辅助的GPS/DR/DEM紧组合导航系统。为检测来自于地图误匹配产生的小幅值故障,采用可变误警率的算法提高故障检测的性能。车载实验证明,基于自主插值完好性监测算法的系统可用性水平可以满足垂直引导I类所需导航性能需求。
     4.由于传统基于识别门限的卫星故障识别算法存在漏检和误警致使识别率较低,为此提出一种可用于识别双星故障的接收机自主完好性监测算法。该算法通过构造新的奇偶矢量与故障特征平面,利用奇偶矢量与故障特征平面之间的几何关系来识别卫星故障,使得算法不再受限于识别门限的影响,从而有效地避免了由于识别门限引起的识别效率较低的问题。
     5.由于修正误差的非理想性,即当修正误差包含非零均值高斯误差和非高斯误差时,传统sigma膨胀算法难以满足陆基增强系统高可用性水平的要求。在满足误差覆盖的约束条件下,将sigma膨胀、均值膨胀和非高斯膨胀结合起来,通过选取最优膨胀系数集,最大限度地提高系统的可用性水平。仿真实验证明即使在关键卫星发生故障的情况下,基于膨胀系数集的Sigma膨胀算法能够将系统可用性至少提高至95%。
     6.针对传统测距域基于极大使然准则的B值在多参考一致性检测应用时完好性监测性能较低的缺点,设计基于Kalman滤波的位置域特征检测值取代传统B值以提高地面多参考站故障检测与识别性能。构建基于多考接收机故障假设的系统完好性风险模型,在Kalman滤波中引入自适应衰减调节因子以维持滤波稳定性和完好性风险之间的平衡。户外实验证明在输入各类型故障时,在可用性损失可接受的范围内,基于Kalman滤波的多参考一致性检测算法可有效提升故障检测与识别性能。
It is of highly necessity to enhance the integrity monitoring performance of both the civilaviation user and local ground facility (LGF), in order to enable the user satisfy the requirednavigation performance (RNP) in the phase of vertical guidance (APV) or even higherperformance required based phases. In other words, the integrity performance of ground basedaugmentation system (GBAS) should be enhanced in terms of accuracy, integrity, availabilityand continuity. Since essence of integrity monitoring is to provide a measure of confidencethat come along with all possible potential fault sources, and GBAS is based on thedifferential positioning technology, the thesis is mainly about how to mitigate and monitor themainly existing error sources originate from GBAS positioning process.
     Since the navigation environment difference between the civil aviation user and the LGF,furthermore, even the same kind of error will impose different effect to the user and the LGF,it is therefore necessary to design the integrity methods in terms of the user and the LGF,respectively. As GBAS is try to enable the user within reach to satisfy the RNP of differentcivil aviation phases, the thesis managed to give an insight into the positioning technologyand integrity monitoring algorithms. The outline of the thesis is as follows:
     Firstly, with the purpose of suppressing the smoothed error that comes from carriersmoothing process in the single-point positioning mode, an Kalman filter is combined withthe carrier-smoothed-code algorithm, i.e., the adaptive Kalman filter based on the maximumlikelihood criterion was proposed to compensate the deficiency of traditionalcarrier-smoothed-code algorithm. The innovation sequences were utilized to estimate andadjust the variance of system noise and measurement noise in real-time, respectively, and thenan optimal smoothing-time constant in the dynamic positioning were derived from theadaptive algorithm.
     Second, through analyzing the time-space effect of ionosphere delay and multipath onthe differential positioning based carrier-smoothed-code, a novel adaptivecarrier-smoothed-code algorithm is proposed to minimize the non-common errors containedin the differential pseudorange corrections broadcasted from the LGF. Through the errorvariance analysis of the differential pseudorange corrections, the optimal smoothing timeconstants for the user and the LGF are obtained from the extreme value theory (EVT) tomitigate the non-common errors, which mainly induced by ionosphere delay and multipath, with the purpose of improving the accuracy of the differential pseudorange corrections. Theflight test verified the effect of the proposed algorithm on minimizing the non-common errors.
     Third, the Doppler measurement based adaptive clock-bias prediction model withsmoothing-window and solution separation were combined to aid the traditional receiverautonomous integrity monitoring (RAIM). With the adjustment of smoothing time window inthe adaptive clock-bias estimation model, both the positioning accuracy and the availabilitylevel of the RAIM in the horizontal direction can be enhanced as more redundancy can beobtained from the Doppler measurements. In order to satisfy the stricter RNP in the verticaldirection, the map-matching aided tightly coupled GPS/DR/DEM integrated navigationsystem is applied. A variable false alarm rate (as opposed to a constant false alarm rate in thetraditional RAIM) is considered to improve the fault detection performance in selecting thecorrect link, especially near junctions. The vehicle on-board experiment shows that the systemavailability level derived from autonomous integrity monitoring extrapolation (AIME) couldsatisfy the APV I based RNP.
     Forth, since the traditional identification threshold based satellite fault detection andidentification algorithm led to missed detection and false alarm, which reduced the correctidentification rate, a new RAIM algorithm was proposed for identifying double-satellitessimultaneously. The geometry relationship between the parity vector and fault feature planewas used to identify the faulty satellites. The proposed algorithm was therefore immune to theproblem caused by identification threshold and improved the correct identification rate.
     Fifth, as the non-perfect distribution of pseudorange correction error, i.e., the non-zeromean Gaussian error and non-Gaussian error in the correction error, the traditional sigmainflation was difficult to satisfy the stricter availability level requirement (e.g., CAT II/III).With satisfying the error-tail overbound requirement, the mean inflation and non-Gaussianinflation were combined to improve the traditional sigma inflation. By selecting the optimalinflation vector, which include Gaussian the proposed method was not only able to overboundthe predefined non-ideal error but also enhance effectively the system availability. Thesimulation result reveals that the inflation vector based sigma inflation could improve theavailability to at least95%even under the case of critical satellite failure.
     Sixth, since the traditional maximum-likelihood estimation criterion based B-value,which generated from multiple reference consistency check (MRCC) in range-domain haslimitations in satisfying the integrity requirement of CAT II/III for civil aviation, a Kalmanfilter-based position-domain test statistics has been developed for improving the faultdetection and isolation of multiple reference receivers. Based on the integrity risk model of multiple receivers’ failure hypothesis, the adaptive fading factor was applied in the Kalmanfilter process to keep a balance between filtering stability and integrity risk. The outdoorexperiment demonstrates that, even if different kinds of fault types are considered under thesingle-fault case, the adaptive Kalman filter could improve the fault detection and isolationperformance with an acceptable availability loss.
引文
[1] Murphy T, Imrich T. Implementation and Operational Use of Ground-basedAugmentation Systems-A Component of Future Air Traffic Management System. Proc. ofIEEE.2008,96(12):1936–1957P
    [2] Lee Y C. RAIM Availability for GPS Augmented with Barometric Altimeter Aidingand Clock Coasting. Journal of The Institute of Navigation,1993,40(2):179-198P
    [3] Nikiforov I. Integrity monitoring for multi-sensor integrated navigation systems.Proceedings of the15th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GPS2002), Portland, OR, September2002,579-590P
    [4] Peterson B, Lo S, Enge P. Integrating Loran and GNSS for Safety of Life Applications.Proceedings of the21st International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GNSS2008), Savannah, GA,2008,1619-1630P
    [5] Enge P. Local area augmentation of GPS for the precision approach of aircraft.Proceedings of IEEE,1999,87(1):111-132P
    [6] Ochieng W, Sauer K. GPS Integrity and Potential Impaction Aviation Safety. TheJournal of Navigation,2003,56(1):51-65P
    [7] Braff R, Shively C A. Derivation of ranging source integrity requirements for the localarea augmentation system (LAAS). Journal of the Institute of Navigation,2000-2001,47(4):279-288P
    [8] http://en.wikipedia.org/wiki/Performance-based_navigation
    [9] Enge P, Walter T, Pullen S, Kee C, Chao Y, Tsai Y. Wide Area Augmentation of theGlobal Positioning System. Proceedings of the IEEE,1996,84(8):1063–1088P
    [10] Rife J, Khanafseh S, Pullen S, De Lorenzo D, Ung-Suok K, Koenig M, Chiou T,Kempny B, Pervan B. Navigation, Interference Suppression, and Fault Monitoring in theSea-Based Joint Precision Approach and Landing System. Proceedings of the IEEE.2008,96(12):1958-1975P
    [11]甘兴利. GPS局域增强系统的完善性监测技术研究.哈尔滨:哈尔滨工程大学.2008
    [12] Walter T, Enge P. Modernizing WAAS. Proceedings of the17th International TechnicalMeeting of the Satellite Division of The Institute of Navigation (ION GNSS2004), LongBeach, CA,2004,1683-1690P
    [13] ICAO document9613. Performance-based Navigation (PBN) Manual,2008.
    [14] http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas/
    [15] Misra P, Bednarz S. Navigation for Precision Approaches. GPS World. April2004
    [16] Hatch R. The synergism of GPS code and carrier measurements. Proc. of the3rdInternational Geodetic Symposium on Satellite Doppler Positioning. Las Cruces: NewMexico State University,1982,1213-1232P
    [17] Chen H S, Wang L S, Chang F R. Long-duration carrier-smoothed-code algorithm forGPS positioning. Position Location and Navigation Symposium, San Diego, CA,2000,112-117P
    [18] Guo J, Qu J, Yuan Y, Wang H. Optimal carrier-smoothed-code algorithm fordual-frequency GPS data. Progress in Natural Science,2008,18(5):591-594P
    [19] Park B, Sohna K, Kee C. Optimal Hatch Filter with an Adaptive Smoothing WindowWidth. Journal of The Institute Navigation,2008,61(3):435-454P
    [20]杨春燕,吴德伟,卢艳娥等.基于补充Kalman滤波的载波相位平滑伪距算法.空军工程大学学报(自然科学版).2008,9(5):52-56P
    [21] Kim E, Walter T, Powell J D. Adaptive Carrier Smoothing Using Code and CarrierDivergence. ION NTM2007, San Diego, CA,2007,141-152P
    [22] Hwang P, McGraw G, Bader J. Enhanced differential GPS carrier-smoothed codeprocessing using dual-frequency measurements. Journal of The Institute of Navigation.1999,46(2):127-139P
    [23] Park Y, Pullen S, Enge P. Mitigation of anomalous ionosphere threat to enhance utilityof LAAS Differentially Corrected Positioning Service (DCPS).2008IEEE/ION PositionLocation and Navigation Symposium. California, USA: IEEE Press,2008,285-293P
    [24] Swider R, Kaser K, Braff R. Recent developments in the LAAS program. IEEE PositionLocation and Navigation Symposium, California, USA: IEEE Press,1998,441-470P
    [25] Christie J, Ko P, Hansen A, Dai D, Pullen S, Pervan B, Parkinson B. The Effects ofLocal Ionospheric Decorrelation on LAAS: Theory and Experimental Results. ION NationalTechnical Meeting, California, USA: ION Press,1999,769-777P
    [26] Murphy T, Harris M, Booth J. Results from the program for the investigation ofairborne multipath errors. Proc. of the2005National Technical Meeting of the Institute ofNavigation. California, USA: ION Press,2005,153-169P
    [27] Rife J, Sen S. Design of a Single-frequency filter that minimizes ionosphere divergenceerror. Proc. of the20th International Technical Meeting of the Satellite Division of theInstitute of Navigation ION GNSS2007. Texas, USA: ION Press,2007,368-378P
    [28] Euiho K, Walter T, Powell J. Optimizing WAAS accuracy/stability for a singlefrequency receiver. ION/GNSS Conference. Texas, USA: ION Press,2006,962–970P
    [29] Kim D, Langley R. The multipath divergence problem in GPS carrier-smoothed codepseudorange. Proc. of47th Annual Conference of the Canadian Aeronautics and Space.Ottawa:[s.n.],2000,161-163P
    [30] Yun D, Kee C. Single-frequency differential GPS accuracy improvement via local areaionospheric time delay model development. Telecommunications Review,1999,9(1):122-130P
    [31] RTCA document DO-245C. Minimum operational performance standards (MOPS) forthe LAAS. USA: RTCA Organization.1998
    [32] Komjathy A, Sparks L, Mannucci A. The ionosphere impact of the October2003stormevent on Wide Area Augmentation System. GPS Solutions,2005,9(1):41-50P
    [33] Huang Z, Huang Z, Zhu Y. A new optimal Hatch filter to minimize the effects ofionosphere gradients for GBAS. Chinese Journal of Aeronnautious,2008,21(6):526-532P
    [34] Farrell J, Givargis T. Differential GPS reference station algorithm-design and analysis.IEEE Transactions on Control Systems Technology,2000,8(3):519-531P
    [35] Todd W, Seebany D B, Blanch J, Per E. The effects of large ionospheric gradients onsingle frequency airborne smoothing filter for WAAS and LAAS. Proc. of ION NationalTechnical Meeting, California, USA: ION Press,2004:103-109P
    [36] http://en.wikipedia.org/wiki/Wide_Area_Augmentation_System
    [37] http://en.wikipedia.org/wiki/Local_Area_Augmentation_System
    [38] Brown R G. RAIM and GIC working together: the ultimate solution to the GPSintegrity problem. Navigation,1989,36(2):173-178P
    [39]陈金平. GPS完善性增强研究.郑州:解放军信息工程大学测绘学院,2001
    [40] Martini I, Hein G W. An integrity monitoring technique for multiple failures detection.IEEE/ION Position, Location, and Navigation Symposium. San Diego, CA, United Statues:Institute of Navigation,2006,450-467P
    [41]张强,张晓林,常啸鸣.用于卫星导航多星故障识别的新方法.航空学报,2008,29(5):1239-1244P
    [42] Brown R G. Solution of the two-failure GPS RAIM problem under worst-case biasconditions: parity space approach. Navigation,1997-1998,44(4):425-431P
    [43]张强,张晓林,常啸鸣.用于识别两颗故障卫星的RAIM算法.北京航空航天大学学报,2008,34(7):773-777P
    [44] http://www.beidou.gov.cn/2011/12/29/2011122979f353cb9e414335ab54a3e3d18c3cad.html
    [45]孙国良,孙明菡,陈金平.时-集综合的接收机自主完好性监测方法研究.航空学报,2006,27(6):1171-1175P
    [46] Ober P. On the use of multiconstellation-RAIM for aircraft approaches. ION GNSS2006, Fort Worth, TX,2006,2587-2596P
    [47] Ene A. Further development of Galileo-GPS RAIM for vertical guidance. ION GNSS2006, Fort Worth, TX,2006,2597-2607P
    [48] Lee Y C, O’Laughlin D G. Performance Analysis of A Tightly Coupled GPS/InertialSystem for Two Integrity Monitoring Methods. Navigation,2000,47(3):175-190
    [49] Feng S, Ochieng W. A difference test method for early detection of slowly growingerrors in GNSS positioning. The Journal of Navigation,2007,60(3):427-442P
    [50] Hwang P, Brown R G. RAIM-FDE revisited: A new breakthrough in availabilityperformance with NIORAIM (Novel Integrity-Optimized RAIM). Journal of The Institute ofNavigation,2006,53(1):41-51P
    [51] Joseph A J, Corporation A, Lachapelle G. Analysis of a real-time genetic NIORAIMimplementation on A WAAS beta3receiver. ION ITM2009, Anaheim, CA,2009,221-235P
    [52] Bednarz S, Misra P. Receiver clock-based Integrity monitoring for GPS Precisionapproaches. IEEE Trans. on Aerospace and Electronic Systems.2006,42(2):636-642P
    [53] Chen X, Teng Y, Xu H. Research on receiver automous integrity monitoring augmentedwith clock-bias model. Journal of Astronautics.2009,30(1):271-275P
    [54] Wang M, Liu W, Wang F. RAIM availability augmentation in position and velocitydomain aided by precise forecasted time and frequency. Journal of Astronautics.2009,30(3):961-966P
    [55] Pervan B, Pullen S, Christie J. A multiple hypothesis approach to satellite navigationintegrity. Journal of The Institute of Navigation,1998,45(1):61-71P
    [56] Ene A. Utilization of modernized global navigation satellite systems for aircraft basednavigation integrity. Ph.D. Dissertation, Stanford University, March2009
    [57] Liu F. Analysis of integrity monitoring for the local area augmentation system usingglobal navigation satellite system. Ph.D Dissertation, Ohio University,1998
    [58] Xie G. Optimal On-Airport Monitoring of the Integrity of GPS-Based Landing Systems,Ph.D. Dissertation, Stanford University,2004
    [59] Khanafseh S, Langel S, Pervan B. Overbounding Position Errors in the Presence ofCarrier Phase Multipath Error Model Uncertainty. Proceedings of IEEE/ION PLANS2010,Palm Springs, CA,2010,575–584P
    [60] Rife J, Pullen S. The impact of measurement biases on availability for CAT III LAAS.Journal of The Institute of Navigation,2005-2006,52(4):215-228P
    [61] Pervan B, Sayim I. Issues and results concerning the LAAS σpr_gndoverbound. IEEEPosition, Location, and Navigation Symposium (PLANS2000), San Diego, CA,2000,16-21P
    [62] Walter T, Blanch J, Rife J. Treatment of biased error distributions in SBAS. Journal ofGlobal Positioning Systems.2004,3(1-2):265-272P
    [63] Sayim I, Pervan B. Overbounding non-zero mean Gaussian ranging error for navigationintegrity of LAAS. Proceedings of2nd International Conference on Recent Advances inSpace Technologies,2005,404-410P
    [64] Decleene B. Defining Pseudorange Integrity—Overbounding. Proceedings of the13thInternational Technical Meeting of the Satellite Division of The Institute of Navigation,2000:1916-1924P
    [65] Khanafseh S, Pervan B. Detection and mitigation of reference receiver faults indifferential carrier phase navigation systems. IEEE Transaction on Aerospace and ElectronicSystems (Accepted for publication)
    [66] Tang H, Pullen S, et al. Ephemeris type A fault analysis and mitigation for LAAS.IEEE/ION Position Location and Navigation Symposium (PLANS), CA,2010,654–666P
    [67] http://en.wikipedia.org/wiki/Satellite_navigation
    [68] Parkinson B, Spilker J, Axelrad P, and Enge P. Global Positioning System: Theory andApplications Volume II. Washington, DC: American Institute of Aeronautics andAstronautics, Inc.,1996
    [69] Misra P and Enge P. Global Positioning System: Signals, Measurements, andPerformance. Ganga-Jamuna Press, Lincoln, Mass.,2001
    [70] Kaplan E D, Hegarty C J. Understanding GPS: principles and applications. ArtechHouse Inc.,2006
    [71]张守信. GPS技术与应用.国防工业出版社.2004.
    [72] Zhao L, Li L, Zhao X. An Adaptive Hatch Filter to Minimize the Effects of Ionosphereand Multipath for GPS Single Point Positioning.2009Proceedings of the IEEE InternationalConference on Mechatronics&Automation, Changchun, China.2009,4167-4172P
    [73] Konno H. Design of an Aircraft Landing System using Dual-Frequency GNSS. Ph.D.Dissertation, Stanford University,2007
    [74] Zhao L, Li L, Sun M, Wang X. Novel adaptive Hatch filter to mitigate the effects ofionosphere and multipath on LAAS. Journal of System Engineering and ElectronicTechnology.2010,21(6):1046–1053P
    [75]谢钢. GPS原理与接收机设计.电子工业出版社.2011
    [76] Mohammed A, Schwarz K. Adaptive Kalman filtering for INS/GPS. Journal ofGeodesy,1999,73(4):193-203P
    [77] Brown R G. Introduction to random signals analysis and Kalman filtering. New York,NY: John Wiley and Sons,1983
    [78] Gelb A. Applied optimal filtering. MIT Press,1974
    [79] Zarchan P. Fundamentals of Kalman filtering-A practical approach (Second Edition).AIAA,2005
    [80] Simon D. Optimal state estimation: Kalman, H∞and nonlinear approaches. NY: JohnWiley and Sons,2006.
    [81] Mehra R. Approaches to adaptive filtering. IEEE Trans. on Automatic Control.1972,17(5):693-698P
    [82] Poore A B, Slocumb B J, Suchomel B J, et al. Batch maximum likelihood (ML) andmaximum a posteriori (MAP) estimation with process noise for tracking applications. Signaland Data processing of Small Targets2003. Belligham, WA,2003:188-199P
    [83]赵琳,李亮,黄卫权.基于自适应Kalman滤波的载波相位平滑伪距算法.哈尔滨工程大学学报.2010,31(12):1636-1641P
    [84]岳晓奎,袁建平.一种极大似然准则的自适应Kalman滤波算法.西北工业大学学报.2005,23(4):469-474P
    [85]赵琳,丁继成,马雪飞.卫星导航原理与应用.西安:西北工业大学出版社.2009
    [86] Teunissen P. GPS and Integer Estimation. Nieuw Archief voor Wiskunde.2004,5(1):48-53P
    [87] Datta-Barua S, Walter T, Pullen S, Enge P. Modeling the20November2003Ionosphere Storm with GRACE. Proceedings of the20th International Technical Meeting ofthe Satellite Division of The Institute of Navigation (ION GNSS2007), Fort Worth, TX,September2007,2840-2848P
    [88] Pullen S, Park Y S, Enge P. Impact and Mitigation of Ionospheric Anomalies onGround-based Augmentation of GNSS. Radio Science, doi:10.1029/2008RS004084
    [89] Konno H, Pullen S, Rife J, Enge P. Evaluation of Two Types of Dual-FrequencyDifferential GPS Techniques Under Anomalous Ionosphere Conditions. Proceedings of the2006National Technical Meeting of The Institute of Navigation, Monterey, CA,2006,735-747P
    [90] http://en.wikipedia.org/wiki/Cubic_function
    [91] Lee J, Pullen S, Datta-Barua S. Assessment of nominal ionosphere spatial deccorelationfor LAAS. Proc. of the IEEE/ION Position Location and Navigation Symposium, San Diego,CA,2006,506-514P
    [92] Walter T, Enge P. Weighted RAIM for precision approach. ION GPS-95, Palm Springs,California.1995:1995-2004P
    [93] http://www.esa.int/esaNA/galileo.html
    [94]王梦丽,刘文祥,王飞雪.基于精密时频预测的定位域和测速域RAIM可用性增强算法.宇航学报.2009,30(3):961-966P
    [95] Nikiforov I, Roturier B. Statistical Analysis of Different RAIM Schemes. Proceedingsof the15th International Technical Meeting of the Satellite Division of The Institute ofNavigation (ION GPS2002), Portland, OR, September2002,1881-1892P
    [96] Joerger M, Pervan B. Sequential Residual-Based RAIM. Proceedings of the23rdInternational Technical Meeting of The Satellite Division of the Institute of Navigation (IONGNSS2010), Portland, OR, September2010,3167-3180P
    [97] Brown R G, McBurney P W. Self-contained GPS integrity check using maximumsolution separation. Navigation,1988,35(1):41-54P
    [98] Bhatti U I. Improved Integrity Algorithms for Integrated GPS/INS Systems in thePresence of Slowly Growing Errors, PhD Thesis, Department of Civil and EnvironmentalEngineering, Imperial College London, UK,2007.
    [99] http://en.wikipedia.org/wiki/Ad_hoc
    [100] Jan S, Chan W, Walter T, Enge P. Matlab Simulation Toolset for SBAS AvailabilityAnalysis. ION GPS2001. Salt Lake City, UT,2001,2366–2375P
    [101] Sturza M A, Brown A K. Comparison of fixed and variable threshold RAIM algorithms.Proceedings of the3rd International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GPS1990), Colorado Spring, CO, September1990,437-443P
    [102] Bhatti U, Ochieng W, Feng S. Integrity of an integrated GPS/INS system in thepresence of slowly growing errors. Part II: analysis. GPS Solutions,2007,11(3):183-192P
    [103] Lo S C, Peterson B, Enge P. Assessing the Security of a Navigation System: A CaseStudy using Enhanced Loran. European Navigation Conference GNSS, Naples, Italy,2009
    [104] http://en.wikipedia.org/wiki/Final_approach_(aviation)
    [105] Feng S, Ochieng W, Mautz R. An Area Computation Based Method for RAIM HolesAssessment. Journal of Global Positioning Systems,5(1-2):11-16P
    [106] Li L, Quddus M, Zhao L. High accuracy tightly-coupled integrity monitoring algorithmfor map-matching. Presented on the91th Annual Meeting of the Transportation ResearchBoard, Washington DC,2012.
    [107] http://en.wikipedia.org/wiki/Digital_elevation_model
    [108]唐大全,毕波,王旭尚,李飞,沈宁.自主着陆/着舰技术综述.中国惯性技术学报.2010,18(5):550-555P
    [109] Quddus M, Ochieng W, Noland R. Integrity of Map-Matching Algorithms.Transportation Research C: Emerging Technologies,2006,14(4):283-302P
    [110] Feng S, Ochieng W, Moore T, Hill C, Hide C. Carrier Phase-Based IntegrityMonitoring for High-Accuracy Positioning. GPS Solutions,2009,13(1):13-22P
    [111] Feng S, Ochieng W, Walsh D, Ioannides R. A measurement domain receiverautonomous integrity monitoring algorithm. GPS Solutions,2006,10(2):85-96P
    [112] Diesel J, Luu S. GPS/IRS AIME: Calculation of Thresholds and Protection RadiusUsing Chi-Square Methods. In Proceedings of the8th International Technical Meeting of theSatellite Division of The Institute of Navigation, Palm Springs, CA,1995, pp.1959-1964.
    [113] Ober P B. Integrity monitoring and prediction of navigation systems. PhD Thesis. TUDelft.2003
    [114]赵琳,李亮,程建华,娄上月.用于识别双星故障的RAIM算法研究.北京航空航天大学学报.2010,36(11):1261-1265P
    [115] Feng S, Ochineg W. User Level Autonomous Integrity Monitoring for SeamlessPositioning in All Conditions and Environments. Proceedings of the European NavigationConference, Manchester,2006.
    [116] van Diggelen, Brown F A. Mathematical aspects of GPS RAIM. IEEE PositionLocation and Navigation Symposium. Las Vegas, United States: IEEE,1994,733-738P
    [117] Boris S P, David G L, Parkinson B W. Autonomous fault detection and removal usingGPS carrier phase. IEEE Trans. on Aerospace and Electronic Systems,1998,34(3):897-906P.
    [118] Radio Technical Commission for Aeronautics (RTCA) DO-208, Minimum OperationalPerformance Standards for Airborne Supplemental Navigation Equipment Using GlobalPositioning System (GPS).
    [119] International Civil Aviation Organization (ICAO) Aeronautical Telecommunications inAnnex10to the Convention on International Civil Aviation International Standards andRecommended Practices (SARPs), Volume I (Radio Navigation Aids), Canada.2007.
    [120] Lee Y C, Shively C A. Feasibility Analysis of GPS III Integrated with an InertialSystem to Provide CAT IIIB Services. Proceedings of the23rd International TechnicalMeeting of The Satellite Division of the Institute of Navigation (ION GNSS2010), Portland,OR,2010,1472-1481P
    [121] Feng S, Ochieng W, Samsona J, et al. Integrity Monitoring for Carrier PhaseAmbiguities. Journal of Navigation.2012,65(1):41-58P
    [122] Khanafseh S, Pervan B. Overbounding non-zero mean Gaussian ranging error fornavigation integrity of LAAS. Proceedings of2nd International Conference on RecentAdvances in Space Technologies.2005:404-410P
    [123] Khanafseh S, Pervan B LAAS ranging error overbound for non-zero mean andnon-Gaussian multipath error distributions. Proceedings of the ION59th Annual Meeting andCIGTF22nd Guidance Test Symposium.2003:490-499P
    [124] Lee J, Pullen S, Enge P. Sigma overbounding using a position domain method for thelocal area augmentation of GPS. IEEE Transactions on Aerospace and Elec-trical Systems,2009,45(4):1262-1273P
    [125] Dautermann T, Mayer C, Antreich F, Konovaltsev A, Belabbas B. Non-Gaussian ErrorModeling for GBAS1Integrity Assessment. Ieee Transactions On Aerospace And ElectronicSystems,2012,48(1):693-706P
    [126] Lee J. LAAS Position Domain Monitor Analysis and Test Results for CAT II/IIIOperations. Proceedings of the17th International Technical Meeting of the Satellite Divisionof The Institute of Navigation (ION GNSS2004), Long Beach, CA,2004,2786-2796P
    [127]杨文辉,周保军. LAAS地面系统中多基准一致性检测算法的分析.电子学报,2006,34(3):469-471P
    [128] Gustafsson F. Adaptive filtering and change detection. John Wiley, New York.2005
    [129] Khanafseh S, Langel S, Pervan B. H1-integrity of carrier phase navigation algorithmsusing multiple reference receivers. Proceedings of the2009International Technical Meetingof The Institute of Navigation, CA,2009,236-247P
    [130] Blanch J, Ene A, Walter T, Enge P. An Optimized Multiple Hypothesis RAIMAlgorithm for Vertical Guidance. Proceedings of the20th International Technical Meeting ofthe Satellite Division of The Institute of Navigation (ION GNSS2007), Fort Worth, TX,2007,2924-2933P
    [131] Rife J, Phelts R E. Formulation of a time-varying maximum allowable error forground-based augmentation systems. IEEE Transactions on Aerospace and Electrical Systems,2008,44(2):548-559P.
    [132] Li L, Quddus M, Ison S, Zhao L. Multiple reference consistency check for LAAS: Anovel position domain based approach. GPS Solutions. DOI:10.1007/s10291-011-0223-y (InPress)
    [133] Kelly R. Comparison of LAAS B-values with linear model optimum B-values.Navigation,2000,47(2):143-156P
    [134] Yuna Y, Yuna H, Kima D, Keea C. A Gaussian Sum Filter Approach for DGNSSIntegrity Monitoring. Journal of Navigation2008,61(4):687-703P
    [135]赵琳,王小旭,李亮,孙明.非线性系统滤波.北京:国防工业出版社.2012
    [136] Braff R. LAAS performance for terminal area navigation. In: Proceedings of the57thAnnual Meeting of The Institute of Navigation, NM,2001,252-262P
    [137] Crassdis J, Junkins J. Optimal estimation of dynamical systems. Capman&Hall/CRC,New York.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700