沥青路面结构抗车辙的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球气候转暖,重载交通增长,我国高速公路沥青路面早期车辙现象也日益严重,并多以流动型车辙为主,已成为当前最主要的路面早期损坏现象,车辙形成的因素很复杂,既有材料因素,又有结构因素,历来多偏重材料因素的研究,如在路面中采用SMA、SBS、Superpave等技术。但最新调查发现以上、中面层为主的车辙现象正在转变为以中、下面层车辙为主,而车辙的出现也只是略有减缓,路面仍不可避免出现较大车辙。
     本论文结合近十来对路面车辙等早期损坏的跟踪检测和试验实践,采用有限元计算分析方法,对路面车辙产生机理进行分析,发现在新的交通、气候条件下路面结构因素对路面车辙的影响显得尤为突出。而我国已建高速公路几乎全部是半刚性基层沥青路面结构的现实,明显与新的形势不相适应。
     突破传统的思维定势,从新的角度、用新的思想认识路面结构因素对路面车辙的影响,采用有效的结构措施提高路面的抗车辙性能是本论文的主要研究目的。实践是检验真理的唯一标准,基于事实的归纳分析对于路面结构的研究将产生与时俱进的深远影响。
     基于路面钻芯试验和剪切理论分析,半刚性基层沥青路面3~11cm范围内为等效压应力、剪应力和剪应变的高值区,流动型车辙是由剪应变控制的。提高沥青路面中面层高温模量可有效降低剪应变,达到抗车辙的目的。
     按层位设计沥青混合料的思想,开展了高模量沥青混凝土的研究,基于粘弹性理论,采用动态模量作为评价指标,得出了高模量沥青混凝土的定义。有效的提高了沥青中面层高温动态模量,而常温、低温性能不降低。为高模量沥青混凝土的应用推广奠定了基础。
     基于半刚性基层结构存在结构缺陷的事实,提出了路面结构设计组合原则和联结层设计理念,即在沥青层与半刚性基层之间增设一层沥青稳定碎石或级配碎石联结层,改善半刚性基层工作条件,使整个路面在荷载作用下协调变形,减少路面车辙与裂缝,体现了长寿命沥青路面设计理念,与以往只作为功能性联结的联结层有所不同。
     根据联结层设计理念和层位对材料性能的要求,开展了联结层材料的性能和施工工艺研究,提出了经过工程验证的配套技术,包括配合比设计方法、级配范围及相应的技术指标要求和施工控制要点。提出的级配碎石层的设计模量建议值经实践检验完全能够实现,为联结层的设计和应用提供了技术支持。
     工程应用和经济分析表明,通过提高中面层高温动态模量,采用联结层组合式路面结构的结构措施,可以实现路面协调变形的目的,有效减少路面车辙的产生。在重交通高速公路铺筑的联结层组合式沥青路面结构,在通车5年后仍表现出较好的抗车辙性能,车辙小于或等于半刚性基层沥青路面,没有出现裂缝等病害,明显优于半刚性基层沥青路面。同时该类型路面结构具有较好的技术经济指标。
In recent years, with the warming of the global climate and the increasing of the heavy traffic, the rut of the highway asphalt pavement in our country is becoming more and more serious, and most of which is flowing one. As a result, it is the main early damage phenomenon nowadays. The forming reasons of rut are complicated, which concludes both material one and the structure one. In past, we prefer to study the material ingredient, such as using the technology of SMA, SBS and Superpave in pavement construction. But the new survey shows that the rut in the upper layer and the middle layer is replaced by the rut in the middle layer and lower layer. Besides, although the appearance of rut is slight alleviating, it could hardly avoid larger rut.
     In the paper, with the early damage tacking detection and the experiments of the rut in the recent ten years, using the finite-element analysis method, we analyze mechanism of rut in pavement structure and find that in the new traffic and the climate condition the ingredient of pavement structure would seriously influence the pavement rut. But the constructed highways in our country are nearly all the semi-rigid base asphalt pavement structure which is unsuitable with the new situation.
     Breaking the traditional regular thinking tendency, we should study the influence of pavement structure ingredients to the rut through the new view and idea. Using the effective structure measures to improve the rutting resistance performance is the main research purpose of this paper. Practice is the only test of truth, the research based on the induction analysis about the pavement structure would have an important influence.
     Based on the drilling experiment and the shear theory analysis, there is a high value region of equivalent compressive stress, shear stress and shear strain between the 3 cm and 11 cm in the semi-rigid asphalt pavement. Besides, the flowing rut is controlled by the shear strain and we could improve the high-temperature modulus of middle layer of asphalt pavement to effectively reduce the shear strain and resist the rut.
     According to the layer design theory of asphalt mix, we study the high modulus asphalt concrete. According to the visco-elastic theory, we use dynamic modulus as the criteria and set the definition of high modulus asphalt concrete, and this method could effectively improve the high temperature dynamic modulus of middle layer without lowering the performance of normal and low temperature, which lay a foundation for the application of high modulus asphalt mix.
     Since there are structure faults in the semi-rigid base, we put forward the design theory of pavement structure combination design principle and binder course design theory. In other words, we put a layer of asphalt stabilized crush stone or the graded crushed stones between the asphalt layer and the semi-rigid base in order to improve the working condition of semi-rigid base layer and coordinate the deformation of the whole pavement. Through the above methods, we could reduce the rut and crack of the pavement, which is suitable with long-life asphalt pavement theory, and which is different from traditional binder course.
     According to the requirement of binder course design theory and the material performance, we research the material performance and construction technology of binder course. And we put forward the matching technology including the mix design method, gradation range,the technical requirement and the construction control point, which is validated by the construction. Besides, the proposed design modulus is realized through the construction practice, and it provides a technical support for the design and application of binder course.
     Both the construction application and the economy analysis show that we could coordinate the deformation of pavement and reduce the rut through improving high-temperature dynamic modulus of middle layer and the measures of binder course combined pavement structure. What’s more, the binder course combined pavement structure in the heavy traffic highway is still performing a good rutting resistance 5 years after opening. The rut depth is smaller or equal to the semi-rigid asphalt pavement, and there is no damage such as cracks etc, which is apparently better than the semi-rigid one. Furthermore, this kind of road structure also has a good economic index.
引文
1.沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策.人民交通出版,2004: 21~26
    2.沈金安.解决高速公路沥青路面水损害早期损坏的技术途径.公路. 2000,(5): 71~76
    3.孙立军.沥青路面结构行为理论.人民交通出版社.2003: 46~48
    4.山西省交通厅.柔性基层沥青路面结构加速加载实验研究报告. 2004: 30~36
    5.交通部公路科学研究所等.高速公路早期病害预防措施的研究总报告. 2004: 44~69
    6.钱霞,张久鹏,黄晓明等.沥青混合料路面车辙病害调查及机理分析.交通标准化.2007,161(1): 23~27
    7.张厚记,刘松.超重载路段中面层抗车辙性能的研究.武汉理工大学学报. 2004,24(6): 21~24
    8. Kenis,W.J. Predicitive design procedures. VESYS users manual.1977:22~24
    9.沈金安.改性沥青与SMA.人民交通出版设.2001: 35~40
    10.杨瑞华,陈富坚,李素艳.高速公路沥青路面水损坏早期破坏成因.桂林工学院学报. 2002,22(3): 256~258
    11.何青龙.沥青路面早期损坏技术分析.公路与汽运. 2003,(4): 30~32
    12.陈传德.高速公路沥青路面水损坏及防治措施.中南公路工程. 2001,27(3): 12~14
    13.李建东.半刚性基层减裂措施的探讨.天津公路. 2001,(1): 25~28
    14.邓有左.半刚性基层沥青路面开裂原因及防治措施.公路. 2001,(6): 54~66
    15.王明昌,徐士启.半刚性基层冲刷唧浆的影响因素与防治.公路. 1998,(8): 9~12
    16.蔡喜棉.半刚性基层沥青路面裂缝的分析.华东公路. 1995,(1): 15~19
    17.周志刚,张起森.结构层组合对路面裂缝扩展的影响.中国公路学报.1997, (10): 9~11
    18.杨成忠,陈万祥.基于半刚性基层的沥青路面反射裂缝分析与防治.公路. 2002, (4): 85~88
    19. Mark Buncber. Perpetual Pavement. Asphalt Institute. 2000,(4):25~38
    20. Paul Croney, David Croney. The Design and Performance of Road. NeYork:Kluwer Academic/Plenum Publishers, 1997: 25~42
    21. Louisiana Standard Specifications for Construction of Roads and Bridges. StaLouisiana Department of Transportation and Development Baton Rouge. 20097~105
    22. Standard Specifications for Construction and Maintenance of Highways anBridges.Texas Department of Transportation. 1995: 45~62
    23. Osama A.Abdulshafir. Laboratory Optimization of Asphalt ConcreIntermediate Course Mixes To Improve Flexible Pavement PerformancTransportation Research Record. 1994: 135~168
    24. C.L.Monismith, J.A.Epps, F.N.Finn. Improved Asphalt Mix Design. AAP1994, vol.54: 347~406
    25. Kamyar Mahboub, N.Little.JR. an Improved Asphalt Concrete Mix DesigProcedure. AAPT.vol.59: 138~175
    26. Jan Voskuilen, Gerrit Wwstera. a New Design Method Based of a VolumetrApproach. 7th Conference on Asphalt Pavements for Southern Africa.199221~253
    27. F.N.Finn, C.L.Monismith, N.J.Markevich. Pavement Performance and AsphaConcrete Mix Design. AAPT. vol.52: 121~144
    28. NCAT.E & Ray.Brown, etc. HMA Pavement Mix Type Selection GuidNAPA & FHWA IS-128,2001:7~8
    29. Semi-rigid Pavements.PIARC Technical Committees.1991:16~19
    30. Highway Agency. Design Manual for Roads and Bridges. Pavement Design anMaintenance. Conference in London. 1998:26~98
    31. Jean~Fran?ois Corté. Design of Pavement Structure. Transportation ResearcBoard– 75th annual meeting, Paris, 1996:118~152
    32.周绪利译.法国路面结构设计规范.人民交通出版社. 1998: 52~76
    33. Jean-Fran?ois Corté. Design of Pavement Structure: the French Technical GuidTransportation Research Board -75th annual meeting.1996,1:116~124
    34. Couches Assises. Graves-bitume. NFP 1998(8): 98~138
    35.德国路面结构设计规范(山西科研所译). 1986.
    36.南非沥青路面设计规范(北京建工学院译). 1996.
    37.南非城市间与乡村道路柔性路面结构设计规范简介(北京建工大学译). 1996:
    38.菊川滋等.最新?アスファルト铺装技术?铺装学のすすめ? Aからまで?日本山海堂,1997:32~45
    39. Standard Specifications for Highway Construction. Ministry of Transportation and Highways. Canada, 1999: 112~125
    40. Pavement Structural Design Practice across Canada. Canadian strategic Highway Research Program. Canada, 2002: 48~72
    41. Highway Agency. Design Manual for Roads and Bridges. Pavement Design and Maintenance. Conference in London. 1998: 26~98
    42. Standard Specifications for Road Construction.The Department Transportation of Calgary. Canada. 2003: 234~258
    43. J. Werner. Asphalt Pavement Developments in Europe. AAPT. Vol.42: 524~541
    44. SHRP~LTPP General Pavement Studies. National Research Council. 1994: 326~382
    45. European Long-Life Asphalt Pavements:Delivering What the Customer Wants.Transportation Research Board Annual Meeting. 2002.1:132~135
    46. MICHAEL NUNN,BRIAN W PEME,Design and Assessment of Long~Life flexible Pavements. TransPortation Research Cireular(503).2001: 32~49
    47. A Synthesis of Perpetual Pavement APA101.2002.1:78~82
    48. Heemun Park, Jewon Kim, Yeonbok Kim and Hyunjonglee.Determination of the Layer Thickness for Long-Life Asphalt Pavements[R].Proeeedings Paper of the Eastern Asia Society for Transportation Studies,2005.Vol.5: 791~802
    49. DAVID E NEW COMB,MARD BUNCHER,IRA J HUDDLESTIN. Conceptsof Perpetual Pavements,Transportation Research Circular(503),2001: 4~11
    50. Minnesota Asphalt Pavement Association Summary of Minnesota Research Findings[EB/OL].httP://www.asphaltisbest.com,2003
    51. ERICHARM.ILINOIS Extended-Life Hot Mix Asphalt Pavements. TransPortation Research Circular(503),2001: 108~113
    52. Preeeeding of the Eastem Asia Soeiety for Transportation Studies.2005,Vol.5: 791~802
    53. JOE P MAHONEY. Study of Long-Lasting Pavements in Washington State.Transportation Researeh Cireular(503), 200l: 88~95
    54. Developing Long-Lasting. Lower Maintenance Highway Pavement by theRearch and Technology Coordinating Committee(FHWA),2002:165~178
    55.曾宇彤,陈湘华,王端宜.美国永久性路面结构.中外公路. 2003.23(2)17~21
    56.李江,封晨辉.永久性沥青路面.石油沥青.2005.19(3): 54~56
    57. Myers L A,Reynaldo,Roque. Evaluation of Top-Down Cracking in ThickAsPhalt Pavements and the Implieations for Pavement Design. TransPortationResearch Cireular. Washington,D.C. Transportation Research Board NationalResearch Center,2001: 79~87
    58. Asphalt Pavement Allianee.Perpetual Pavements Synthesis. AsPhalt PavementAllianee Order Number APA 101 1/02,2002:235~242
    59.张起森.永久性路面与结构材料性能.第七届全国路面材料及新技术研讨会论文. 2006.11:189~194
    60. Nunn, M.E., A.Brown, D.Weston and J.C.Nieholls, Design of long-life flexiblePavements for heavytraffic. Report No.250. Transportation Research LaboratoryBerkshire, United Kingdom.1997
    61.彭妙娟,许志鸿.沥青路面车辙预估方法.同济大学学报(自然科学版).2004.32(11):67~70
    62. Kenis,W.J. Predicitive design procedures. VESYS users manual.1977:67~78
    63.解晓光.按材料—结构—工艺一体化原则设计沥青碎石基层的研究.哈尔滨工业大学博士学位论文. 2004: 119~121
    64. Wijeame A.,Sarious M..Prediction of rutting in virgin and recycled asphalmixtures for pavements using triaxial tests. AAPT,1987.56: 111~121
    65.俞建荣,李一鸣.轮辙试验的车辙预估模型探讨.中国公路学报. 1992, 5(3)18~24
    66.张登良,李俊.高等级沥青路面车辙研究.中国公路学报. 1995, 8(1): 24~29
    67.陈胜武,杨军.江苏省1994年国省干线公路交通量调查综合分析.江苏交通工程. 1996(5):56~59
    68.张宏超.沥青路面初期损坏机理分析与对策研究.同济大学博士学位论文2002. 3:67~76
    69.李福普,陈景,严二虎.新型沥青路面结构在我国的应用研究.公路交通科技. 2006.3:78~81
    70.高立波.沈山高速公路路面后评估.大连理工大学硕士学位论文. 2002:44~55
    71.贾渝等.高性能沥青路面Superpave技术实用手册.江苏省交通科学研究院2002:45~56
    72.中华人民共和国交通部.公路路沥青路面养护技术规范(JTJ073.2-2001)人民交通出版社. 2001:10~11
    73.中华人民共和国交通部.公路路沥青路面设计规范(JTGD50-2006).人民交通出版社. 2006:7~8
    74. Jacob Uzan(2004). Permanent Deformation in Flexible Pavements. Journal ofTransportation Engineering, ASCE, February 2004, Reston,Va.,6~13
    75. Lytton, R. L., Pufahl, D. E., Michalak, C. H., Liang, H. S., and Dempsey,B. J(1993). An integrated model for the climactic effects on pavements. RepFHWA-RD-90-033, Federal Hwy. Admin., U.S. Departmentof TransportationWashington, D.C.
    76. Solaimanian, M., and Bolzan, P. (1993). Analysis of the integrated model for theclimactic effects on pavements: sensitivity analysis and pavement temperatureprediction. Rep. SHRP-A-637, Strategic Hwy. Res. Program, National ResearchCouncil, Washington, D.C.
    77. Mohseni, A. LTPP seasonal AC pavement temperature models. Rep. FHWA-RD-97-103, Federal Hwy. Admin., .S. Department of TransportationWashington, D.C.
    78. Bosscher, P. J., Bahia, H. U., Thomas, S., and Russell, J. S. Relationshipbetween pavement temperature data and weather data. Transp. Res. Rec. 1609Transportation Research Board, Washington, D.C., 1~11
    79.黄仰贤.路面分析与设计.人民交通出版社. 1998:192~200
    80.孙立军.沥青路面结构行为理论.人民交通出版社. 2005:311~325
    81.吕伟民.沥青稳定基层沥青混凝土路面抗剪性能的理论分析.公路2006,4(4): 220~224
    82.刘红坡.层间接触对半刚性沥青路面力学响应的影响.西南交通大学硕士学位论文. 2006:75~77
    83.刘涛,郝培文编译.层间接触条件对柔性路面路用性能的影响.中外公路:2007. 1(27): 60~64.
    84.重庆交通科研设计院等.西部交通建设科技项目:路用改性沥青技术的研究(总报告). 2005:59~80
    85.王东升.沥青路面结构流动型车辙的理论研究.哈尔滨工业大学博士学位论文. 2009:123~135
    86.张肖宁.设计沥青混合料.哈尔滨建筑大学学报. 2002, 1:78~82
    87.王端宜.设计沥青路面及其方法的研究.哈尔滨工业大学博士学位论文. 2003: 32~40
    88.周志刚,傅搏峰.用粘弹性理论评价沥青混合料的高温稳定性.公路交通科技. 2005. 22 (11):54~56
    89.封基良,许爱华,席晓波.沥青路面车辙预测的粘弹性分析方法.公路交通科技. 2004. 21 (5):12~14, 28
    90. Jean-Francois Corte .Development and uses of Hard-grade Asphalt and of High-Modulus Asphalt Mixes in France. Transportation Research Circular 503. TRB.National Research Council, Washing-ton. D.C., 2001
    91.李峰,孙立军,方伽俐.考虑沥青层模量梯度的路面结构剪应力分析.交通科技. 2005. 211(4): 1~3
    92.秦健.沥青路面温度场的预估方法研究.同济大学硕士学位论文. 2004. 26~27
    93.胡玉祥,张肖宁,王绍怀,迟凤霞.高模量沥青混合料添加剂性能的试验研究.石油沥青. 2006.6:56~60
    94.胡霞光,李德超,田莉.沥青混合料动态模量研究进展.中外公路. 2007.2
    95. G. W. Maupin, Brian K. Diefenderfer. Design of a High-Binder–High-Modulus Asphalt Mixture. Principal Research Scientist. 2007,7:9~15
    96.刘中林.大粒径沥青混合料配比及路用性能研究.长安大学博士学位论文. 2001:87~95
    97.葛折圣,黄晓明等.沥青稳定基层混合料级配研究.东南大学学报. 2001:23~27
    98.张鹏飞.路面内部排水系统的设计与研究.同济大学博士学位论文. 1999:78~95
    99.姚祖康,沈惠生.路面结构的内部排水设施.公路. 1997, (5):17~23
    100.姚祖康,毕艳祥,庄少勤,郭亚兵.沥青碎石排水基层的设计与施工.公路.2001, (12):1~6
    101.张鹏飞,庄少勤.多空隙沥青稳定碎石基层内部排水系统试验路的铺筑.公路. 1998, (6):28~32
    102.姚祖康,谢洪斌.沥青稳定碎石排水层混合料组成设计.中国公路学报. 2000, 13(S1):45~48
    103.谭发茂.大粒径沥青混凝土试验段施工总结. 2002年道路工程协会学术交流论文集:99~102
    104.公路路面基层施工技术规范.人民交通出版社. 2000:34~38
    105.王龙等.级配碎石基层材料设计方法的研究报告.哈尔滨工业大学. 2003:78~86
    106.曹建新.重载交通下级配碎石基层材料组成结构与动力特性的研究.哈尔滨工业大学工学硕士论文. 2001:56~78
    107.王军志等.柔性路面级配碎石底基层施工质量控制.广东公路交通. 1995,4:89~92
    108. Design and Evaluation of Large-Stone Asphalt Mixes. Texas Transportation Institute and Texas A&M University System Collge Station,TX. 1997. Report 386:15~22
    109. Kandhal S. Large Stone Asphalt Mixes: Design and Construction. NCAT Report, No 90-4,1990:9~15
    110. Kandhal, P.S.Testing and Evaluation of Large Stone Mixture Using Marshall Mix Design Procedures. National Asphalt Pavement Association Information Series 108, 1990:13~17
    111.王旭东.大型马歇尔击实试验研究.公路交通科技. 2002.2:45~48
    112. Standard Specifications for Construction of Roads and Bridges. Colorado Department of Transportation.1999:19~26
    113. Construction and Material Specifications. Department of Transportation Columbus, Ohio.2002.1:6~13
    114. Design Guide. Wisconsin Asphalt Pavement Association Design Guide. 5, 2001: 5~11
    115. Standard Specifications for Construction of Roads and Bridges. Nevada Department of Transportation. 2002:234~267
    116.大粒径沥青混合料的设计与评价.课题研究报告. 386,2002:34~45
    117.曹建新,王树森,李长江.高等级公路沥青路面柔性基层的研究.课题研究报告.吉林省公路勘测设计院. 2000.10:45~87
    118. Design Manual for Roads and Bridges, Pavement Design and Maintenance, Pavement Design. HIGHWAYS AGENCY et al. HD26/01. London. 2001:23~45
    119. Pavement Design Manual. Alberta Transportation and Utilities in Canada (AT&U). 1997.6:45~56
    120. Standard Specifications for Road Construction.The City of Calgary in Canada. 2003:78~98
    121. Pavement Structural Design Practice across Canada. Canadian strategic Highway Research Program. 2002.4:45~78
    122. Superpave Construction Guideline. NAPA, FHWA SP 180. 1998.2:34~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700