组合式离子化RRLC-MS/MS方法与~1H NMR技术的肺癌血浆代谢组学分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文重点采用快速高分辨液相色谱系统(RRLC)与MS/MS联用的高通量分析技术,通过考察电喷雾电离(ESI)、大气压化学电离(APCI)和大气压光致电禺(APPI)三种离子化方法获取健康人血浆中小分子代谢物信息的差异,建立了ESI与APPI相结合的组合式离子化RRLC-MS血浆代谢组学分析方法。同时利用RRLC-MS的快速、高灵敏、高选择性和高通量等特点,以及1H NMR技术检测无偏向性、结构鉴定能力强的优势,开展了RRLC-MS/MS与1H NMR技术整合的肺癌血浆代谢组学分析,力求获取更全面的差异代谢物信息,为肺癌的临床疗效评价及预后分析等提供潜在的小分子生物标志物。
     本研究通过分析健康志愿者与肺癌患者治疗前血浆代谢组的差异,分别发现66个(由RRLC-MS方法)和12个(利用1H NMR技术)与肺癌诊断相关的可能生物标志物。进一步通过肺癌患者治疗前、治疗后血浆样品的代谢组差异分析,寻找对治疗敏感的可能标志物;同时对上述标志物在健康志愿者组、癌症患者不同疗效组中治疗前、治疗中期、治疗后的变化规律进行了考察与分析。目前,由RRLC-MS方法发现了33个肺癌治疗敏感的可能标志物,并寻找到与疗效评价密切相关的10个可能标志物;另由1H NMR方法发现了10个治疗敏感标志物,其中包括8个与疗效评价密切相关的可能标志物。本研究结果表明“组合式”离子化RRLC-MS方法可以较好地弥补单一离子化质谱技术检测的离子化歧视及离子化效率差异的缺点,可获得更全面的生物标志物信息;此外,结合1H NMR的优势,构成综合性分析技术体系,进一步完善了血浆代谢组学分析方法。
     本论文的研究内容主要包括以下三部分:
     1.适用于血浆代谢组学的组合式离子化RRLC-MS分析方法研究
     采用正负离子电离模式的ESI、APCI和APPI-MS三种离子化RRLC-MS方法,选择健康人血浆,系统考察了不同离子化方法获取代谢物信息的能力,研究结果表明,“组合式”离子化的RRLC-MS/MS方法可获得更为全面的内源性代谢物信息。通过进一步分析三种方法对不同类型代谢物检测灵敏度的差异,发现ESI与APPI结合的组合式离子化方法,可以较好地满足血浆代谢组学研究中全面地获取代谢物信息及高通量分析的要求。
     2.组合式离子化RRLC-MS方法在肺癌血浆代谢组学研究中的应用
     采用电ESI与APPI二种离子化方式相结合的组合式RRLC-MS方法,结合多变量统计分析,开展了肺癌患者血浆代谢组学研究。通过健康人与肺癌患者治疗前血浆样本的代谢组分析,发现66个与肺癌诊断相关的可能生物标志物,并鉴定出其中27个标志物的结构。然后,通过分析肺癌患者治疗前与治疗后样本组的代谢组差异,筛选出33个对治疗敏感的可能标志物;进一步考察这些代谢物在健康组、治疗前、治疗中期、治疗后的变化规律,最终筛选并鉴定出10个与肿癌治疗及预后密切相关的可能生物标志物,分别是脂酰肉碱carnitine10:0、溶血磷脂酰胆碱sn-1lysoPC (16:1)、sn-2lysoPC (18:2)、sn-1lysoPC(16:0)、谷氨酰胺(glutamine)、硫酸脱氢表雄酮(DHEAs)、硫酸雄甾酮(androsterone sulfate)、油酸(oleic acid)亚油酸(linoleic acid)、葡萄糖(glucose)。本研究结果表明,组合式离子化方法能较好地克服单一离子化质谱技术面临的离子化歧视和离子化效率差异的缺点,在获取不同极性代谢物信息方面不仅存在互补性,而且还可以互相验证共同检测到的生物标志物的可靠性。
     3.基于1H NMR技术的肺癌血浆代谢组学研究
     在上述研究基础上,采用1H NMR技术,结合多变量统计分析,进一步开展了肺癌血浆代谢组学研究。通过分析健康人与肺癌患者治疗前血浆代谢组的差异,寻找到12个可能的诊断标志物。然后,分析肺癌患者治疗前与治疗后的血浆样本,发现了10个对治疗敏感的代谢物,进一步考察这些代谢物在健康组、治疗前、治疗中期、治疗后的变化规律,筛选出8个与肺癌疗效评价相关的可能生物标志物,分别是柠檬酸(Citrate)、醋酸(Acetate)、葡萄糖(Glucose)、谷氨酰胺(Glutamine)、丙酮酸(Pyruvate)、磷脂胆碱类(Phospholipids choline)、缬氨酸(Valine)、胞嘧啶核苷(Cytidine)
     本研究采用RRLC-MS与1H NMR两种不同分析技术开展肺癌血浆代谢组学的研究,共同发现葡萄糖、谷氨酰胺及磷脂胆碱类等3种内源性代谢物与疗效评价密切相关,这进一步验证了上述3种小分子标志物的可靠性;此外,这两种分析技术还分别发现了各自特有的疗效评价标志物。这些结果表明,将LC-MS与NMR两种分析技术联合应用于代谢组学研究中,不仅可以相互验证所发现的生物标志物,同时通过发挥各自技术上的优势,有利于获取更加全面、可靠的可能生物标志物,有望为肺癌的临床疗效评价及预后分析等提供潜在的小分子标志物及其重要依据。
This study mainly addresses the application of rapid resolution liquid chromatography mass spectrometry/tandem mass spectrometry (RRLC-MS/MS) combined with electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) for investigating the differences of these three ionization methods in acquiring small molecular metabolome of plasma, and integrated RRLC-MS/MS combined with ESI and APCI for plasma metabolomics has been established. Meanwhile, the combination of adavantage of RRLC-MS/MS in fast speed, high sensitivity, high selectivity, high-throughput with the non-deviation detecting and robust identification of NMR has been employed for the identification of lung cancer plasma metabolomics in order to provide biomarkers of small molecule for clinically evaluating therapeutic effects and prognosis analysis of lung cancer.
     Through analyzing metabolome differences between healthy and lung cancer plasma,66(detected by LC-MS) and12(detected by1H NMR) potential biomarkers closely related diagnosing lung cancer has been obtained, respectively. In the mean time,33metabolites responded to therapy has been acquired by analyzing the differences among lung cancer plasma samples over the periods of pre and post treatments, and these responded metabolites has further been sifted into potential biomarkers related to evaluating therapeutic effects by observing the dynamic change trends throught the pre, middle, and post treatment periods combined with clinical evaluation of therapeutic effects, and consequently10potential biomarkers related to therapeutic effects'evalution has been achieved. In addition,1H NMR discovered10biomarkers responded to treatments, and8of them are closely related to therapeutic effects. This study proved the integrated ionization methods could better make up the disadvantages of ionization discrimination and efficiency differences encountered by MS with only a single ionization source. Also, the integrated ionization methods combined with1H NMR furtherly consummated the analytical methods for plasma metabolomics.
     1. Study on the RRLC-MS methods suited for plasma metabolomics
     RRLC-MS in combination with ESI, APCI and APPI in both positive and negative ion modes has been conducted to detedc healthy plasma for investigating the ability of different ionization methods in gaining plasma metaboleme, and the results has proved that integrated ionization RRLC-MS/MS is able to get more global metaboleme information. Further analysis on the applicability of three ionization methods for detecting different types of plasma metabolites indicates that the integration of ESI and APPI without APCI could better satisfy the requirement of metabolomics for obtaining comprehensive metabolites'information and high-throughput detection.
     2. The application of integrated ionization RRLC-MS/MS in lung cancer plasma metabolomics
     The integrated ESI and APPI with RRLC-MS/MS in combination of multivariate statistical analysis have been implemented in lung cancer plasma metabolomics. Through comparing the differences of plasma motabolime between healthy and cancer patients,66potential biomarkers related to diagnosing lung cancer has been produced, and27metabolited has been identified. Furtherly, differences of plasma metabolome between pre and post treatments of lung cancer patients has been assessed, and33metabolites responded to therapy has been obtained, and danyic change trends of these33metabolites has been analyzed among healthy, pre, middle, and post treatment plasma samples, and10potential biomarkers closely related to lung cancer genesis, development, treatment, and prognosis has been achieved, including carnitine10:0, sn-1lysoPC (16:1), sn-2lysoPC (18:2), sn-1lysoPC(16:0), glutamine, DHEAs, androsterone sulfate, oleic acid, linoleic acid, and glucose. The study results proved that integrated ionization methods could, to some degree, conquer the disadvantage of ionization discrimination and efficiency differences encountered by MS with only a single ionization source. The integrated ionization methods not only provide complementarity for each other in detecting metabolites with different polarity, but also validate the realiability of potential biomarkers discovered by the other side. The study results are very promising to convey the extremely important bases for clinically therapeutic effects evaluation and prognosis.
     3.1H NMR-based lung cancer plasma metabolomics
     The1H NMR with multivariate statistical analysis has been introduced into lung cancer plasma metabolomics. Through comparing the differences of plasma metabolome between healthy and cancer plasma samples,12potential biomarkers related to diagnosing lung cancer has been achieved, and identified. Furtherly, differences of plasma metabolome between pre and post treatments of lung cancer patients has been evaluated, and10metabolites responded to therapy has been obtained, and danyic change trends of these10metabolites has been analyzed among healthy, pre, middle, and post treatment plasma samples, and8potential biomarkers closely related to lung cancer genesis, development, treatment, and prognosis has been achieved, including citrate, acetate, glucose, glutamine, puruvate, phospholipids choline, valine, cytidine, among which glucose, glutamine, and phospholipids choline linked to therapeutic effects evaluation were simultaneously discovered by1H NMR and LC-MS that validated the detection realiability. At the same time,1H NMR and LC-MS methods offered5and4unique potential biomarkers related to therapy evaluation, respectively, which suggested the combination of two spectrometry technologies could not only validate detection of each others, but also broaden the discovered ranges of potential biomarkers. The above potential biomarkers discovered by integrated LC-MS/MS and1H NMR metabolomics are likely to provide valuable bases for clinically diagnosing, assessing therapy, and prognosis analysis.
引文
[I]Nicholson, J. K.; Lindon, J. C.; Holmes, E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica,1999,29(11):1181-1189.
    [2]Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks [J]. Comp. Funct. Genom.2001,2(3):155-168.
    [3]Nicholson, J. K.; Wilson, I. D. Opinion:understanding 'global'systems biology: metabonomics and the continuum of metabolism [J]. Nature Rev Drug Discov.2003, 2(8):668-676.
    [4]Tang, H. R.; Wsang, Y. L. Metabolomics- a revolution in progress [J]. Progress in Biochemistry and Biophysics.2006,33,401-417.
    [5]Wei, S.; Liu, L.; Zhang, J.; Bowers, J.; Gowda, G. A.; Seeger, H.; Fehm, T.; Neubauer, H. J.; Vogel, U.; Clare, S. E.; Raftery, D. Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer [J]. Mol Oncol.2012, Oct 25.
    [6]Cai, X. M.; Dong, J.; Zou, L. J.; Xue, X. Y.; Zhang, X. L.; Liang, X. M. Metabonomic Study of Lung Cancer and the Effects of Radiotherapy on Lung Cancer Patients:Analysis of Highly Polar Metabolites by Ultraperformance HILIC Coupled with Q-TOF MS [J]. Chromatographia 2011,74:391-398.
    [7]Arun, S.; Laila, M. P.; Thekkelnaycke M. R.. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression [J]. Nature,2009,457:910-915.
    [8]Imperiale, A.; Elbayed, K.; Moussallieh, F. M. Metabolomic pattern of childhood neuroblastoma obtained by'H-high-resolution magic angle spinning (HRMAS) NMR spectroscopy [J]. Pediatr Blood Cancer 2011,56(l):24-34.
    [9]Putri SP, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, Fukusaki, E. J. Current metabolomics:Practical applications [J]. Biosci Bioeng.2013 Jan 28. doi:pii: S1389-1723(12)00503-8.10.1016/j.jbiosc.2012.12.007. [Epub ahead of print]
    [10]Zivkovic, A.; Wiest, M.; Nguyen, U.; Davis, R.; Watkins, S.; German, Effects of sample handling and storage on quantitative lipid analysis in human serum [J]. J. Metabolomics, 2009,5:507-516.
    [11]Wuolikainen, A.; Hedenstrom, M.; Moritz, T.; Marklund, S. L.; Antti, H.; Andersen, P. M. Optimization of procedures for collecting and storing of CSF for studying the metabolome in ALS [J]. Andersen, Amyotrophic Lateral Scler.,2009,10,229-236.
    [12]Rai, A. J.; Gelfand, C. A.; Haywood, B. C.; Warunek, D. J.; Yi, J.; Schuchard, M. D.; Mehigh, R. J.; Cockrill, S. L.; Scott, G. B.; Tammen, H.; Schulz-Knappe, P.; Speicher, D. W.; Vitzthum, F.; Haab, B. B.; Siest, G.; Chan, D. Plasma Proteome Project specimen collection and handling:towards the-standardization of parameters for plasma proteome samples [J]. Proteomics.2005,5(13):3262-77.
    [13]Lu, W.; Bennett, B. D.; Rabinowitz, J. D. Analytical strategies for LC-MS-based targeted metabolomics [J]. J Chromatogr B Analyt Technol Biomed Life Sci.2008 Aug 15;871(2):236-42.
    [14]Yang, W.; Chen, Y. H.; Xi, C.; Zhang, R. P.; Song, Y. M.; Zhan, Q. M.; Bi, X. F.; Abliz, Z. and Zeper AblizLiquid Chromatography-Tandem Mass Spectrometry-Based Plasma Metabonomics Delineate the Effect of Metabolites'Stability on Reliability of Potential Biomarkers [J]. Anal Chem.2013 Mar 5;85(5):2606-10.
    [15]Rai, A. J.; Gelfand, C. A.; Haywood, B.C.; Warunek, D. J.; Yi, J.; Schuchard, M. D.; Mehigh, R. J.; Cockrill, S. L.; Scott, G. B.; Tammen, H.; Schulz-Knappe P.; Speicher, D. W.; Vitzthum, F.; Haab, B. B.; Siest, G.; Chan, D. W. HUPO Plasma Proteome Project specimen collection and handling:towards the standardization of parameters for plasma proteome samples [J]. Proteomics.2005 Aug;5(13):3262-77.
    [16]Lu, W.; Bennett, B. D.; Rabinowitz, J. D. Advantages of Tandem LC-MS for the Rapid Assessment of Tissue-Specific Metabolic Complexity Using a Pentafluorophenylpropyl Stationary Phase[J]. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.,2008,871:236-242.
    [17]Rabinowitz, J. D.; Kimball, E. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli [J]. Anal. Chem.2007,79:6167-6173.
    [18]Reily, L. M. D.; Robosky, C.; Manning, M. L.; Butler, A.; Baker, J. D.; Winters, R. T. DFTMP, an NMR Reagent for Assessing the Near-Neutral pH of Biological Samples [J].J. Am. Chem. Soc.,2006,128,12360-12361.
    [19]Tang, H.; Xiao, C.; Wang, Y.; Important roles of the hyphenated HPLC-DAD-MS-SPE-NMR technique in metabolomics[J]. Magn.Reson.Chem.,2009,47, S157-62.
    [20]Zhou, B.; Xiao, J. F.; Tuli, L.; Ressom, H. W. LC-MS-based metabolomics [J]. Mol. BioSyst. 2012,8:470-481.
    [21]Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass spectrometry-based metabolomics [J]. Mass Spectrom. Rev.2007 Jan-Feb; 26(1):51-78.
    [22]Tautenhahn, R.; B6ttcher, C.; Neumann, S.:Annotation of LC/ESI-MS Mass Signals, BIRD 2007 Proc. of BIRD 2007-1 st International Conference on Bioinformatics Research and Development,2007.
    [23]van den Berg, R.A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A.K.; van der Werf, M. J. Centering, scaling, and transformations:improving the biological information content of metabolomics data [J]. BMC Genomics 2006,7:142.
    [24]Warrack, B. M.; Hnatyshyn, S.; Ott, K.-H.; Reily, M. D.; Sanders, M.; Zhang, H.; Drexler, D. M.; Normalization strategies for metabonomic analysis of urine samples [J]. J. Chromatogr., B:Anal. Technol. Biomed. Life Sci.,2009,877,547-552.
    [25]Issaq, H. J.; Nativ, O.; Waybright, T.; Luke, B.; Veenstra, T. D.; Issaq, E. J.; Kravstov, A.; Mullerad, M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry [J]. J Urol.2008, 179(6):2422-2426.
    [26]Bylesjo, M.; Rantalainen, M.; Cloarec Olivier.; Nicholson, J. K.; Holmes, E.; Trygg, J. OPLS discriminant analysis:combining the strengths of PLS-DA and SIMCA classification[J]. J. Chem.2006,20,(8-10):341-351.
    [27]Madalinski, G.; Godat, E.; Alves, S.; Lesage, D.; Genin, E.; Levi, P.; Labarre, J.; Tabet, J. C.; Ezan, E.; Junot, C. Direct Introduction of Biological Samples into a LTQ-Orbitrap Hybrid Mass Spectrometer as a Tool for Fast Metabolome Analysis [J]. Anal. Chem.2008,80:3291-3303.
    [28]Zhang, A. H.; Sun, H.; Wang, P.; Han, Y.; Wang, X. J. Modern analytical techniques in metabolomics analysis [J]. Analyst,2012,137:293-300.
    [29]Chen, J.; Zhao, X.; Fritsche, J.; Yin, P.; Schmitt-Kopplin, P.; Wang, W.; Lu, X.; Haring, H. U.; Schleicher, E. D. Lehmann, R.; Xu, G. Practical Approach for the Identification and Isomer Elucidation of Biomarkers Detected in a Metabonomic Study for the Discovery of Individuals at Risk for Diabetes by Integrating the Chromatographic and Mass Spectrometric Information [J]. Anal. Chem.2008,80,1280-1289.
    [30]Chen, Y. H.; Zhang, R. P.; Song, Y. M.; He, J. M.; Sun, J. H.; Bai, J. F.; An, Z. L.; Dong, L. J.; Zhan, Q. M.; Abliz, Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network:finding potential biomarkers for breast cancer[J]. Analyst 2009,134, (10),2003-2011.
    [31]Claudia, M. R.; Joana, C.; Antonio, S. B.; Ana, M. G.; Brian, J. G.; Isabel, M. C.; Joa, B.; Ana, G.; Vitor, S.; Lina, C.; Iola, F. D. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma [J]. J. Proteome Res.2011,10:4314-4324.
    [32]Joana, C.; Claudia, M. R.; Antonio, S. B.; Ana, M. G.; Brian, J. G.; Isabel, M. C. Jo3, B.; Ana, G.; Vitor, S.; Lina, C.; Iola, F. D. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Urine [J]. J J. Proteome Res.2011,10:221-230.
    [33]Sun, Y.; Lian. Z.; Jiang, C.; Wang, Y. Zhu, H. Beneficial Metabolic Effects of 2,3',5'-tri-acetyl-N6-(3-Hydroxylaniline) Adenosine in the Liver and Plasma of Hyperlipidemic Hamsters. PLoS ONE 2012,7(3):e32115.
    [34]Smolinska, A.; Blanchet, L.; Buydens, L. M.C.; Wijmenga, S. S. NMR and pattern recognition methods in metabolomics:From data acquisition to biomarker discovery:A review [J]. Analytica Chimica Acta 2012,750:82-97.
    [35]Gao, P.; Lu, C.; Zhang, F.; Sang, P.; Yang, D.; Li, X.; Kong, H.; Yin, P.; Tian, J.; Lu, X.; Lu, A.; Xu, G. Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis [J]. Analyst 2008,133(9):1214-1220.
    [36]Lee, D. Y.; Bowen, B. P.; Northen, T. R.; Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging [J]. BioTechniques,2010,49:557-565.
    [37]Roessner, U.; Wagner, C.; Kopka, J.; Trethewey, R. N.; Willmitzer, L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry [J]. Plant J.2000,23(1):131-142.
    [38]Tsugawa, H.; Bamba, T.; Shinohara, M.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis [J]. J. Biosci. Bioeng.2011,112:292-298.
    [39]Saito, N.; Robert, M.; Kitamura, S.; Baran, R.; Soga, T.; Mori, H.; Nishioka, T.; Tomita, M. Metabolomics approach for enzyme discovery [J]. J Proteome Res.2006,5(8):1979-1987.
    [40]Barbas, C.; Moraes, E. P.; Villasenor, A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples [J]. J. Pharm. Biomed. Anal.,2011,55, 823-831.
    [41]Nordstrom, A.; O'Maille, G.; Qin, C.; Siuzdak G. Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics:quantitative analysis of endogenous and exogenous metabolites in human serum [J]. Anal Chem.2006,78(10):3289-3295.
    [42]Plumb, R. S.; Granger, J. H.; Stumpf, C. L.; Johnson, K. A.; Smith, B. W.; Gaulitz, S.; Wilson, I. D.; Castro-Perez, J. A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry:application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice [J]. Analyst 2005,130(6):844-849.
    [43]Wilson, I. D.; Nicholson, J. K.; Castro-Perez, J.; Granger, J. H.; Johnson, K. A.; Smith, B. W.; Plumb, R. S. High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies [J]. Journal of Proteome Research.2005,4:591-598.
    [44]Masson, P.; Spagou, K.; Nicholson, J. K.; Want, E. J. Technical and biological variation in UPLC-MS-based untargeted metabolic profiling of liver extracts:application in an experimental toxicity study on galactosamine [J]. Anal. Chem.,2011,83,1116-1123.
    [45]Yoshida, T.; Majors, R. E.; Kumagai, H. High-speed analyses using rapid resolution liquid chromatography on 1.8-microm porous particles [J]. J. Sep Sci.2006,29,2421-2432.
    [46]Chen, Y.; Xu, J.; Zhang, R.; Shen, G.; Song, Y.; Sun, J.; He, J.; Zhan, Q.; Abliz Z. Assessment of data pre-processing methods for LC-MS/MS-based metabolomics of uterine cervix cancer [J]. Analyst 2013 Mar 14. [Epub ahead of print]
    [47]An, Z. L.; Chen, Y. H.; Zhang, R. P.; Song, Y. M.; Sun, J. H.; He, J. M.; Bai, J. F.; Dong, L. J.; Zhan, Q. M.; Abliz, Z. Integrated Ionization Approach for RRLC-MS/MS-based Metabonomics:Finding Potential Biomarkers for Lung Cancer [J]. J Proteome Res.2010,9, 4071-4081.
    [48]Want, E. J.; O'Maille, G.; Smith, C. A.; Brandon, T. R.; Uritboonthai, W.; Qin, C.; Trauger, S. A.; Siuzdak, G.; Solvent-Dependent Metabolite Distribution, Clustering, and Protein Extraction for Serum Profiling with Mass Spectrometry [J]. Anal. Chem.2006,78:743-752.
    [49]Nordstrom, A.; O'Maille, G.; Qin, C.; Siuzdak, G. Nonlinear Data Alignment for UPLC-MS and HPLC-MS Based Metabolomics:Quantitative Analysis of Endogenous and Exogenous Metabolites in Human Serum [J]. Anal. Chem.2006,78,3289
    [50]Zhang, T.; Wu, X. Y.; Ke, C. F.; Yin, M. Z.; Li, Z. Z.; Fan, L. J.; Zhang, W.; Zhang, H. Y. Zhao, F. L.; Zhou, X. H.; Lou, G.; Li, K. Identification of Potential Biomarkers for Ovarian Cancer by Urinary Metabolomic Profiling [J]. J. Proteome Res.2013,12,505.
    [51]Sreekumar, A.; Poisson, L. M.; Rajendiran, T. M.; Khan, A. P.; Cao, Q.; Yu, J. D.; Laxman, B.; Mehra, R.; Lonifro, R. J.; Li, Y.; Nyati, M. K.; Ahsan, A.; Sundaram, S. K.; Han, B.; Cao, X.; Byun, J.; Omenn, G. S.; Ghosh, D.; Pennathur, S.; Alexander, D. C.; Berger, A.; Shuster, J. R.; Wei, J. T.; Varambally, S.; Beecher, C.; Chinnaiyan, A. M. Metabolomic profi les delineate potential role for sarcosine in prostate cancer progression [J]. Nature 2009,457, 910.
    [52]Denkert, C.; Budczies, J.; Weichert, W.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Niesporek1, S.; Noskel, A.; Buckendahll, A.; Dietell, M.; Fiehn, O. Metabolite profiling of human colon carcinoma-deregulation of TCA cycle and amino acid turnover [J]. Molecular Cancer 2008, 7,72.
    [53]Yang, J.; Zhao, X.; Liu, X.; Wang, C.; Gao, P.; Wang, J.; Li, L.; Gu, J.; Yang, S.; Xu. G. High Performance Liquid Chromatography-Mass Spectrometry for Metabonomics:Potential Biomarkers for Acute Deterioration of Liver Function in Chronic Hepatitis B [J]. J. Proteome Res.2006,5,554.
    [54]Poquet, L.; Clifford, M. N.; Williamson, G. Investigation of the metabolic fate of dihydrocaffeic acid[J]. Biochem. Pharmacol [J].2007,75:1218.
    [55]Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Matrix Effect in Quantitative LC/MS/MS Analyses of Biological Fluids:A Method for Determination of Finasteride in Human Plasma at Picogram Per Milliliter Concentrations [J]. Anal. Chem.1998,70,882.
    [56]Mei, H.; Hsieh, Y.; Nardo, C.; Xu, X.; Wang, S.; Ng, K.; Korfmacher, W. A. Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays:application to drug discovery [J]. Rapid Commun. Mass Spectrom. 2003,17,97.
    [57]Cai, S. S.; Syage, J. A. Comparison of Atmospheric Pressure Photoionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry for Analysis of Lipids [J]. Anal. Chem.2006,78,1191.
    [58]Cai, S. S.; Syage, J. A. Atmospheric pressure photoionization mass spectrometry for analysis of fatty acid and acylglycerol lipids [J]. Journal of Chromatogr. A 2006,1110,15.
    [59]Hanold, K. A.; Fischer, S. M.; Cormia, P. H.; Miller, C. E.; Syage, J. A. Atmospheric Pressure Photoionization [J]. General Properties for LC/MS. Anal. Chem.2004,76,2842.
    [60]Nordstrom, A.; Want, E.; Northen, T.; Lehtio, J.; Siuzdak, G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics [J]. Anal Chem.2008, 80,421-429.
    [61]Ceglarek, U.; Leichtle, A.; Brugel, M.; Kortz, L.; Brauer, R.; Bresler, K.; Thiery, J.; Fiedler, G. M. Challenges and developments in tandem mass spectrometry based clinical metabolomics [J]. Mol Cell Endocrinol.2009,301(1-2):266-271.
    [62]Bullinger, D.; Fux, R.; Nicholson, G.; Plontke, S.; Belka, C.; Laufer, S.; Gleiter, C. H.; Kammerer, B. Identification of urinary modified nucleosides and ribosylated metabolites in humans via combined ESI-FTICR MS and ES1-1T MS analysis [J]. J Am Soc Mass Spectrom. 2008,19(10):1500-1513.
    [63]Fardet, A.; Llorach, R.; Martin, J. F.; Besson, C.; Lyan, B.; Pujos-Guillot, E.; Scalbert, A. A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets [J]. J Proteome Res.2008, 7(6):2388-2398.
    [64]De Vos, R. C.; Moco, S.; Lommen, A.; Keurentjes, J. J.; Bino, R. J.; Hall, R. D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry [J]. Nat Protoc.2007,2(4):778-791.
    [65]Williams, R. E.; Major, H.; Lock, E. A.; Lenz, E. M.; Wilson, I. D. D-Serine-induced nephrotoxicity:a HPLC-TOF/MS-based metabonomics approach [J]. Toxicology.2005, 207(2):179-190.
    [66]Werner, E.; Croixmarie, V.; Umbdenstock, T.; Ezan, E.; Chaminade, P.; Tabet, J. C.; Junot, C. Mass spectrometry-based metabolomics:accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution [J]. Anal Chem.2008, 80(13):4918-4932.
    [67]Bollina, V.; Kumaraswamy, G. K.; Kushalappa, A. C.; Choo, T. M.; Dion, Y.; Rioux, S.; Faubert, D.; Hamzehzarghani, H. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight [J]. Mol Plant Pathol.2010, 11(6):769-82.
    [68]Shi, X.; Wahlang, B.; Wei, X.; Yin, X.; Falkner, K. C.; Prough, R. A.; Kim, S. H.; Mueller, E. G.; McClain, C. J.; Cave, M.; Zhang, X. Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease [J]. J Proteome Res.2012, 6;11(7):3805-15.
    [69]Wu, J.; An, Y.; Yao, J.; Wang, Y.; Tang, H. An optimised sample preparation method for NMR-based faecal metabonomic analysis [J]. Analyst,2010,135:1023-1030.
    [70]Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M. NMR at earth's magnetic field using para-hydrogen induced polarization [J]. J. Magn. Reson.2011, Sep,212(1):224-228.
    [71]Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M. J.; Elliott, P. I. P.; Duckett, S.B.; Green, G.G.R.; Khazal, I.G.; Lopez-Serrano, J.; Williamson, D.C. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer [J]. Science 2009, Mar, 323(5922):1708-1711.
    [72]Wei, S.; Liu, L.; Zhang, J.; Bowers, J.; Gowda, G. A.; Seeger, H.; Fehm, T.; Neubauer, H. J.; Vogel, U.; Clare, S. E. Raftery D. Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer [J]. Mol Oncol.2012,25:S 1574-7891.
    [73]Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics [J]. CA Cancer J Clin,2011, Mar-Apr,61(2):69-90.
    [74]Malvezzi, M.; Bertuccio, P.; Levi, F.; Vecchia, C. L.; Negri, E. European cancer mortality predictions for the year 2012 [J]. Ann Oncol 2012,23:1044-1052.
    [75]Sculier, J. P. Nonsmall cell lung cancer [J]. Eur Respir Rev 2013,22(127):33-36.
    [76]Jemal, A.; Center, M. M.; Desantis, C.; Ward, E. M. Global patterns of cancer incidence and mortality rates and trends [J]. Cancer Epidemiol Biomarkers Prev.2010,19:1893-1907.
    [77]Ghosal, R.; Kloer, P.; Lewis, K. E. A review of novel biological tools used in screening for the early detection of lung cancer [J]. Postgrad Med J 2009,85:358-363.
    [78]Ganti, A. K.; Mulshine, J. L. Lung cancer screening [J]. Oncologist 2006,11:481-487.
    [79]Fong, K. M.; Yang,I. A.; Zimmerman, P. V. Cochrane systematic reviews of treatments for lung cancer [J]. Respir Med 2005,99:1071-1078.
    [80]Mulshine, J. L.; Sullivan, D. Lung cancer screening [J]. N Engl J Med,2005,352:2714-20
    [81]Ramalingam, S. S.; Owonikoko, T. K.; Khuri, F. R. Lung cancer:Lung cancer:New biological insights and recent therapeutic advances [J]. CA Cancer J Clin,2011 Feb 8:1-22.
    [82]Wakelee, H. A.; Chang, E. T.; Gomez, S. L. Lung cancer incidence in never smokers [J]. J Clin Oncol,2007,25:472-478.
    [83]Govindan, R.; Page, N.; Morgensztern, D. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years:analysis of the surveillance, epidemiologic, and end results database [J]. J Clin Oncol,2006,24:4539-4544.
    [84]WTO handbook for reporting results of cancer treatment [M]. Geneva (Switzerland):World Health Organization,1979.
    [85]Duffaud, F.; Therasse, P. New guidelines to evaluate the response to treatment in solid tumors [J].-Bull Cancer.2000,87(12):869-870.
    [86]陈智伟,廖美琳.RECIST标准在肿癌治疗疗效评价中的应用[J].中国肿瘤,2004,13(10):616-618.
    [87]Rocha, C.M.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B. J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I.F. Metabolic Signatures of Lung Cancer in Biofluids:NMR-Based Metabonomics of Blood Plasma [J]. J. Proteome Res.2011, 10:4314-4324.
    [88]Jennifer, L. S.; Natalie, J. S.; Eckhardt, S. G. Clinical Applications of Metabolomics in Oncology:A Review [J]. Clin Cancer Res 2009; 15:431-440.
    [89]Jimenez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, A.; Nicholson, J.K.'H HR-MAS NMR Spectroscopy of Tumor-Induced Local Metabolic "Field-Effects" Enables Colorectal Cancer Staging and Prognostication [J]. J. Proteome Res.2013, Feb 1; 12:959-968.
    [90]Kawachi, R.; Nakazato, Y.; Takei, H. Koshi-ishi, Y.; Goya, T. Clinical significance of carcinoembryonic antigen level for clinical stage I non-small cell lung cancer:can preoperative carcinoembryonic antigen level predict pathological stage [J]? Interact Cardiovasc Thorac Surg,2009,9:199-202.
    [91]Barak V, Goike H, Panaretakis K. W. Clinical utility of cytokeratins as tumour markers [J]. Clin Biochem,2004,37:529-40.
    [92]Pavic'evic', R.; Bubanovic', G.; Franjevic', A. CYFRA 21.1 in non-small cell lung cancer-standardisation and application during diagnosis [J]. Coll Antropol,2008, 32:485-498.
    [93]Hillas, G.; Moschos, C.; Dimakou, K... Carcinoembryonic antigen, neuron-specific enolase and cytokeratin fragment 19 (CYFRA 21-1) levels in induced sputum of lung cancer patients [J]. Scand J Clin Lab Invest,2008,8:1-6.
    [94]Qiu, Y.; Cai, G.; Su, M.; Chen, T.; Zheng, X.; Xu, Y.; Ni, Y; Zhao, A.; Xu, L. X.; Cai, S.; Jia, W. Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS [J]. J Proteome Res,2009,8(10):4844-4850.
    [95]Issaq, H. J.; Nativ, O.; Waybright, T.; Luke, B.; Veenstra, T. D.; Issaq, E. J.; Kravstov, A.; Mullerad, M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry [J]. J Urol,2008, 179(6):2422-2426.
    [96]Gowda, G. A. Human bile as a rich source of biomarkers for hepatopancreatobiliary cancers [J]. Biomark Med,2010,4(2):299-314.
    [97]Sugimoto, M.; Wong, D. T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles [J]. Metabolomics,2010,6(l):78-95.
    [98]Maeda, J.; Higashiyama, M.; Imaizumi, A.; Nakayama, T.; Yamamoto, H.; Daimon, T.; Yamakado, M.; Imamura, F.; Kodama, K. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer:a case control study [J]. BMC Cancer 2010,10 (690).
    [99]Shingyoji, M.; Iizasa, T.; Higashiyama, M.; Imamura, F.; Saruki, N.; Imaizumi, A.; Yamamoto, H.; Daimon, T.; Tochikubo, O.; Mitsushima, T.; Yamakado, M.; Kimura, H. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer [J]. BMC Cancer 2013,13:77.
    [100]Dong, J.; Cai, X.M.; Zhao, L.L.; Xue, X.Y.; Zou, L.J.; Zhang, X.L.; Liang, X.M. Lysophosphatidylcholine profiling of plasma:discrimination of isomers and discovery of lung cancer biomarkers [J]. Metabolomics 2010,6:478-488.
    [101]Jordan, K. W.; Adkins, C. B.; Su, L.; Halpern, E. F.; Mark, E. J.; Christiani, D. C.; Cheng, L. L. Comparison of squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue serum pairs [J]. Lung Cancer 2009,68 (1):44-50.
    [102]Hori, S.; Nishiumi, S.; Kobayashia, K.; Shinohara, M.; Hatakeyama, Y.; Kotani.Y.; Hatano, N.; Maniwa, Y.; Nishio, W.; Bamba, T.; Fukusaki, E.; Azuma, T.; Takenawa, T.; Nishimura, Y.; Yoshid, M. A metabolomic approach to lung cancer [J]. Lung Cancer 2011,74:284-292.
    [103]Carrola, J.; Rocha, C. M.; Barros, A. S. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Urine [J]. J. Proteome Res.2011,10:221-230.
    [104]Rocha, CM.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B. J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I.F. Metabolic Signatures of Lung Cancer in Biofluids:NMR-Based Metabonomics of Blood Plasma [J]. J. Proteome Res.2011, 10:4314-4324.
    [1]NordstrOm, A.; Want, E.; Northen, T.; Lehtio, J.; Siuzdak,G. Multiple Ionization Mass Spectrometry Strategy Used To Reveal the Complexity of Metabolomics [J]. Anal. Chem.2008, 80,421.
    [2]An, Z. L.; Chen, Y:H.; Zhang, R. P.; Song, Y. M.; Sun, J. H.; He, J. M.; Bai, J. F.; Dong, L. J.; Zhan, Q. M.; Abliz, Z. Integrated Ionization Approach for RRLC-MS/MS-based Metabonomics:Finding Potential Biomarkers for Lung Cancer [J]. J Proteome Res.2010,9, 4071.
    [3]Tautenhahn, R. B., C.; Neumann, S. Annotation of LC/ESIMS mass signals,. BIRD 2007-1st International Conference on Bioinformatics Research and Development,2007.
    [4]Zhou, B.; Xiao, J. F.; Tuli, L.; Ressom, H. W. LC-MS-based metabolomics [J]. Mol. BioSyst. 2012,8:470-481.
    [5]Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry [J]. BMC Bioinformatics.2007,8:105.
    [6]Fang, N.; Yu, S.; Badger, T.M. LC-MS/MS Analysis of Lysophospholipids Associated with Soy Protein Isolate [J]. J. Agric. Food Chem.2003,51:6676-6682.
    [7]Dong, J.; Cai, X.M.; Zhao, L.L.; Xue, X.Y.; Zou, L.J.; Zhang, X.L.; Liang, X.M. Lysophosphatidylcholine profiling of plasma:discrimination of isomers and discovery of lung cancer biomarkers [J]. Metabolomics (2010) 6:478-488.
    [8]Klassen, J. S.; Kebarle, P. Collision-Induced Dissociation Threshold Energies of Protonated Glycine, Glycinamide, and Some Related Small Peptides and Peptide Amino Amides [J]. J. Am. Chem. Soc.,1997,119:6552-6563.
    [9]Ambihapathy, K., Yalcin, T., Leung, H-W.; Harrison, A. G. Pathways to Immonium Ions in the Fragmentation of Protonated Peptides [J]. Journal of mass spectrometry 1997,32:209-215.
    [10]Rogalewicz, F., Hoppilliard, Y., Ohanessian, G. Fragmentation mechanisms of a-amino acids protonated under electrospray ionization:a collisional activation and ab initio theoretical study [J]. International Journal of Mass Spectrometry 2000,195/196:565-590.
    [11]Hanold, K. A.; Fischer, S. M.; Cormia, P. H.; Miller, C. E.; Syage, J. A. Atmospheric Pressure Photoionization [J]. General Properties for LC/MS. Anal. Chem.2004,76,2842-2451.
    [12]Cai, S. S.; Syage, J. A. Atmospheric pressure photoionization mass spectrometry for analysis of fatty acid and acylglycerol lipids [J]. Journal of Chromatogr. A 2006,1110(1-2):15-26.
    [1]Boros, L. G.; Lerner, M. R.; Morgan, D. L.; Taylor, S. L.; Smith, B. J,; Postier, R. G.; Brackett, D. J.; [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats[J]. Pancreas 2005,31:337-43.
    [2]Griffin, J. L.; Shockcor, J. P.; Metabolic profiles of cancer cells[J]. Nat Rev Cancer 2004, 4(7):551-561.
    [3]El-Deredy, W.; Ashmore, S.M.; Branston, N.M.; Darling, J.L.; Williams, S.R.; Thomas, D.G.. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks [J]. Cancer Res 1997, 57:4196-4199.
    [4]Gika, H. G.; Theodoridis, G A.; Wingate, J. E.; Wilson, I. D. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis:application to human urine [J]. J Proteome Res.2007,6(8):3291-3303.
    [5]Griffin, J.L.; Pole, J.C.; Nicholson, J.K.; Carmichael, P.L. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning'H NMR spectroscopy [J]. Biochim Biophys Acta 2003,1619:151-158.
    [6]Morvan, D.; Demidem, A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways [J]. Cancer Res 2007,67:2150-2159.
    [7]Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E. Metabonomics:a platform for studying drug toxicity and gene function [J]. Nat Rev Drug Discov.2002,1(2):153-161.
    [8]Goldsmith, P.; Fenton, H.; Morris-Stiff, G.; Ahmad, N.; Fisher, J.; Prasad, K. R. Metabonomics: a useful tool for the future surgeon [J]. J Surg Res.2010, 1;160(1):122-132.
    [9]刘卫红,李萍,王萍,颜贤忠,张琪,陈合兵,张蕾,王丽华,于凤华,王莒生.银屑病血热证患者治疗前后血浆代谢组学分析[J].首都医科大学学报.2009,30(4),430435.
    [10]van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. Centering, scaling, and transformations:improving the biological information content of metabolomics data [J]. BMC Genomics.2006,7:142.
    [11]Issaq, H. J.; Nativ, O.; Waybright, T.; Luke, B.; Veenstra, T. D.; Issaq, E. J.; Kravstov, A.; Mullerad, M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry [J]. J Urol.2008,179(6):2422-2426.
    [12]Bylesjo, M.; Rantalainen, M.; Cloarec Olivier.; Nicholson, J. K.; Holmes., E.; Trygg, J. OPLS discriminant analysis:combining the strengths of PLS-DA and SIMCA classification[J]. J. Chem.2006,20,(8-10)341-351.
    [13]Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E. J.; Edlund, U.; Shockcor, J. P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models [J]. Anal Chem.2008,80(1):115-122.
    [14]Chen, Y. H.; Zhang, R. P.; Song, Y. M.; He, J. M.; Sun, J. H.; Bai, J. F.; An, Z. L.; Dong, L. J.; Zhan, Q. M.; Abliz, Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network:finding potential biomarkers for breast cancer[J]. Analyst 2009,134, (10):2003-2011.
    [15]Tautenhahn, R.; Bottcher, C.; Neumann, S.:Annotation of LC/ESI-MS Mass Signals, BIRD 2007 Proc. of BIRD 2007-1st International Conference on Bioinformatics Research and Development,2007.
    [16]Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry [J]. BMC Bioinformatics.2007,8:105.
    [17]Gao, P.; Lu, C.; Zhang, F.; Sang, P.; Yang, D.; Li, X.; Kong, H.; Yin, P.; Tian, J.; Lu, X.; Lu, A.; Xu, G.. Integrated GC-MS and LC-MS plasma metabonomics analysis of ankylosing spondylitis [J]. Analyst 2008,133(9):1214-1220.
    [18]Han, X. L.; Gross, R. W. Structural Determination of Lysophospholipid Regioisomers by Electrospray Ionization Tandem Mass Spectrometry [J]. J. Am. Chem. Soc.1996,118: 451-457.
    [19]Plumb, R.; Granger, J.; Stumpf, C.; Wilson, I. D.; Evans, J. A.; Lenz, E. M. Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS):detection of strain, diurnal and gender differences[J]. The Analyst 2003,128, (7):819-823.
    [20]Chen, J.; Wang, W.; Lv, S.; Yin, P.; Zhao, X.; Lu, X.; Zhang, F.; Xu, G. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC Separations[J]. Analytica Chimica Acta.2009,650 (1),3-9.
    [21]Xu, J.; Chen, Y.; Zhang, R.; Song, Y.; Cao, J.; Bi, N.; Wang, J.; He, J.; Bai, J.; Dong, L.; Wang, L.; Zhan, Q.; Zeper, A. Global and Targeted Metabolomics of Esophageal Squamous Cell Carcinoma Discovers Potential Diagnostic and Therapeutic Biomarkers [J]. Mol Cell Proteomics.2013 Feb 8. [Epub ahead of print].
    [22]Yang, Q.; Shi, X.; Wang, Y.; Wang, W.; He, H.; Lu, X.; Xu, G. Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system [J]. J. Sep. Sci.2010,33:1495-1503.
    [23]Nakanishi, H.; Shindou, H.; Hishikawa, D.; Harayama, T.; Ogasawara, R. Cloning and characterization of mouse lung-type acyl-CoA:Lysophosphatidylcholine acyltransferase 1 (LPCAT1)-Expression in alveolar type Ⅱ cells and possible involvement in surfactant production [J]. Journal of Biological Chemistry.2006,281(29),20140-20147.
    [24]Shindou, H.; Hishikawa, D.; Harayama, T.; Yuki, K.; Shimizu, T. Recent progress on acyl CoA: Lysophospholipid acyltransferase research [J]. Journal of Lipid Research.2009,50, S46-S51.
    [25]Dong, J.; Cai, X.M.; Zhao, L.L.; Xue, X.Y.; Zou, L.J.; Zhang, X.L.; Liang, X.M. Lysophosphatidylcholine profiling of plasma:discrimination of isomers and discovery of lung cancer biomarkers [J]. Metabolomics 2010,6:478-488.
    [26]Grifin, J. L.; Kauppinen, R. A. A metabolomics perspective ofhuman brain tumours [J]. FEBSJ 2007,274(5):1132-1139.
    [27]Chen, J.H.; Enloe, B.M.; Fletcher, C.D.; Cory, D.G.; Singer, S. Biochemical analysis using high-resolution magic angle spinning NM R spectroscopy distinguishes lipoma-like well-diferentiated liposarcoma from normal Tat [J]. J Am Chem Soc 2001, 123(37):9200-9201.
    [28]Kishi, Y.; Okudaira, S.; Tanaka, M.; Hama, K.; Shida, D.; Kitayama, J.; Yamori, T.; Aoki, J.; Fujimaki, T.; Arai, H. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid [J]. J. Biol. Chem.2006,281:17492-17500.
    [29]Hoelzinger, D.B.; Mariani, L.; Weis, J.; Woyke, T.; Berens, T.J.; McDonough, W.S.; Sloan, A.; Coons, S.W.; Berens, M.E. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets [J]. Neoplasia 2005,7:7-16.
    [30]Kehlen, A.; Englert, N.; Seifert, A.; Klonisch, T.; Dralle, H.; Langner, J.; Hoang, V.C. Expression, regulation and function of autotaxin in thyroid carcinomas [J]. Int. J. Cancer 2004, 109:833-838.
    [31]Yang, S.Y.; Lee, J.; Park, C.G.; Kim, S.; Hong, S.; Chung, H.C.; Min, S.K.; Han, J.W.; Lee, H.W.; Lee, H.Y. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells [J]. Clin. Exp. Metastasis 2002,19:603-608.
    [32]Orentreich, N.; Brind, J. L.; Rizer, R. L.; Vogelman, J. H. Age changes and sex differences in serum dehydroepiandrosterone-suffate concentrations throughout adulthood [J]. J Clin Endocrinol Metab 1984,59:551-555.
    [33]Ravaglia, G.; Forti, P.; Maioli, F.; Sacchetti, L.; Nativio, V.; Scali, C. R.; Mariani, E.; Zanardi, V.; Stefanini, A.; Macini, P. L. Dehydroepiandrosterone-sulfate serum levels and common age-related diseases:results from a cross-sectional Italian study of a general elderly population [J]. Exp Gerontol.2002, May;37(5):701-712.
    [34]Moler, C.; Benito, M.; Lorenzo, M. Glucose-6-phosphate dehydrogenase gene expression in fetal hepatocyte primary cultures under nonproliferative and proliferative conditions. Exp Cell Res 1994,210:26-32.
    [35]Pershko, N.; Ponomareva, O. V.;, Sidorik, E. P. Prognostic value of the androgenic function state of patients with lung cancer [J]. Lik Sprava.2010 Jan-Mar;(1-2):118-121.
    [36]Cai, X. M.; Dong, J.; Zou, L. J.; Xue, X. G.; Zhang, X. L.; Liang, X. M. Metabonomic Study of Lung Cancer and the Effects of Radiotherapy on Lung Cancer Patients:Analysis of Highly Polar Metabolites by Ultraperformance HILIC Coupled with Q-TOF MS [J]. Chromatographia 2011,74:391-398.
    [37]Chen, Y. J.; Zheng, Y. F.; Wang, N. F.; Lv, S.; Feng, T.; Yang, Q.; Xu, G. W. Significance of urinary neucleosides in diasnosis of gastric carcinoma [J]. Chinese Journal of Cancer 2003, 22(5):537-540.
    [38]Jimenez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, A.; Nicholson, J.K.1H HR-MAS NMR Spectroscopy of Tumor-Induced Local Metabolic "Field-Effects" Enables Colorectal Cancer Staging and Prognostication [J]. J. Proteome Res.2013, Feb 1; 12:959-968.
    [39]Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Humpfer, E.; Spraul, M.; Carreira, I.M.; Melo, J.B.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I.F. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy [J]. J Proteome Res.2010,9(1):319-32.
    [40]Duarte, I. F.; Rocha, C. M.; Barros, A. S.; Gil, A. M.; Goodfellow, B. J.; Carreira, I. M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L. Can nuclear magnetic resonance (NMR) spectroscopy reveal different metabolic signatures for lung tumors [J]? Virchows Archiv.2010, 457 (6),715-725.
    [41]Fan, T.W.M.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotoperesolved metabolomics (SIRM) [J]. Mol. Cancer 2009, Jun 26;8:41.
    [42]Rocha, C.M.; Carrola, J.; Barros, A.S.; Gil, A.M.; Goodfellow, B. J.; Carreira, I.M.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I.F. Metabolic Signatures of Lung Cancer in Biofluids:NMR-Based Metabonomics of Blood Plasma [J]. J. Proteome Res.2011, 10:4314-4324.
    [43]Yuneva, M.; Zamboni, N.; Oefner, P.; Sachidanandam, R.; Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells [J]. J Cell Biol. 2007,2,178(1):93-105.
    [44]Urayama, S.; Zou, W.; Brooks, K.; Tolstikov, V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer [J]. Rapid Commun. Mass Spectrom.2010,24 (5):613-620.
    [1]Issaq, H. J.; Nativ, O.; Waybright, T.; Luke, B.; Veenstra, T. D.; Issaq, E. J.; Kravstov, A.; Mullerad, M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry [J]. J Urol.2008,179(6):2422-2426.
    [2]Bylesja, M.; Rantalainen, M.; Cloarec Olivier.; Nicholson, J. K.; Holmes, E.; Trygg, J. OPLS discriminant analysis:combining the strengths of PLS-DA and SIMCA classification[J]. J. Chem.2006,20,(8-10):341-351.
    [3]Wiklund, S.; Johansson, E.; Sjostrom, L.; Mellerowicz, E. J.; Edlund, U.; Shockcor, J. P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models [J]. Anal Chem.2008, 80(1):115-122.
    [4]Chen, Y. H.; Zhang, R. P.; Song, Y. M.; He, J. M.; Sun, J. H.; Bai, J. F.; An, Z. L.; Dong, L. J.; Zhan, Q. M.; Abliz, Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network:finding potential biomarkers for breast cancer[J]. Analyst 2009,134, (10),2003-2011.
    [5]Claudia, M. R.; Joana, C.; Antonio, S. B.; Ana, M. G.; Brian, J. G.; Isabel, M. C.; Joa, B.; Ana, G.; Vitor, S.; Lina, C.; lola, F. D. Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma [J]. J. Proteome Res.2011,10:4314-4324.
    [6]Joana, C.; Claudia, M. R.; Antonio, S. B.; Ana, M. G.; Brian, J. G.; Isabel, M. C. Joa, B.; Ana, G; Vitor, S.; Lina, C.; lola, F. D. Metabolic Signatures of Lung Cancer in Biofluids:NMR-Based Metabonomics of Urine [J]. J J. Proteome Res.2011,10:221-230.
    [7]Jimenez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H. C.; Holmes, E.; Goldin,R. D.; Ziprin, P.; Darzi, A.; Nicholson, J. K.1H HR-MAS NMR Spectroscopy of Tumor-Induced Local Metabolic "Field-Effects" Enables Colorectal Cancer Staging and Prognostication [J]. J. Proteome Res.2013,12,959-968.
    [8]Glunde, K.; Serkova, N. J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism [J]. Pharmacogenomics.2006,7(7):1109-23.
    [9]Jimenez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, A.; Nicholson, J.K.1H HR-MAS NMR Spectroscopy of Tumor-Induced Local Metabolic "Field-Effects" Enables Colorectal Cancer Staging and Prognostication [J]. J. Proteome Res.2013, Feb 1; 12:959-968.
    [10]Rocha, C.M.; Barros, A.S.; Gil, A.M.; Goodfellow, B.J.; Humpfer, E.; Spraul, M.; Carreira, I.M.; Melo, J.B.; Bernardo, J.; Gomes, A.; Sousa, V.; Carvalho, L.; Duarte, I.F. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy [J]. J Proteome Res.2010,9(1):319-32.
    [11]Fan, T.W.M.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotoperesolved metabolomics (SIRM) [J]. Mol. Cancer 2009,8 (41).
    [12]Erol, A. Retrograde regulation due to mitochondrial dysfunction may be an important mechanism for carcinogenesis [J]. Medical Hypotheses 2005,65:525-529.
    [13]Briere, J.J.; Favier, J.; Gimenez-Roqueplo, A.P.; Rustin, P. Tricarboxylic acid cycle dysfunction as a cause of human diseases and tumor formation [J]. Am J Physiol Cell Physiol 2006,291: C1114-C1120.
    [14]Yuneva, M.; Zamboni, N.; Oefner, P.; Sachidanandam, R.; Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells [J]. J Cell Biol.2007,2, 178(1):93-105.
    [15]Urayama, S.; Zou, W.; Brooks, K.; Tolstikov, V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer [J]. Rapid Commun. Mass Spectrom.2010,24 (5):613-620.
    [16]Lai, H. S.; Lee, J. C.; Lee, P. H.; Wang, S. T.; Chen, W. J. Plasma free amino acid profile in cancer patients [J]. Seminars in Cancer Biology 2005,267-276.
    [17]Ackerstaff, E.; Glunde, K.; Bhujwalla, Z. M. Choline phospholipid metabolism:a target in cancer cells [J]? J. Cell Biochem.2003,90(3):525-533.
    [18]Zheng, Y. F., Xu, G. W., Liu, D. Y., et al. Study of urinary nucleosides as biological marker in cancer patients analyzed by micellar electrokinetic capillary chromatography[J]. Electrophoresis,2002,23(24):4104-4109.
    [19]LI, M.; SONG, L.; Qin, x. Glycan changes:cancer metastasis and anti-cancer vaccines [J]. Journal of Bioscience,2010 35(4):665-673.
    [20]Ward, C. S.; Venkatesh, H. S.; Chaumeil, M. M.; Brandes, A. H.; Vancriekinge, M. Dafni, H.; Sukumar, S.; Nelson, S. J.; Vigneron, D. B.; Kurhanewicz, J.; James, C. D.; Haas-Kogan, D. A.; Ronen, S. M. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy [J]. Cancer Res 201070:1296-1305.
    [21]Dafni H, Larson PEZ, Hu S, Yoshihara HAI, Ward CS, Venkatesh, H. S.; Wang, C.; Zhang, X.; Vigneron, D. B.; Ronen, S. M. Hyperpolarized 13C spectroscopic imaging informs on hypoxia-inducible factor-1 and Myc activity downstream of platelet-derived growth factor receptor [J]. Cancer Res 2010,70:7400-7410.
    [22]Muntoni, S.; Atzori, L.; Mereu, R.; Satta, G.; Macis, M.D. Serum lipoproteins and cancer [J]. Nutrition, Metabolism & Cardiovascular Diseases 2009,19:218-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700