大跨度混凝土斜拉桥服役期时变效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度混凝土斜拉桥以其良好的结构性能和优美的造型景观在现代大跨度桥梁中得到广泛应用,但目前所修建的混凝土斜拉桥中,服役期间的线形和索力都较成桥的设计状态发生了较大的改变。本文以岳阳洞庭湖三塔斜拉桥为工程背景,展开对大跨度混凝土斜拉桥服役期间的时变效应研究。
     针对目前的收缩徐变预测模式,选取CEB-FIP90,ACI209(92),RILEM B3以及GL2000四种混凝土收缩徐变预测模式,基于相同的条件下,并针对收缩徐变的影响因素,对四种预测模式的收缩和徐变进行了参数分析。
     根据岳阳洞庭湖大桥的混凝土强度,选取相同配比的C60高强度混凝土进行收缩徐变试验研究,高强度混凝土试验研究主要分为标准试验环境和自然环境下C60高强度混凝土的收缩和徐变试验,通过一系列的标准试验环境和自然环境下的收缩和徐变试验,找出标准试验环境和自然环境下C60高强度混凝土的收缩和徐变规律,并通过试件组对配筋的C60高强度混凝土的收缩徐变规律进行了分析研究,还针对ACI209(92)收缩徐变预测模式不考虑混凝土强度的影响因素进行了修正,并通过试验数据与修正的ACI209(92)-X模式进行了分析比较。
     通过将π型截面的主梁分解为两个边肋和桥面板的组合板梁单元,把每个构件视为子单元,然后分别推导各类子单元的刚度矩阵,再利用位移协调关系,推导各子单元位移参数与组合板梁单元位移参数之间的关系。通过位移参数转换矩阵,把各子单元组拼为组合π型板梁单元,并将π型的板梁单元嵌入ANSYS分析软件,利用ANSYS软件提供的UPFs平台,实现了用户自定义单元。算例和实验证明,用户自定义单元的计算分析均能取得较好的分析效果,而且利用该单元计算分析较节省资源。通过用户单元以及beam188单元建立ANSYS模型并根据ACI209(92)-X修正的收缩徐变预测模式和CEB-FIP90收缩徐变预测模式等对洞庭湖大桥的收缩徐变效应进行了分析,并总结了收缩徐变效应下洞庭湖大桥的内力和线形的规律。
     针对混凝土的π型主梁的温度场,通过理论推导证明板件内外表面的温度场存在时间滞后性的关系,并通过ANSYS及理论推导研究了板件厚度、混凝土的热物理参数以及当地自然条件对主梁温度场的影响,得出结论如下:板件厚度的改变不会影响该板件外表面的温度;混凝土的热物理参数对混凝土π型主梁的温度场影响较小;外界风速对π型主梁温度场的影响较小;并根据洞庭湖大桥的温度场分布,采用ANSYS有限元模型并针对洞庭湖大桥温度场效应的影响因素进行了参数分析。
     针对斜拉索在服役期出现拉索损伤及索力松弛等现象,根据金属材料疲劳损伤的应变等价原理和几何损伤理论,提出了在实际工作中拉索损伤程度的模拟方法;并在通过建立斜拉索微分方程边值问题及讨论索的收敛迭代解,建立了考虑拉索损伤和索力松弛影响的拉索状态的分析方法。
Long-span concrete cable-stayed bridge, with its good performance of the structure andbeautiful landscape modeling are widely used in modern long-span bridge, but the concretecable-stayed bridge in service, of which the linear and the cable forces are more into thedesign of the state has undergone a large change. Based on the background of YueyangDongting Lake Bridge, the research on the large span concrete cable-stayed bridge isdeveloped in service during the time-varying effect.
     For the current shrinkage and creep prediction modes, the four groups (CEB-FIP90,ACI209(92), RILEM B3and GL2000) of shrinkage and creep prediction modes are choosento parameter analysis according to several important factors affecting the forecast of fourshrinkage and creep in the same conditions
     Through a series of shrinkage and creep test on experimental environment and naturalenvironment, the laws of C60high-strength concrete creep and shrinkage on experimentalenvironment and natural environment are identified, and some laws are analyzed by specimengroups of high-strength reinforcement concrete shrinkage and creep, and the ACI209(92)mode which do not consider the factor affecting the strength of concrete is modified, andtheoretical data are analyzed and compared with actual experimental data.
     The displacement transformation matrix of which each sub-units ultimately areassembled as combinations of pi-type element is derived, and the pi-type element isembedded in the ANSYS software to make use of UPFs platform to achieve a user-definedelement, and two examples show that computational analysis can obtain a better analyticalresults, and the user-defined element is more efficient resource. The creep and shrinkageeffects of Dongting Lake Bridge where the model is built by using the user-defined elementand beam188are analyzed in accordance with the ACI209(92)-X modified mode et al, andthe laws of internal forces and displacement on Dongting Lake Bridge are summarized underthe shrinkage and creep effects.
     In connection with temperature field of the concrete pi-section main beam, it showsthrough theoretical analysis that temperature field of the plates inside and outside surface is inthe time lag relationship, and the factors are researched on the main beam temperature field including the plate thickness, the thermal physical properties of the concrete as well as localnatural conditions by ANSYS and theoretical derivation, and the conclusion shows that thechange of the thickness of the roof and side ribs is limited to the temperature of the outersurface of the plate, and thermophysical properties of concrete is little effect on temperaturefield of the concrete beam, and the speed of wind has less impact on temperature field of theconcrete beam. According to temperature distribution of the Dongting Lake Bridge, ANSYSfinite element models are used as parametric analysis where the important parameters affectthe temperature field of the Dongting Lake Bridge.
     According to the phenomenon where steel cables are susceptible to damage and tend tostress relaxation in service, it is essential to take damage characteristics into account instructural analysis. By introducing equivalent-strain principle and geometrial damage theory,the corrsion mechanism of cable is described and a formulation solving the boundry problemwith the governing differenial equation of the service cable is formulated. With the proposedmethod, cable damage as well as stress relaxion has been taken into consideration, whichprovides a reliable technique with analyzing the geometric nonlinerity of cables of existinglong-span cable-stayed bridges.
引文
[1]中华人民共和国交通部. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [2]中华人民共和国交通部. JTJ023-85公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,1985.
    [3]中华人民共和国铁道部. JB1002.3-2005.铁路桥涵钢筋混凝土.
    [4] CEB-FIP International recommendations for the design and construction of concrete structure[S].1990.
    [5] AASHTO. Standard specifications for highway bridges[s]. Washington, D. C.1996.
    [6] Canadation highway bridge design code (CHBDC)[S].Ontario Ministry of Transportation andCommunications, Downsview, Ontario, Canada.2000.
    [7]林元培.斜拉桥[M].北京:人民交通出版社,1994
    [8] Leonard J. W. Tension structures[M]. McGraw-Hill, New York,1998.
    [9] Gimissing N. J. Gable supported bridges: Concept and design[M]. John Wiley&Sons, New York,1997.
    [10] Tung D. H. and Kudder R. J.. Analysis of cables as equivalent two force menber [J]. EngineeringJournal, AISC,1968:12-19.
    [11] Podolny W. and Scilzi J. B.. Construction and design of cable-stayed bridges[M]. John Wiley&Sons,New York,1976.
    [12] Vilnay O. and Rogers P.. Static and dynamical response of cables nets[J]. Int. J. Solids&Structures,1990,26:299-312.
    [13] Kwan A. S. K.. A new approach to geometic nonlinearity of cable structures[J]. Computers&Structures,1998,67:243-252.
    [14] Mitsugi J.. Static analysis of cable networks and their supporting structures[J]. Computers&Stuctures,1994,51:47-56.
    [15] Stefanou S. D., Moossavi E. Bishop S. and Kalipoulos P.. Conjugate gradients method for calculatingthe response of large cable nets to static loads[J]. Computers&Structures,1993,49:843-848.
    [16] Ahmadi-Kashani K.. Development of cable elements and threir applications in the anslysis of cablestructure[D]. PhD thesis. University of Manchester Institute of Science and Technology(UMIST),1983.
    [17] Gambhir M. L.. Batchelor. Finite elements for cable anslysis[J]. Int. J. of Structure1986,6(1):17-34.
    [18] Jayaraman H. B. and Knudson W. C.. A curved element and their application for the analysis of cablestructures[J]. Computers&Structures,1981,14:325-333.
    [19] Andreu A., Gil L. and Roca P.. A new deformable catenary element for the analysis of cable netstructures[J]. Computers&Structures,2006,84:1882-1890.
    [20] Stahl Frank L. and Gagnon Christopher P.. Cable corrosion in bridges and other structures: causes andsolutions[M]. ASCE PRESS, New York,1996.
    [21]金问鲁.悬挂结构计算理论[M].杭州:浙江科学技术出版社,1981.
    [22]余学进,张少钦.悬索平衡张力的数值解法[J].力学与实践,1990,12(1):48-54
    [23]袁行飞,董石麟.二节点曲线索单元非线性分析[J].工程力学,1999,16(4):59-64.
    [24]沈世钊,徐崇宝,赵臣著.悬索结构设计[M].中国建筑工业出版社,1997
    [25]杨孟刚,陈政清.两节点曲线索单元精细分析的非线性有限元法[J].工程力学,2003,20(1):42-47.
    [26]王春江,董石麟,王人鹏等.一种考虑初始垂度影响的非线性索单元[J].力学季刊,2002,23(3):354-361.
    [27]张震鲁,陈本贤.柔索分析的“悬链段”方法研究[J].工程力学,1990,7(4):41-49
    [28]朱劲松,肖汝诚.大跨度斜拉桥拉索安全性分析方法研究[J].土木工程学报,2006.39(9):74-79
    [29] Bazant Z. P. and Oh B. H.. Deformation of progressive cracking reinforced concrete beams[J]. J. Am.Comcr. Inst.,1984(81):268-278.
    [30] Bazant Z. P. and Xiang Y.. Crack growth and lifetime of concrete under long time loading[J]. Journalof Engineer Mechanics,1997, April,350-358.
    [31] Bazant Z. P. and BAWEJA S.. Justification and refinements of model B3for concrete creep andshrinkage—Statistic and sensitity [J]. Materials and Structures,1995,28(180):415-430.
    [32] Bazant Z. P. and Baweja.. Creep`and shrinkage predication model for analysis and design of concretestructures-model B3[J]. Materials and Sturctures,1995,28:357-365.
    [33] Bazant Z. P.. Viscoelasticity of a solidifying porous material-concrete[J]. Journal of EngineeringMachanics, ASCE,1977(103):1049-1067.
    [34] Bazant Z. P.. Thermodynamics of solidifying or melting viscoelastic material[J]. Journal ofEngineering Mechanics, ASCE,1979(105):933-852.
    [35] Bazant Z. P. and Prasannan S. Nonlinear aging viscoelastic constitutive model for concrete creep[C].4thRILEM int. symp. on Creep and Shrinkage of Concrete: Mathematical modeling, Bazant, Z. P., ed.,1986.
    [36] Bazant Z. P.. Solidification theory for concrete Creep I: Formulation[J]. Journal of EngineeringMechanics, ASCE,1988(115):1691-1703.
    [37] Hatt W K. Notes on effect of time element in loading reinforced concrete beams[C]. Proc. ASTM,11,1911:531-555.
    [38] Neville A. M., Dilger W. H. and Brooks, J. J. Creep of plain and structural concrete[M]. London&New York,1983.
    [39] Nevelle A. M. Properties of concrete[M].3rdedn. Pitman, London,1981.
    [40] Mchta P. K. Concrete: Structures, Properties, and Materials[M]. Pretice-Hall Inc., Englewood Cliffs,New Jerry,1986.
    [41] Neville A. M., Dilger W. H and Brooks J. J. Creep of plain and sturctural concrete[M]. London&New york,1983.
    [42] Ghail A. and Renaud, F. Concrete stress and deformation[M].2nd, edition, E&FN Spon, Chapman anddon,1994.
    [43] Branson D. E.. Deformation of concrete structures[M]. McGraw-Hill, New York,1997.
    [44] Brant, Z. P. Mathematical modeling of creep and shrinkage of concrete[M]. Jhon Willey&Sons Ltd,1998
    [45] Bazant Z. P and Osman E. On the choice of creep function for concrete creep[C]. Proceedings,ASCE,1973,99(ST9):1851-1874
    [46] Trost H. Auswirkungen des superpositionsprinzips auf kriech-und relaxations problemebei betonand spannbeton[J]. Beton-und Stahlbetonbau,1967(61):230-238,261-269;
    [47] Bazant Z. P. Prediction of concrete creep effects using age-adjusted effective modelus method[J].ACI Journal,1972(69):695-705.
    [48] Bazant Z. P. and Kim, S. S. Approximate relaxation function for concrete[J]. Journal of StructuralDivision. ASCE,1979,(ST12):695-705.
    [49] Chiorino M. A. and Lacidogna G. Approximate values of aging coefficient for theade-adjusted-effective-modulus method in linear creep analysis of concrete structures. Relaxationfunction in viscoelastic analysis of concrete structures(CEB Model1990for creep). Atti delDipartimento de ingegniari struturale, Politecnico di torino,1991, No,30.
    [50] Lacidogno G. and Tarantino, M. approximate expressions for the aging coefficient and the relaxationfunction in the viscoelatic analysis of concrete structures[J]. Materials and Structures,1996,29:131-140.
    [51]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1998
    [52]王铁梦.工程结构裂缝控制[M].中国建筑工业出版社,1997
    [53]吴伟中,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1998
    [54]惠荣炎,黄国兴,易若冰.混凝土的徐变[M].北京:中国铁道出版社,1998
    [55]唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利水电出版社,1982.
    [56]黄士元,蒋家奋,杨南如等.近代混凝土理论[M].西安:陕西科学技术出版社,1998
    [57]胡狄.预应力混凝土桥梁徐变收缩效应分析[D].长沙:中南大学,2003.
    [58]王勋文,潘家英.按龄期调整有效模量法中老化系数χ的取值问题[J].中国铁道科学,1996,17(3):12-23
    [59]王勋文,潘家英,程国庆. PC斜拉桥的时变分析—确定性分析[J].中国铁道科学,1997,18(4):13-41.
    [60]王勋文,潘家英,程国庆. PC斜拉桥的时变分析—不确定性分析[J].中国铁道科学,1998,19(1):1-11.
    [61]黄侨,吴红林,王宗林.基于时效分析理论的预应力混凝土结构分析[J].同济大学学报,2003,31(7):813-818.
    [62]陈永春,徐金声,高红旗.预应力构件的钢筋松弛和混凝土收缩徐变应力损失的计算[J].建筑科学,1987(3):3-13.
    [63]陈永春.混凝土徐变问题的中值系数法[J].建筑科学,1991(2):3-8.
    [64]高政国,黄达海,赵国藩.混凝土结构徐变应力分析的全量方法[J].土木工程学报,2001,34(4):10-14.
    [65]高政国,赵国藩.混凝土徐变分析的双功能函数表达[J].建筑材料学报,2001,4(3):250-254.
    [66]范立础,杜国华.桥梁结构徐变次内力分析[J].同济大学学报,1991,19(1):23-31.
    [67]朱伯芳等.水工混凝土结构的温度应力与温度控制[M].北京:水利水电出版社,1976.
    [68]朱伯芳.混凝土结构徐变应力分析的隐式解法[J].水利学报,1983(5):40-46.
    [69]肖汝成.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.
    [70]李国平,刘健.大跨度连续梁桥线形最优施工控制的理论与方法[J].华东公路,1992(2):66-70.
    [71] Ghali R. I.. Time effects in concrete structures.[M]. Elsevier Sciences Publishing Co.. Inc. New York,1998.
    [72] Bazant Z. P. and Wu S. T.. Dirichlet series creep function for aging concrete[J]. J. Eng. Mech. Div.ASCE,1973,99(EM2):367-387
    [73] Zienkiewicz Q. C. and Waston M.. Some creep effects in stress analysis with particular reference toconcrete at pressure vessels[J]. Nucl. Engineering and Design,1966(4).
    [74] Taylor R. L., Pister K. S. and Goudreau G. L.. Thermomechanical analysis of viscoelastic solids[J].Num. Meth. Eng.1970(2):45-60.
    [75]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [76]刘兴法.预应力混凝土箱梁日照温度应力与位移[J].桥梁建设,1980(1).
    [77]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986(1).
    [78]郭健.混凝土斜拉桥主梁的非稳态温度与应力场分析[J].中国公路学报,2005,18(2):65-68.
    [79]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998.
    [80]颜东煌,涂亚光等.肋板式主梁温度场的数值计算方法[J].中外公路,2002年第4期.
    [81]邵旭东,李立丰,鲍卫刚.砼箱形梁横向温度应力计算分析[J].重庆交通学院学报,2000,19(4):5-14.
    [82]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].中国公路学报,1996,9(2):76-83.
    [83]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].东南大学学报,2002,32(5).
    [84]颜东煌,陈常松,涂亚光等。混凝土斜拉桥施工控制温度影响及其现场修正[J].中国学报,2006,19(4):71-76.
    [85] Kehlbeck F.著,刘兴法等译.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [86] Enrique M., Antonni A.. Temperature and stress distributions in concrete box girder bridges[J].Journal of Structural Engineering, ASCE,1987,11(12):2389-2409.
    [87] Fu H. C., Ng S. F. and Cheung M. S.. Thermal behavior of composite bridges[J]. Journal ofSturctural Engineering, ASCE,1990,116(12):3302-3323.
    [88] Reynolds J. C. and Emanuel J. H.. Thermal stresses and movements in bridge[J]. Journal ofStructural Division, ASCE,1974,100(ST1):63-78.
    [89] Hunt B. and Cooke N.. Thermal calculations for bridge design[J]. Journal of Structural Division,ASCE,1975,101(9).
    [90] Churchward A. and Sokal Y. J.. Prediction of temperatures in concrete bridge[J]. Journal of StuucturalDivision, ASCE,1981,107(ST11):39-58.
    [91] Rahman F. and Sokal Y. J.. Prediction of tempertures in concrete bridge[J]. Journal of StructuralDivision, ASCE,1980,106(ST1):39-58
    [92] DilgerW. H. et al. Temperatures stresses in composite box girder bridges[J].
    [93] Mirambell M., Eibadry and Amin Ghali.. Temperature variations in concrete bridges[J]. Journal ofStuctural Engineering, ASCE,1983,109(10):2355-2374.
    [94] Roeber C. W..Proposed design method for thermal bridge moments[J]. Journal of Bridge Engineering,ACSE,2003,8(1):12-19.
    [95]克里斯特克著,何福照,吴德心译.箱梁理论[M].北京:人民交通出版社,1998.
    [96]郭金琼.箱形梁设计理论[M].北京:人民交通出版社,1991.
    [97] Cheung Y. K.. Finite strip method in the analysis of right box girder bridges using computed shapefunctions[J]. Thin-walled Struct.,1992,13(4):275-298.
    [98] Cheung, Y. K.著,谢秀松,王贻荪,李兰芳,方佩芝译,结构分析的有限条法[M].北京:人民交通出版社,1980.
    [99] Cheung M. S. and Li W.. Analysis of continuous, haunched box-girder bridges by finite strips[J].Journal of Structural Engineering, ASCE,1989,115(5):1076-1087.
    [100] Cheung Y. K. and Au F. T. K.. Finite strip analysis of right box girder bridges using computed shapefunctions[J]. Thin-Walled Struct.,1990,36(5):817-822.
    [101] Maleki S. Compound strip method for box girders and folded plates[J]. Computers&Structures,1991,40(3):527-538.
    [102] Abdullah M. A. and Abdul-Razzak, A. A. Finite Strip analysis of prestressed box-girders[J].Computers&Structures,1990,36(5):817-822.
    [103]赵振铭,房贞政,郭金琼.带隔板的连续箱形有线条分析[J].桥梁建设,1983(4).:35-53
    [104]王全凤,李华煜.任意截面形状薄壁压杆的稳定[J].土木工程学报,1996,29(6):18-24.
    [105] Luo Q. Z. et al. A finite segment model for shear lag analysis[J]. Engineering Structures,2004(26):2113-2124.
    [106] McClure R M., West-tt.H. and Hoffman EC., Observations from tests on a segmentalbridge, and Bridge Engineering Conference,Transportation Research Record950.2Naticenal Research Council. Minneapolis Minn.1984
    [107] Zuk w Simplified design check of thermal stresses in composite highway bridge, Highway ResearchRecord,103.1965.
    [108] Sliman m.h and Kennedy, J.b., Simplified method for estimating thermal wtresses in compositebridges, Tramsportation Research Record.TRB1072, National Research Council, Washington D. C.1986.
    [109] Standards Association of Autralia. Australian Standard for Concrete Structure. AS36001988
    [110] Standards Australia. Australian Standard-Concrete Strcutures, AS3600Suppl-1994.
    [111] M. M. Elbadry, A. Ghali. Temperature Variations in Concrete Engineering, Vol.109,No.10,October,1983
    [112] Moorty S. and Record C.W. Temperature-dependent bridge movements. Journal of StructuralEngineering,1992, Vol.118, No.4,1090-1105
    [113]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994
    [114]国家建材网.混凝土收缩的种类[EB/OL],世界经理人集团,[2003-03-25]
    [115] Bazant Z. P. Prediction of concrete creep and shrinkage; past, present and future[J]. NuclearEngineering and Design.,2001,203:27-28.
    [116] ACI Committee209. Prediction of Creep Shrinkage and Temperature Effects in Concrete Structures(209R-92)[S]. America Concrete Institute, Farmington Hills, Mich,1992.
    [117]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究[D].长沙:湖南大学2006
    [118] Bazant B P, Baweja S.. Justification and refinements of model B3for concrete creep and shinkagestatistics and sensitivity [J]. Materials and Structures,1995,28:415-430.
    [119] Bazant. Z. P., Bweja S. Creep and Shinkage Prediction Model for analysis and Design of ConcreteStructures-model B3[J]. Materials and Structures,1995,28:357-365.
    [120]丁文胜,孙福全,阚玉萍等.两种CEB-FIP混凝土徐变模型的对比分析[J].江苏科技大学学报(自然科学版),2006,20(6):23-27.
    [121]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.4
    [122]唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利电力出版社,1982
    [123]龚洛书,惠满印等21人(十个试验研究单位).混凝土收缩与徐变的试验研究[R].建筑科学研究报告,中国建筑科学研究院,1987.No.4-1
    [124] CEB欧洲国际混凝土委员会.1990年CEB-FIP模式规范(混凝土结构)[5].中国建筑科学研究院结构所规范室译.1991.12:57-70.
    [125] ACI Committee209. Prediction of Creep, Shrinkage and Temperature Effects in ConcreteStructures (ACI209-82)[S]. ACI,1982.
    [126] BS5400: Part4:1984. Code of Practice for Design of concrete Bridges[S]. British Standard Institute,1984.
    [127]英国标准协会.BS8110《英国混凝土结构规范》[5].中国建筑科学研究院结构所规范室译.1993.5:191-195
    [128] Z. P. Bazant and S. Baweja. Creep and Shrinkage Prediction Model for Analysis and Design ofConerete Structures-Model B3,RILEM Reeonunendation [J], Materials andStructures,28,1995,357-365.
    [129] N. J, Gardner, J. W. Zhao. Creep and Shrinkage Revisited[J]. ACI Materials Journal,90(.3),1993,236-246.
    [130] N. J. Gardner and M. J. Lockman. Design, provisions for Drying shrinkage and Creep ofNormal-StrengthConcrete[J].ACI Materials Journal, V.98, No.2, March-April2001, pp.159-167.
    [131] Z. P. Bazant. Prediction of concrete creep effeets using age-adjusted effeetive modulusmethod[J].ACI Journal,69:212-217.
    [132]王荣辉,曾庆元.薄壁箱梁空间计算的板梁单元法[J].铁道学报,1999,21(5):94-98.
    [133]江德增.斜塔斜拉桥施工与运营过程中的力学行为研究.[D].华南理工大学博士学位论文. G广州:华南理工大学,2010.
    [134] Bertil Persson. Correlating laboratory and field tests of creep in high-performance concrete [J],Cement and Concrete Research,2001,31(3):389-395.
    [135]向小斌.大跨度连续刚构桥混凝土徐变试验研究[D],武汉:武汉理工大学,2007
    [136]曾彦.高标号混凝土徐变理论与试验研究[D].武汉理工大学,2005
    [137]顾炜,熊学玉,黄鼎业.超长预应力混凝土结构收缩徐变敏感性分析[J].建筑材料学报,2008,11(5):535-540
    [138] Wittman F. H., Beltzung F., Tie-Jun Zhao. Shrinkage mechanisms, crack formation and service lifeof reinforced concrete structures[J]. International Journal of Stuctural Engineering,2009(1):13-28.
    [139]陈常松,颜东煌,陈政清等.混凝土振弦式应变计测试技术研究[J].中国公路学报,2004,17(01):13-28.
    [140]张云涛,孟少平,潘钻峰.高强混凝土徐变力学实验研究.[J].实验力学。2009.
    [141]中交公路规划设计院. JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [142]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994.1
    [143] David W. Mokarem. Development of concrete shiage Performance specification[D]. Faeulty of theVirginia Polyteehnic Institute and State University,2002.5
    [144]潘钻峰,吕志涛,孟少平.配筋对高强混凝土收缩徐变影响的试验研究.[J].土木工程学报.2009.2
    [145]王荣辉,曾庆元.薄壁箱梁空间计算的板梁单元法[J].铁道学报,1999,21(5):94-98
    [146]程玮.基于ANSYS二次开发的钢筋混凝土结构倒塌仿真分析及其程序设计[D].上海:同济大学,2002
    [147]鲍卫刚,杜国华,范立础.曲线桥梁结构徐变次内力分析[J].中国公路学报,1995,8(2):53-60
    [148]唐崇钊.混凝土的徐变力学与试验技术[M].北京:水利电力出版社,1982
    [149]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002:149-157
    [150]江见琼,陆新征,叶列平。混凝土结构有限元分析[M].北京:北京大学出版社,清华大学出版社,1987.
    [151] Shi Z. H. Ohtsu, Masayasu. Et al. Numerial analysis of multiple cracks in concrete using the discreteappraoch[J]. Journal of Structural Engineering,2001,127(9):1085-1091.
    [152] Yang Z. J. and Proverbs D. A comparative study of numerical solutions to non-linear discrete crackmodelling of concrete beams involving sharp snap-back [J]. Engineering Fracture Mechanics,2004,71:81-105.
    [153] Yang Z. J and Chen, Jianfei. Finite element modelling of multiple cohesive discrete crackpropagation in reinforced concrete beams[J]. Engineering Fracture Mechanics,2005,72:2280-2297
    [154] Rots J. G. and Blaauwendraad J.. Crack models for concrete: discrete or smeared fixedmulit-directional or rotating [J]. Heron,1989,34(1):3-59.
    [155] Chen G. and Baker G..Energy apporoach to numerical modeling of crack spacing in reinforcedconcrete[J]. Recent advanves in computational science and engineering, H. P.Lee and K. Kumar, eds,Imperial College Press, Singapore,2002,569-572.
    [156] Zhang Y. G.. el at. Finite element method in the analysis of reactor vessels[J]. Nucl. Engineering andDesign,1972(20).
    [157]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,l991
    [158]康为江.钢筋混凝土箱梁日照温度效应研究[D].湖南大学硕士学位论文.长沙:湖南大学结构工程专业,2000
    [159] Priestley M. J. Nigle. Design thermal gradients for concrete bridges[J]. NewZealand Engineering,l976.31(9).213-219.
    [160] Priestley M.J.Nigle. Design of concrete bridges for temperature gradients[J]. Journal of TheAmeriena Coneerte Instiutte. l978.72(23):209-217
    [161] Kehlbeck F.刘兴法译.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,l981,50.5l
    [162]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,l986
    [163]赵毅强,林才奎,汪徐送等.太平大桥混凝土箱体的温度场[J].中南汽车运输,l999,20.22
    [164]贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[东南大学硕士学位论文][D].南京:东南大学,200l,
    [165]康为江,方志等.钢筋混凝土连续箱梁日照温差应力的试验研究[J].湖南交通科技,2001
    [166]颜东煌,涂光亚,陈常松等.肋板式主梁温度场的数值计算方法[J].中外公路,2002
    [167]郭棋武,方志等.混凝土斜拉桥的温度效应分析[J].中国公路学报,2002,15(2):48-51.
    [168]王效通.预应力混凝土箱梁温度场计算的有限元法[J].西南交通大学学报,1985(3):52-62.
    [169]葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].中国公路学报,l996,9(2):76-83.
    [170]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [171]柯尊礼.大跨度PC连续箱梁桥的温度场及其效应分析:(硕士学位论文)[J].武汉:武汉理工大学,2004:45-46.
    [172]贺拴海.桥梁结构理论与计算方法[M].北京:人民交通出版社,2003年.
    [173]中华人民共和国行业标准. JTG/T D65-2007,公路斜拉桥设计细则[S].北京:人民交通出版社,2007.
    [174]中华人民共和国行业标准. JTG D60-2004.公路斜拉桥设计细则[S].北京:人民交通出版社,2004.
    [175]陈精一,蔡国忠.电脑辅助工程分析ANSYS使用指南[M].中国铁道出版社,2001
    [176]博嘉科技.有限元分析软件-ANSYS融会与贯通[M].中国水利水电出版社,2002.11
    [177]张朝晖. ANSYS热分析教程与实例解析[M].中国铁道出版社,2005.06
    [178]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].机械工业出版社,2003.11
    [179]中国建筑科学研究院.民用建筑采暖通风设计技术措施[M].北京:中国建筑工业出版社,1983,227.
    [180]中华人民共和国铁道部部部颁标准.铁路桥涵钢筋混凝土及预应力混凝土结构设计规范(TB10002.3-2005)[S].北京:中国铁道出版社,2005.
    [181]中华人民共和国行业标准. JTG D60-2004.公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [182]中华人民共和国行业标准. JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [183]美国各州公路和运输工作者协会(AASHTO),辛济平,万国朝,张文等译.美国公路桥梁设计规范—荷载与抗力系数设计法(SI单位,第一版,1994年).北京:人民交通出版社,1998
    [184]. American Association of State Highway and Transportation Officials. AASHTO LRFD BridgeDesign Specifications[S], SI Units, Third Edition,2004
    [185]贺栓海,桥梁结构理论与计算方法,北京,人民交通出版社,2002.8
    [186]郭健.混凝土斜拉桥主梁的非稳态温度场与应力场分析[J].中国公路学报.2005.18(2):65-68.
    [187]杨继.斜拉桥箱梁温度场及温度效应的研究[D].长沙理工大学硕士学位论文.长沙:桥梁与隧道工程,2008
    [188] Stahl Frank L. and Gagnon Christopher P.. Cable corrosion in bridges and other structures: causesand solutions[M]. ASCE PRESS, New York,1996.
    [189] Lemaitre J.. Evaluation of Dissipation and Damage in Metals Submitted to Dynamic Loading [C].Proceedings of ICM-1, Kyoto, Japan,1971.
    [190] Kachanov L M. continuum model of medium with cracks[J]. J. Engg. Mech. Div. ASCE,1987,90(9):1039-1051.
    [191] Juan Huang, Ronghui Wang and Tao Tang. UL Formation for cable state of existing cable-stayedBridge[C].26thAnnual Southern African Transport Conference, SATC2007: The Challenges ofImplementing Policy, Southern African,2007.
    [192] Wang Ronghui and Huang Juan. Mechanism analysis of structural behavior of inclined cable inservice[C].2ndInternational Conference on Structural Condition Assessment, Moditoring andImprovement (SCAMI-2), Changsha, china,2007.
    [193]朱劲松,肖汝诚.大跨度斜拉桥拉索安全性分析方法研究[J].土木工程学报,2006,39(9):74-79.
    [194] Bazant Z. P. and Xiang Y. Crack growth and lifetime of concrete under long time loading[J]. Journalof Engineering Mechanics,1997, April,350-358.
    [195]李国豪.桥梁结构的稳定与振动[M].中国铁道出版社,1992
    [196]胡利平,凌育洪,脉动法索力测量技术及相关参数分析[J],中南公路工程,2004.04.47-49;
    [197]段波,曾德荣,卢江.关于斜拉桥索力测定的分析[J].重庆交通学院学报,2005,24(4):6-12;
    [198]张宏跃,田石柱.提高斜拉索索力估算精度的方法[J].地震工程与工程振动,2004,24(4):82-85.
    [199]陈智峰.斜拉桥索力测试的温度修正[J].山西建筑,2007,(08):275-277.
    [200]侯俊明,彭晓彬,叶方才.斜拉索索力的温度敏感性[J],长安大学公路学院,2002.4.61-65.
    [201]王朝华,李国蔚,何祖发等.斜拉桥索力测量的影响因素分析[J],世界桥梁,2004,(3):64-67.
    [202]王卫锋,韩大建.斜拉桥的索力测试及其参数识别[J],华南理工大学学报(自然科学版),2001.29(l):18-21.
    [203]陈常松,陈政清,颜东煌.柔索索力主频阶次误差及支承条件误差[J].交通运输工程学报,2004.4(4):17-20.
    [204]王修勇,何旭辉,陈政清.斜拉索一阻尼器系统的动力特性分析[J].长沙铁道学院学报,2001.l9(4):68-72.
    [205]王修勇,谭艳.拉索减振阻尼器对拉索频率的影响研究[J],振动与冲击,2008.11.85-87
    [206]颜东煌,陈常松.带刚臂空间梁单元及其在斜拉桥计算中的应用[J].湖南大学学报(自然科学版),1999,26(2):72-77
    [207]苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立[J].华南理工大学学报,1999,27(11):51-56
    [208] L. D. Zhu,H. F. Xiang,Y. L. Xu. Triple-girder model for modal analysis of cable-stayed bridges withwarping effect [J]. Engineering Structures,2000,22:1313-1323
    [209]汉勃利(E.C. Hambly),郭文辉译.桥梁上部构造性能[M].北京:人民交通出版社,1982
    [210]倪元增,钱寅泉.弹性薄壁梁桥分析[M].北京:人民交通出版社,2000
    [211]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002
    [212]张凤鸣,熊健民,周金枝等.板桁组合结构分析的超级有限元法[J].湖北工学院学报.2000.15(1):21-24.
    [213]王荣辉,徐林荣,曾庆元.板桁组合结构空间计算的板桁梁段有限元法[J].工程力学.1999.16(4):65-72
    [214]陈德伟,李欣然,杨文军.大佛寺长江大桥(斜拉桥)运营阶段斜拉索安全评估方法.[J].第十六届全国桥梁学术会议.2004.570-574
    [215]梁柱,李娜,郑春.基于桥梁健康监测系统的斜拉索损伤识别.[J].铁道建筑.2008(12).1-4.
    [216] J. Y. Li, Y. Yao. A study on creep and drying shrinkage of high performance concrete [J]. Cement andConcrete Research,2001,31:1203-1206.
    [217]王效通.预应力混凝土箱梁温度场计算的有限元法[J].西安交通大学学报.1985(3):52-62.
    [218]苗永宽.球面天文学[M].北京:科学出版社.1983.
    [219]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究.1990(1):37-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700