混合梁斜拉桥钢混结合段受力性能的试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外已建成和正在建设的大跨度混合梁斜拉桥数量很多,但每个斜拉桥的主梁钢混结合段的设计和构造细节都各不相同,国内外规范对大跨度混合梁斜拉桥主梁钢混结合段的设计均未给出详尽的说明,设计依据不明确。在钢-混凝土组合结构中,剪力连接件对钢和混凝土这两种性能差别较大的材料的协同工作具有重要作用。目前国内外对剪力钉的承载能力和抗剪刚度做了大量的研究,但研究工作主要是针对设置单枚或多枚剪力钉的试件的推出试验进行的,对剪力钉在主梁钢混结合段中的受力性能的研究较少。因此,分析主梁钢混结合段中剪力钉、钢板、混凝土三者之间的相互工作方式,研究混合梁斜拉桥主梁钢混结合段的计算方法具有重要意义。
     本文在国内外进行的大跨度混合梁斜拉桥主梁钢混结合段试验和剪力钉承载能力及抗剪刚度试验的研究成果的基础上,进行了两种构造形式的主梁钢混结合段缩尺模型试验和理论研究。将有限元分析结果和模型测试结果进行了对比,分析表明有限元计算结果和模型试验结果吻合得较好,合理的有限元分析可以准确的反映试验模型的受力状态,根据模型试验结果和有限元计算结果评判了实桥钢混结合段设计的合理性。研究内容和取得的成果如下:
     1.对组合结构常用的剪力钉设计和制作了单枚剪力钉型钢混凝土试件,并进行了推出试验。通过推出试验,研究分析了推出试件中单枚剪力钉的受力特性、荷载-滑移规律和破坏机理,计算分析了单枚剪力钉的抗剪承载力及剪切刚度。在对组合结构中钢-混凝土界面的模拟方法进行了研究后,建立了有限元分析模型,研究了剪力钉、钢板、混凝土三者的相互作用机理。根据推出试验结果和有限元计算结果的对比分析,表明合理的有限元计算可以准确的计算出单枚剪力钉的极限承载力和荷载-滑移曲线,弥补了以往剪力钉承载能力和剪切刚度只能通过推出试验得出的不足。
     2.对南昌英雄大桥和武汉二七长江大桥主梁钢混结合段分别进行了大比例的缩尺模型设计和制作,并进行了试验。在模型试验中,对两座桥的钢混结合段试验模型分别进行了正常使用荷载、设计极限荷载和超载三种工况的试验,研究了在不同工况荷载作用下两座桥梁钢混结合段的应力分布情况和结合段的承载能力,分析了具有不同构造形式的两座桥梁主梁钢混结合段的受力与变形性能。
     3.在对钢混结合段钢-混凝土界面的有限元模拟方法进行了研究后,对上述具有不同构造形式的两座桥梁主梁钢混结合段试验模型进行了有限元分析,并将模型实验值和有限元计算值进行了对比,分析表明有限元计算结果和模型试验结果吻合得较好,合理的有限元分析可以准确的反映试验试件的受力状态。
     4.根据上述剪力钉推出试验和主梁钢混结合段的模型试验及有限元分析得出的结论,在不影响不同构造形式的钢混结合段的受力特性的基础上,在本文的有限元分析中,分别对两座桥梁的钢混结合段进行了简化,对简化后的分析模型进行了非线性仿真计算,研究了钢板和混凝土不同结合程度对钢混结合段中剪力钉群的受力特性的影响,分析了钢混结合段简化模型受力机理。
     5.结合剪力钉推出试验和主梁钢混结合段的模型试验及有限元分析得出的结论,研究了钢-混凝土界面的滑移量对钢混结合段抗弯、抗压性能的影响,提出了在钢-混凝土界面存在滑移量的情况下,钢混结合段分别受轴力和弯矩作用时钢板和混凝土应变计算公式。
There are many large span hybrid cable-stayed bridges have been built or under construction at home and abroad, but the design and structure of each hybrid-stayed bridge steel-concrete joint section in the main beam are different from each other. Because there is no detailed design statement of the cable-stayed bridge steel-concrete joint section in the bridge design codes at home and abroad, so the design consideration is not clear and definite. In steel-concrete composite structure, the shear connector can make implement cooperation work between steel and concrete which are great differents in the material property, so it is very important. In present, there are many works study the shear capacity and shearing stiffness of shear studs, but they are more centering on push-out test of single or several shear studs, and less centering on the mechanical behavior of the shear studs in the steel-concrete joint section of the main beam, so it is very important to analyse the mutual action mechanism among shear stud, steel and concrete, and research the calculation method of the steel-concrete joint section in the main beam of the hybrid-stayed bridge.
     Based on the model test of the steel-concrete joint section in the main of the large span hybrid cable-stayed bridges and carrying capacity and shearing stiffness test of shear studs at home and abroad, two different structure styles main beam steel-concrete joint section model test and research are carried out. The comparison research on the experiment measured result and the numerical calculation results shows that the numerical calculation tallies with the experiment result, and the reasonable finite element analysis can accurately reflect the forced state of the test model. According to the experiment measured result and numerical calculation results, the rationality of the design of the main beam steel-concrete joint section in real bridge is verified. The following main contents are studied and some impotant results and conclusions have been achieved as follows:
     1. Taking the shear stud commonly used in steel-concrete composite structure as research objects, the specimen of single shear stud steel reinforced concrete is designed and constructed, and the push-out test is done. Through push-out test, the force characteristics, load-slippage rule, failure mechanism of single shear stud in joint section are studied, the shear capacity and shearing stiffness of single shear stud are calculated. After the the method to simulate the interface between steel and concrete in steel-concrete composite structure is investigated in finite element software, the finite element calculation model is established to study the mutual action mechanism among shear stud, steel and concrete. The comparison analysis between the experiment measured result and numerical calculation results shows that the reasonable finite element calculation can accurately calculate the ultimate bearing capacity and load-slippage curve of single shear stud, this finite element calculation method makes up the deficiency that the ultimate bearing capacity of single shear stud can only be achieved by push-out test.
     2. The huge rate models of Nanchang Yingxiong Bridge and Wuhan ErQI Changjiang River Bridge main beam steel-concrete joint section is designed and constructed, and the static experiments are done. The static experiments of the models of the two bridges main beam steel-concrete joint section under three load conditions that they are respectively scenarios of service limit state load, design ultimate limit state load and 1.4 times design ultimate limit load state are carried out, the stress distribution, load bearing capacity, force bearing and deformation behavior of the two bridges main beam steel-concrete joint section which have two different structure styles are reseached under the three load conditions.
     3. After the the method to simulate the interface between steel and concrete of main beam steel-concrete joint section is investigated in finite element software, the finite element analysis is done for the two different structure styles of main beam steel-concrete joint section ahout the two bridges above mentioned. The comparison analysis between the experiment measured result and numerical calculation results shows that the finite element calculation result tallies with the experiment result, and the reasonable finite element calculation can accurately reflect the forced state of the tset model.
     4. According to the shear stud push-out test result, main beam steel-concrete joint section model test result and related finite element analysis result above mentioned, taking that there are no influences on force characteristics of the different styles main beam steel-concrete joint section of the two bridge above mentioned as prerequisite, the main beam steel-concrete joint section is simplified in the finite element analysis. Nonlinear simulative calculation of the simplified model is done, the effect of the different degree of binding between steel and concrete on the force characteristics of crowded shear in the simplified model is studied, the force mechanism of the steel-concrete joint section simplified model is researched.
     5. Combining with the shear stud push-out test result, main beam steel-concrete joint section model test result and related finite element analysis result, the effect caused by the interface slip between steel and concrete on the compressive strength and bending strength is researched, and this paper puts forward the formula to calculate the strain of the steel and concrete in steel-concrete joint section under axial force or moment loading in the condition that the interface slip occurred between steel and concrete.
引文
[1]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996.
    [2]林元培.斜拉桥[M].北京:人民交通出版社,1995.
    [3]严国敏.试谈斜拉桥的几个问题[J].土木工程学报,1989,22(2),78-87.
    [4]John F. Fleming, Nonlinear Static Analysis of Cable-stayed Bridge Structures. Computers and Structures,1979,10:621-635.
    [5]Aly S. Nazmy, Ahmed M. Abdel-Ghaffar. Three-Dimensional Nonlinear Static Analysis of Cable-stayed Bridges. Computers and Structures,1990,34:257-271.
    [6]陈开利,余天庆,习刚.混合梁斜拉桥的发展与展望[J].桥梁建设,2005,(2),1-4.
    [7]刘玉擎.混合梁接合部设计技术的发展[J].世界桥梁,2005(4):9-12.
    [8]刘荣,刘玉擎.混合梁接合部连接件受力分析[J].哈尔滨工业大学学报,2007,39(2):264-267.
    [9]文武松,汪双炎,王邦楣.混合梁斜拉桥连接部位的传力研究[J].桥梁建设,1997(3),75-81.
    [10]Bouazaoui L, Perrenot G, Delmas Y, et al. Experimental study of bonded steel concrete composite structures [J]. Journal of Constructional Steel Research,2007,63 (9):1268-1278.
    [11]Evangelos J S, John T K. Interface forces in composite steel-concrete structure [J]. International Journal of Solids and Structures,2000,37 (32):4455-4472.
    [12]Oduyemi TOS, Wright HD. An experimental investigation into the behaviour of double-skin sandwich beams [J]. Journal of Construction Steel Research,1989 (14): 197-220.
    [13]Yahuno Masashi. et al. Design of Tataracbrigde[J]. Engineering Review,2003,36(2): 40-56.
    [14]中华人民共和国交通部.JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [15]中华人民共和国交通部.JTG D65-01-2007公路斜拉桥设计细则[S].北京:人民交通出版社,2004.
    [16]中华人民共和国经贸易委员会.钢-混凝土组合结构设计规程(DL/T-5085.1999). 北京:中国计划出版社,1999.
    [17]中华人民共和国行业标准.型钢混凝土组合结构技术规程(JGJ138—2001).中国:建筑工业出版社,2001.12.
    [18]朱聘儒,李铁强,陶懋治.钢与混凝士组合梁弯筋连接件的抗剪性能[J].工业建筑,1985(10):17-22.
    [19]聂建国,孙国电.钢-混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985,6(2):10-17.
    [20]Oehers D J, Johnson R P. The strength of stud shear connections in composite beams [J]. Structural Engineer,1987,65B (2):44-48.
    [21]M.R.Veldanda. et al. Behavior of perfobond rib shear connectors:push-out tests[J]. Canadian Journal of Civil Engineering.1992,19 (2),1-10.
    [22]叶梅新,罗如登.群钉钢-混凝土组合件栓钉受力状态研究[J].钢结构,1999,14(3):39-44.
    [23]聂建国,沈聚敏,袁彦声.钢-混凝土组合梁中剪力连接件实际承载力研究[J].建筑结构学报,1996(2),26-33.
    [24]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报(自然科学版),1999(12),50-56.
    [25]宗周红,车慧闽.剪力连接件静载和疲劳试验研究[J].福州大学学报,1999(6)29-36.
    [26]曹建安,叶梅新.结合梁栓钉的极限承载力的试验研究[J].长沙铁道学院学报,1999,17(1),16-20.
    [27]Ollgaard H. G, Slutter R. G., Fisher J. D. Shear strength of stud connectors in lightweight and normal-weight concrete. Engineering Journal of American Institute of Steel Construction,1971,8 (2):55-64.
    [28]Oehlers D. J. The shear stiffness of stud shear connectiongs in composite beams. Construet Steel Research,1986 (6):273-284.
    [29]胡厦闽.欧洲规范4钢-混凝土组合梁设计方法(6)-剪力连接件[J].工业建筑,1996(2),43-48.
    [30]胡厦闽.欧洲规范4钢-混凝土组合梁设计方法(7)-剪力连接件设计[J].工业建筑,1996(3),57-63.
    [31]陈开利,王戒躁,安群慧.舟山桃天门大桥钢与混凝土结合段模型试验研究[J]. 土木工程学报,2006,39(3):86-90.
    [32]刘玉攀.组合结构桥梁[M].北京:人民交通出版社,2005,2-3.
    [33]郑舟军.济南黄河大桥剪力钉静力与疲劳模型试验研究,2007年第(46)号[R].武汉:中铁大桥局集团武汉桥梁科学研究院有限公司,2007.
    [34]郑舟军,陈开利.混合梁斜拉桥结合段剪力钉受力机理研究[J].武汉理工大学学报,2008,32(4):767-770.
    [35]郑舟军,陈开利,童智洋.剪力钉推出试验受力机理研究[J].钢结构,2009,9(24):28-32.
    [36]幸思佳.钢混结合段长列剪力钉模型试验分析[M].武汉:湖北工业大学硕士学位论文,1997:57-95.
    [37]朱聘儒.钢-混凝土组合梁设计原理[M].中国建筑工业出版社,1989.
    [38]薛伟辰,汪基伟,周氐.现代组合结构的研究与应用[J].工程力学,1996,34-37.
    [39]An L, Cederwall K. Push-out tests on studs in high strength and normal strength concrete [J]. Construction Steel Research 1996,36(1):15-29.
    [40]Paul Johnson R, Greenwood R D, Van Dalen K. Stud shear-connectors in hogging moment regions of composite beams [J]. The Structural Engineer,1969,47 (9): 345-350.
    [41]Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normal weight concrete [J]. Journal of AISC Engineering,1971,8 (4):55-64.
    [42]Johnson R P, Molenstra N. Partial shear connection in composite beams in building [J]. Proceeding of Institution of Civil Engineers, Part 2,1991,91:679-704.
    [43]Aribert J M, Labib A G. Modele de calcul elasto-plastique de poutres mixtes a connexion partielle [J]. Constr Metal,1982,4:3-51.
    [44]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics,1998,124 (8):892-900.
    [45]Nilsson A.H. Nonlinear analysis of reinforced concrete by the finite element method [J]. Journal of ACI Structures,1968,65 (9):757-766.
    [46]Lubliner J, Oliver J, Oller S. A plastic-damage model for concrete [J]. International Journal of Solids and Structures,1989,25:299-329.
    [47]陈惠发著,余天庆译.土木工程材料的本构方程[M].武汉:华中科技大学出版社,1999.
    [48]L.Nobi. Damage mechanics of concrete [J]. Engineering Fracture Mechanics,1991, 39 (6),1011-1014.
    [49]陈惠发,A.F.萨里普著.余天庆,王勋文,刘再华编译.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [50]Mander, J.B, et al. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering,1988,114 (8),1804-1826.
    [51]Mander, J.B, et al. Observed stress-strain behavior of confined concrete. Journal of Structural Engineering,1988b,114 (8):1827-1849.
    [52]K.A.S.Susantha, Hanbin Ge, Tsutomu Usami. Relationship of concrete confined by various shaped steel tubes. Engineering Structure,2001 (23):1331-1347.
    [53]江见鲸.关于钢筋混凝土数值分析中的本构关系[J].力学进展,1994,24(1):117-123.
    [54]沈珠江.关于破坏准则和屈服函数的总结.岩土工程学报.1995,17(1):1-8.
    [55]陆新征,江见鲸.利用ANSYS Solid 65单元分析复杂应力条件下的混凝土结构.建筑结构.2003,33(6):22-24.
    [56]过镇海,王传志.多轴应力下混凝土的强度和破坏准则研究.土木工程学报,1991,24(3):1-14.
    [57]Dall'Asta A, Dezi L. Nonlinear behavior of externally prestressed composite beams: analytical model [J]. Journal of Structural Engineering, ASCE,1998,124 (5): 588-597.
    [58]Dall' AstaA, Zona A. Finite element model for externally prestressed composite beams with deformable connection [J]. Journal of Structural Engineering, ASCE, 2005,131 (5):706-714.
    [59]Sebastian W M, Mc Connel R E. Nonlinear FE analysis of steel-concrete composite structures [J]. Journal of Structural Engineering, ASCE,2000,126 (6):662-674.
    [60]Joint Committee IABSE/CEB/FIP/ECCS. Composite Structures (Model Code) [M]. London:Construction Press,1981.
    [61]Davies C. Steel concrete composite beams with flexible connectors:a survey of research. Concrete,1967 (12):425-430.
    [62]Roger G. Slutter, George C. Driscoll. Flexural strength of steel-concrete composite beams. Proceedings of ASCE, Journal Duvusuibm 1965,91 (4):235-240.
    [63]SLUTTER R G, DRISCOLL G C. Flexural strength of steel-concrete composite beams [J]. Journal of the Structural Division, ASCE,1965,91 (2):71-99.
    [64]VIEST I M. Investigation of stud shear connectors for composite concrete and steel T-beams[J]. Journal of American Concrete Institute,1956,27 (2):875-891.
    [65]Patrick M, Bridge R Q. Partial shear connection design of composite slabs[J].Engng Struct.,1994,16 (5):348-362.
    [66]Dennis Lam, M.ASCE, and Ehab El-Lobody. Behavior of headed stud shear connectors in composite beam[J]. Journal of Structural Engineering,2005,131 (1): 96-107.
    [67]南昌市英雄大桥北主桥钢混凝土结合段受力和传力行为研究及模型试验,2008年第(13)号[R].武汉:中铁大桥局集团武汉桥梁科学研究院有限公司,2008.
    [68]张仲先,黄彩萍,党志杰.混合梁斜拉桥钢混结合段静力试验研究[J].华中科技大学(自然科学版),2010,38(4):121-124.
    [69]张仲先,黄彩萍,徐海鹰.混合梁斜拉桥钢混结合段传力机理研究[J].华中科技大学(自然科学版),2010,38(5):117-120.
    [70]王军文,倪章军,李建中.石板坡长江大桥钢混结合段局部应力分析[J].公路交通科技,2007,24(8):99-102.
    [71]周颖,徐资,段乃民.湛江海湾大桥钢-混凝土梁结合段受力分析[J].中外公路,2006,26(5):120-122.
    [72]叶梅新,罗如登.群钉钢-混凝土组合件栓钉受力状态研究[J].钢结构,2003,36(8):1-6.
    [73]唐琏,叶梅新.钢-混凝土组合结构中密集型剪力钉群的受力状态[J].长沙铁道学院学报,1998,16(4):11-39.
    [74]武汉二七长江大桥钢混结合段模型试验研究,2010年第(53)号[R].武汉:中铁大桥局集团武汉桥梁科学研究院有限公司,2010.
    [75]黄彩萍,张仲先,陈开利.混合梁斜拉桥钢混结合段试验与传力机理研究[J].华中科技大学学报(自然科学版),2012,40(1):67-70.
    [76]Patrick M. A new partial shear connection strength model for composite slabs [J]. Journal of the Australian Institute of Steel Construction,1990,24 (3):2-16.
    [77]Johnson R P, Wilmington R T. Vertical shear in continuous composite beam [J]. Proc Inst Civ Eng,1972,53:189-205.
    [78]Troitsky M S. Prestressed steel bridges theory and design [M]. New York:Van Nostrand Reinhold Company,1990.
    [79]ASCE Task Committee on Concrete and Masonry Structure. State of the art report on finite element analysis of reinforced concrete[R]. New York:ASCE,1982.
    [80]Oduyemi TOS, Wright H D. An experimental investigation into the behaviour of double-skin sandwich beams[J]. Journal of Construction Steel Research,1989 (14): 197-220.
    [81]Yam L C P, Chapman J C. Inelastic behaviour of continuous composite beams of steel and concrete [J]. Proceeding of Institution of Civil Engineers, Part 2,1971,53 (12): 487-501.
    [82]Johnson R P. Composite structures of steel and concrete, Volume 1, Beams, slabs, columns, and frames for buildings [M]. Oxford:Blackwell Scientific Publication, 1994:54-55.
    [83]Hope-Gill M C, Johnson R P. Tests on three three-span continuous composite beams [J]. Proc Inst Civ Eng,1976,61:367-381.
    [84]Ansourian P. Experiments on continuous composite beams [J]. Proc Inst Civ Eng, 1982,73:25-51.
    [85]Rescarcher Test Steel-Concrete Composite[J]. Civil engineering, Vol.70, No.10, Mon.2000.
    [86]Crisinel M, Marimon F. A new simplified method for the design of composite slabs[J]. Journal of Constructional Steel Research,2004,60:481-491.
    [87]Roeder C W. Composite and mixed construction[C].New York:ASCE,1984.
    [88]Saadat manesh H, Albrecht P, Ayyub B M. Experimental study of prestressed composite beams [J]. Journal of Structural Engineering, ASCE,1989,115 (9): 2348-2363.
    [89]ECCS. Composite Structures[S]. London and New York:The construction press. 1981,85-87.
    [90]Hoadley P G. Behavior of prestressed composite steel beams [J]. Journal of the Structural Division, ASCE,1963,89 (3):21-34
    [91]Klaiber F W, Dunker K F, Sanders W W. Strengthening of single-span steel-beam bridges [J]. Journal of the Structural Division, ASCE,1982,108 (12):2766-2780.
    [92]Dunker K F, Klaiber F W, Sanders W W. Post-tensioning distribution in composite bridges [J]. Journal of Structural Engineering, ASCE,1986,112 (11):2540-2553.
    [93]Saadatmanesh H, Albrecht P, Ayyub B M. Analytical study of prestressed composite beams [J]. Journal of StructuralEngineering, ASCE,1989,115 (9):2364-2381.
    [94]Saadatmanesh H, Albrecht P, Ayyub B M. Guidelines for flexural design of prestressed composite beams [J]. Journal of Structural Engineering, ASCE,1989,115 (11):2944-2961.
    [95]AlbrechtP, LiW L, Saadatmanesh H. Fatigue strength of prestressed composite steel-concrete beams [J]. Journal of StructuralEngineering, ASCE,1995,121 (12): 1850-1856.
    [96]Nie JG, Cai CS, Zhou TR, et al. Experimental and analytical study of prestressed steel-concrete composite beams considering slip effect [J]. Journal of Structural Engineering, ASCE,2007,133 (4):530-540.
    [97]Ayyub B M, Sohn Y G, Saadatmanesh H. Prestressed composite girders Ⅰ: experimental study for negative moment [J]. Journal of Structural Engineering, ASCE, 1992,118 (10):2743-2762.
    [98]Ayyub B M, Sohn Y G, Saadatmanesh H. Prestressed composite girders Ⅱ:analytical study for negativemoment [J]. Journal of Structural Engineering, ASCE,1992,118 (10):2763-2783.
    [99]Lutz L A. Analysis of stresses in concrete near a reinforcing bar due to bond and transverse cracking [J]. Journal of ACI structures,1970,67 (10):778-787.
    [100]Clawson, William C. Bridge applications of composite construction in the U.S [C]. Structures Congress-Proceedings, ASCE,1999,544-547
    [101]Szilard R. Design of prestressed composite steel structures [J]. Journal of the Structural Division, ASCE,1959,85 (9):97-124.
    [102]Oehlers D J, Sved G. Composite beams with limited-slip-capacity shear connectors[J]. Journal of Structural Engineering, ASCE,1995,121 (6):932-938.
    [103]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J].工程力学,2009,26(4):105-112.
    [104]钟新谷,舒小娟,郑玉国,袁帅华,邹中权.钢-混凝土组合梁正截面承载力的初步研究[J].土木工程学报,2002,35(6):73-79.
    [105]唐琎,叶梅新.钢桁梁-混凝土板结合梁剪力连接件的布置位置[J].长沙铁道学院学报,1999,17(4):68-73.
    [106]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [107]聂建国,陈林,肖岩.钢-混凝土组合梁抗剪研究中的塑性分析方法[J].工程力学,2002,Vol 19(5):48-51.
    [108]余志武,蒋丽忠,立佳.集中荷载作用下钢-混凝土组合梁界面滑移及变形[J].土木工程学报,2003,36(8):1-6.
    [109]张喜善,徐德新,范崇仁.钢-混凝土组合梁滑移对挠度的影响[J].哈尔滨建筑大学学报,1997,30(5):228-233.
    [110]严正庭,严立.钢与混凝土组合结构计算构造手册.北京:中国建筑工业出版社,1996.
    [111]宗周红.预应力钢-混凝土组合梁静动载行为研究[D].成都:西南交通大学博士学位论文,1997:57-95.
    [112]崔玉萍.部分剪力连接钢-混凝土叠合板组合梁强度及变形的试验研究[D].北京:北京市市政工程研究院硕士学位论文,1996.
    [113]郑舟军,童智洋.内置式钢锚箱索塔锚固区受力与参数分析[J].桥梁建设,2009(增2):61-66.
    [114]聂建国.钢-混凝土组合梁结构:试验、理论与应用[M].北京:科学出版社,2005.
    [115]薛伟辰,李杰,何池.预应力组合梁长期性能试验研究与时随分析[J].中国公路学报,2003,16(4):40-43.
    [116]中国建筑科学研究院.混凝土收缩与徐变的试验研究[R].北京,1987.
    [117]周履.收缩徐变[M].北京:中国铁道出版社,1994.
    [118]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990.
    [119]樊健生,聂建国,王浩.考虑收缩、徐变及开裂影响的组合梁长期受力性能研究(Ⅰ)—试验及计算[J].土木工程学报,2009,42(3):8-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700