套箍技术加固既有钢筋混凝土拱桥的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁结构是交通运输网络中的控制性工程,确保桥梁结构的安全具有重大的社会意义和经济价值。早期修建的钢筋混凝土拱桥普遍存在着结构老化、整体性差、承载力偏低等病害,已不能满足当地交通和经济发展的需要,需要进行加固补强。采用套箍技术加固既有钢筋混凝土拱桥,不仅能够治理既有的缺陷与病害问题,而且还可以提高结构的整体性能和承载能力。鉴于目前国内外对套箍加固后组合截面的计算理论及其破坏机理与特征进行的相关研究较少,本文围绕教育部《高等学校优秀青年教师教学科研奖励计划(A0110719950102)》的子课题“既有桥梁的维修加固方法研究”,着重开展了以下几个方面的研究工作:
     1.在收集已有研究成果及资料的基础上,结合作者从事的现场桥梁检测、评估与加固工作,总结了既有钢筋混凝土拱桥容易产生的病害问题,并剖析其产生的机理,为今后同类桥梁结构的设计和维修加固提供可靠的技术资料。同时指出了套箍加固技术可以解决的相关病害问题,指出了开展套箍技术加固钢筋混凝土拱桥研究的必要性。
     2.针对桥梁加固中新老混凝土结合面处理方式经常出现植入钢筋和开槽的技术方案比选难题,设计了6个试件比较了植入钢筋与开槽两种不同处理方式下的新老混凝土抗剪性能和破坏形式。试验结果表明,植入钢筋的新老混凝土结合面的抗剪性能明显高于开槽的处理方式,植入钢筋的试件破坏具有延性破坏特征,而开槽试件破坏有明显脆性破坏的特征。对植筋情况下结合面的抗剪承载能力计算公式进行了一定的修正,讨论了新老混凝土结合面的植筋率问题,并针对新老混凝土结合面的处理提出了合理的建议。
     3.采用第三章提出的新老混凝土能够共同工作的建议,设计了考虑不同因素的8组25个套箍加固短柱模型,进行了套箍加固短柱的破坏试验和有限元分析,验证了第三章提出的新老混凝土能够共同工作的建议是可行的。明确了套箍加固后组合截面的破坏过程和破坏机理,分析了不同因素对加固后组合截面承载能力的影响。同时结合试验结果和有限元计算结果,分析了不同加载方式对新老混凝土结合面剪应力和构件承载能力的影响,并针对套箍技术加固中可能出现的不利受力方式提出了应对措施。
     4.在总结偏心受压承载能力计算相关研究成果的基础上,指出了现行规范计算公式的缺陷,推导了相对精确的统一的偏心受压计算公式。根据套箍加固试验结果,提出了考虑多种影响因素的套箍加固短柱承载能力的计算公式,并结合本次试验的具体处理措施进行了适当的简化,通过简化计算结果与试验结果的比较分析,结果表明提出的简化分析公式比较可靠。
     5.基于钢筋混凝上结构设计的基本原理,结合套箍加固短柱模型试验研究成果,提出了考虑多种影响因素的套箍技术加固钢筋混凝土拱桥的承载能力计算公式,并结合现有加固技术规范对该公式进行了适当的简化。对套箍加固偏心受压构件二次受力过程的应力状态进行了分析,并考虑了新增混凝土收缩徐变对截面应力的影响。结合钢筋混凝土拱桥自身的特点,推导了不同情况下套箍加固后组合截面承载能力的计算公式。同时,根据套箍加固截面应力的计算过程,建立了关于套箍加固层厚度的简化临界状态方程,结合桥梁加固施工中对浇筑混凝土厚度的要求,能够初步确定套箍加固层的最小合理厚度。
     6.考虑实际工程应用和第三章提出的新老混凝土能够共同工作的建议,设计并制作了套箍加固钢筋混凝土拱肋和整体浇筑拱肋两个模型试件,分析了套箍加固后组合截面的破坏过程、破坏形式和结构的承载能力。结果表明,套箍加固拱肋与整体浇筑拱肋的裂缝分布及走向、破坏形式和破坏荷载基本一致,说明了第三章提出的新老混凝土能够共同工作的建议是可行的,同时也验证了套箍技术加固钢筋混凝土拱桥是可靠的。
     7.结合两座大跨度钢筋混凝土拱桥的维修加固工程实例,对套箍加固技术的应用进行了分析。结合理论研究和试验成果,对加固设计方案和套箍加固后关键截面的承载能力进行了分析与计算,并分析了套箍加固后组合截面在运营荷载下的工作性能。加固后的桥梁荷载试验结果验证了套箍技术加固钢筋混凝土拱桥是可行的和可靠的。
     8.总结了套箍技术加固既有钢筋混凝土拱桥设计分析中的关键问题并有针对性地提出了合理的建议,对套箍技术加固设计的计算步骤提出了规范化的建议。
Bridge structure is the controlling engineering of the entire transportation network. To ensure the safety of bridge structures is of great social significance and economic value. There are many deterioration problems of the early built reinforced concrete(RC) arch bridge, such as aging, poor integrity, lower capacity, and so on. Because these bridges can not meet the needs of local transportation and economic development, they must be strengthened in order to increase the load carrying capability and traffic capacity. The hooping strengthening technique not only can resolve defects and deterioration problems of existing reinforced concrete arch bridge, but also can improve integrity performance and increase carrying capacity. However, research either domestic or oversea about the calculation theory and its failure mechanism and characteristics of hooping reinforced composite section is less. Considering above all. combined the sub-research of "the study of the repairing and strengthening method for existing bridge" with the fund supported by the Ministry of Education, several aspects were mainly concerned with as following:
     1. Based on the research of previous studies and data collection, and combined the on-site bridge inspection, evaluation, and strengthening work that the author has engaged in. the status of deterioration problems for the existing reinforced concrete arch bridge were summarized, and the generating mechanisms were analyzed. Those can provide reliable technical information for the future design, maintenance and strengthening of the similar structures. At the same time, the related deterioration problems resolved by the hooping strengthening technique were pointed out, which leads to the necessity of the research about the hooping technique strengthening existing RC arch bridge.
     2. Aiming at the technical selection problem appeared frequently in the bridge strengthening about the young-old concrete interface treatments between bonded rebars and grooved.6groups of specimens were made to compare with the shear performance and failure modes of the young-old concrete interface. The test results showed that the young-old concrete interface shear strength of the specimens which embedded steel bars was distinctly stronger than that of the slotted specimens. And the failure characteristics of specimens which embedded steel bars are ductile, but the failure characteristics of specimens which slotted are brittle. For the case of bonded rebars treatment, some amendments on the shear bearing capacity formulas were executed. The bonded rebars ratio of the young-old concrete interface was discussed. And some reasonable suggestions of young-old concrete interface treatment were proposed.
     3. By use of the proposed suggestions about young-old concrete working together in the third chapter, and considering the different influence factors.8groups with25column specimens were designed and manufactured. The failure tests and nonlinear FEM analysis of the RC hooping strengthening columns were executed. It verifies that the proposed suggestions about young-old concrete working together in the third chapter are feasible.The failure process and failure mechanism for the composite section after strengthening and the influence of the different factors to the bearing capacity were studied. At the same time, combined with the results of test and FEM, the influence on shear stress of young-old concrete interface and carrying capacity induced by different loading method was analyzed. The counter-measures of unfavorable force mode appeared possibly in hooping technique strengthening were put forward.
     4. Based on the related research achievements about bearing capacity of eccentric compression member, the defects in the formulas of the current specifications have been pointed out. And the relatively accurate and unified formulas of eccentric compression member have been derived. The formula of bearing capacity for the hooping strengthening columns were proposed, which can consider various influence factors. Then, combined with the specific treatment in this experiment, the formula were appropriatly simplified. By comparative analysis of the calculation and test results, it tests that the simplified formula are reliable.
     5. Based on the basic design principles of RC structure, combined with the research results of hooping strengthening columns, the formula for the bearing capacity of hooping strengthening structure considered various influence factors was proposed. And considering the existing strengthening technical specifications, the formula was appropriately simplified. The stress states of the secondary loading process for hooping strengthening eccentric compression members were analyzed, and the influence on the sectional stress induced by the shrinkage and creep of fresh concrete was considered. With the feature of RC arch bridge, the bearing capacity formulas of composite section under different conditions were derived. Meanwhile, the simplified critical state equations about the thickness of hooping reinforcement layer were established according to the stress calculation process. Combination of the requirements of the thickness for bridge strengthening construction, the minimum reasonable thickness of hooping reinforcement layer can be initially determined.
     6. Considering the practical application of engineering and the proposed suggestions about young-old concrete working together in the third chapter, the RC arch rib specimen with hooping strengthening and the integrated pouring specimen were designed and manufactured. The failure process, failure mode and the bearing capacity of the composite section after hooping strengthening were studied. The test results showed that the crack features, failure mode and failure load of the two specimens were basically consistent, and the proposed suggestions about young-old concrete working together in the third chapter were feasible. At the same time, it verified that the hooping strengthening technique used in RC arch bridge was reliable.
     7. Combining with the practice of repairing and strengthening engineerings about two long-span RC arch bridges, the application of hooping strengthening technique was analyzed. Combining with the research results of theoretical analysis and tests, the strengthening design schemes of the bridges and the bearing capacity of key sections after hooping strengthening were analyzed and calculated. Then, the normal working performance of the composite section after strengthening under operating load was analyzed. The load test results after bridges strengthening showed that the hooping strengthening technique was feasible and reliable for the existing RC arch bridges.
     8. The key issues of the design and analysis about hooping techinique strengthening the existing RC arch bridge were summarized, and the reasonable suggestions were pertinently proposed. Finally, the standardization proposals about calculation procedure of the hooping strengthening techinique were recommended.
引文
[1]谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M].北京:人民交通出版社,2002:1-8.
    [2]邓苗毅.基于静载试验的梁桥结构损伤系统识别研究[D].郑州:郑州大学硕士学位论文,2003:1-5.
    [3]孙莉,刘钊.2000~2008年美国桥梁倒塌案例分析与启示[J].世界桥梁,2009,(3):46-49.
    [4]Wallbank. Performance of Concrete in Bridges-a study of 200 trunk road bridges[R]. HMSO, London,1990.
    [5]徐日昶,王博仪,赵家奎.桥梁检测[M].北京:人民交通出版社,1989:1-10.
    [6]蒙云,卢波.桥梁加固与改造[M].北京:人民交通出版社,2004:1-11.
    [7]王力力,易伟建.斜拉索的腐蚀案例与分析[J].中南公路工程,2007,32(1):93-98.
    [8]胡汉舟,叶梅新.桥梁事故与经验教训[J].桥梁建设,2002,(3):71-75.
    [9]魏建东.宜宾小南门大桥的抢修加固与恢复工程[J].公路,2003,(4):34-38.
    [10]雷俊卿.桥梁安全耐久性与病害事故分析[J].中国安全科学学报,2005,15(2):86-90.
    [11]Kumalasari Wardhana, Fabian C Hadipriono. Analysis of recent bridge failures in the United States [J] Journal of Constructed Facilities,2003,17(3):144-150.
    [12]魏洪昌,张劲泉.公路桥梁维修加固技术经济评价方法研究[J].公路交通科技,2005,22(3):62-65.
    [13]徐岳,武同乐.桥梁加固工程生命周期成本横向对比分析[J].长安大学学报(自然科学版),2004,24(3):30-34.
    [14]Kong JS, FrangoPol DM. Prediction of Reliability and Cost Profiles of Deteriorating Bridges under Time-and Performance-Controlled Maintenance [J]. Journal of Structural Engineering,2004,130(12):1865-1874.
    [15]Ginger D, William R S, Robert H. Estimating Road User Costs Associated with Highway Construction Projects [J]. Transportation Research Record,2000:70-79.
    [16]杨文渊,徐犇.桥梁维修与加固[M].北京:人民交通出版社,2000:1-8.
    [17]王振领.既有钢筋混凝土空腹式拱桥病害分析与维修加固方案研究[D].成都:西南交通大学硕士学位论文,2002:1-5.
    [18]Yail J. Kim, Chen Shi, Mark F. Green. Ductility and Cracking Behavior of Prestressed Concrete Beams Strengthening with Prestressed CFRP Sheets[J]. Journal of Composites for Construction,2008,12(3):274-283.
    [19]Jeremy A. Martin, Anthony J. Lamanna. Performance of Mechanically Fastened FRP Strengthened Concrete Beams in Flexure[J]. Journal of Composites for Construction, 2008,12(3):257-265.
    [20]叶文亚,管仲国,李建中.外贴FRP加固预应力混凝土梁正常使用极限状态研究[J].桥梁建设,2007,(5):69-72.
    [21]Ehab A. Ahmed, Ehab F. E1-Salakawy, Brahim Benmokrane. Shear Performance of RC Bridge Girders Reinforced with Carbon FRP stirrups[J]. Journal of bridge Engineering, 2010,15(1):44-54.
    [22]M. Harajli, N. Khairallah, H. Nassif. Externally prestressed members evaluation of second order effects[J].Journal of Structural Engineering,1999,125(10):1151-1161.
    [23]F.M.Alkhairi. Analysis of beams prestressed with unbounded internal or external tendons [J]. Journal of Structural Engineering,1993,119(9):2680-2700.
    [24]M.Pisanit.Numerical model for externally prestressed beams[J].Structural Engineering and Mechanics,1996,4(2):177-190.
    [25]Narendra Gosain.Repair of Concrete Elements Using Externally Bonded Reinforcement:30 Year History[A]. Advanced Technology in Structural Engineering Proceedings of Structures Congress 2009[C],2009:1975-1982.
    [26]S. A. Hamoush, S. H. Ahmad. Debonding of Steel Plate-Strengthened Concrete Beams [J]. Journal of Structural Engineering,1990,116(2):356-371.
    [27]J. W. Zhang, J. G. Teng, Y.L.Wong, et al. Behavior of Two-Way RC Slabs Externally Bonded with Steel Plate[J]. Journal of Structural Engineering,2001, 127(4):390-397.
    [28]单成林.旧桥加固设计原理及计算示例[M].北京:人民交通出版社,2007:1-32.
    [29]柳炳康,吴胜兴,周安.工程结构鉴定与加固[M].北京:中国建筑工业出版社,2000:1-6.
    [30]郭永琛,叶见曙.桥梁技术改造[M].北京:人民交通出版社,1991:52-93.
    [31]刘来君,赵小星.桥梁加固设计与施工技术[M].北京:人民交通出版社,2004:108-120.
    [32]胡石坚.浅谈拱桥加固方法[J].山西建筑,2009,35(5):284-285.
    [33]罗苓隆.加大截面加固钢筋混凝上构件的正截面强度计算方法[J].四川建筑科学研究,1989,(4):17-21.
    [34]江元盛.钢筋混凝上结构增大截面加固法的几点体会[J].安徽建筑,2008,(2):115-116.
    [35]彭飞飞,江世永,陈辉国.增补受拉钢筋加固混凝土梁二次受力时的抗弯承载力[J]. 结构工程师,2003,(3):45-48.
    [36]成寄华.香屯大桥锚喷加固的施工工艺介绍[J].华东公路,1992,(2):56-59.
    [37]廖莲姣.拱式桥梁锚喷混凝土加固提载[T].山西建筑,2005,31(12):105-106.
    [38]张德平.锚喷混凝土加固桥梁施工简介[J].城市道桥与防洪,2008,(1):64-67.
    [39]曹霞,田爱菊,金凌志.体外预应力加固钢筋混凝土简支梁正截面承载力试验分析[J].混凝土,2009,(8):36-39.
    [40]孟少平,王云飞.体外预应力加固配筋混凝土梁的变形控制[J].工业建筑,2009,39(12):29-31.
    [41]胡吉松,王国新.体外预应力加固混凝土梁的工程实践及设计探讨[J].工业建筑,2007,37(增刊):1260-1264.
    [42]Jerry W. Holman, John P. Cook. Steel Plates for Torsion Repair of Concrete Beams[J]. Journal of Structural Engineering,1984,110(1):10-18.
    [43]任伟,贺拴海,赵小星等.黏贴钢板加固持荷钢筋混凝土T型梁模型试验[J].中国公路学报,2008,21(3):64-68.
    [44]郑晓华,魏洪昌.桥梁结构粘贴钢板加固法系统研究[J].公路交通科技,2006,23(4):77-80.
    [45]詹华熙,王国亮,魏洪昌.桥面补强层加固法系统研究[J].公路交通科技,2006,23(4):87-90.
    [46]曹蔚枝.桥面补强层加固技术在桥面维修中的应用研究[J].山西交通科技,2009,(6):39-41.
    [47]Hamid Rahimi, Allan Hutchinson. Concrete Beams Strengthened with Externally Bonded FRP Plates[J]. Journal of composites for construction,2001,5(1):44-56.
    [48]蔡新江,田石柱,王大鹏.FRP加固桥梁RC短柱拟静力及网络拟动力试验[J].建筑结构学报,2009,30(2):125-135.
    [49]Bahram M. Shahrooz, Serpil Boy. Retrofit of a Three-Span Slab Bridge with Fiber Reinforced Polymer Systems—Testing and Rating[J].Journal of composites for construction,2004,8(3):241-247.
    [50]Ehab A. Ahmed, Ahmed K. E1-Sayed, Ehab El-Salakawy, et al. Bend Strength of FRP Stirrups:Comparison and Evaluation of Testing Methods[J].Journal of composites for construction,2010,14(1):3-10.
    [51]Mohsen Shahawy, Thomas E. Beitelman. Static and Fatigue Performance of RC Beams Strengthened with CFRP Laminates[J]Journal of Structural Engineering, 1999,125(6):613-621.
    [52]张征文,江根明,王巍.改变结构体系法加固双曲拱桥的设计及承载力评价[.J].建 筑施工,2007,29(11):879-881.
    [53]孙宗明.改变结构体系法加固双曲拱桥[J].山西建筑,2007,33(35):338-339.
    [54]卫龙武.改变受力体系加固法[J].住宅科技,1991,(2):13-16.
    [55]王波萍,刘文达,谌乐强.增设纵梁加固排架式双曲拱桥技术研究与实践[J].山西建筑,2009,35(28):312-313.
    [56]王国鼎,袁海庆,陈开利.桥梁检测与加固[M].北京:人民交通出版社,2003:151-181.
    [57]杨万里.套拱加固法在旧拱桥维修加固中的应用[J].交通科技与经济,2005,(2):36-37.
    [58]王松根,王荣新.套拱法加固石拱桥[J].华东公路,2000,(6):24-25.
    [59]王国鼎,袁海庆,陈开利.桥梁检测与加固[M].北京:人民交通出版社,2003:186-217.
    [60]孙建东,高峰.桥梁下部结构的加固与改造[J].四川建筑,2008,28(2):162-164.
    [61]魏洪昌.增补桩基加固法系统研究[J].公路交通科技,2006,23(4):112-115.
    [62]苏在林,许前顺,张天科.用树根桩加固框构桥基础抑止下沉[J].铁道建筑,1998,(8):26-28.
    [63]刘俊龙.轻型墩桥梁墩台加固设计与施工[J].铁道勘察,2006,(4):69-72.
    [64]李永东.理论与应用断裂力学[M].北京:兵器工业出版社,2005:61-65.
    [65]刘金圣,蓝宗建.钢筋混凝土轴压柱围套加固法承载力计算[J].江苏建筑,1997,(4):11-16.
    [66]田炜,黄兴棣,张晖等.大偏心围套混凝土加固柱二次受力试验研究[J].工业建筑,1994,(9):31-37.
    [67]江世永,龚崇斌,白绍亮等.大偏心受压围套加固钢筋混凝土柱正截面承载力的理论分析[J].重庆建筑大学学报,1999,21(5):27-30.
    [68]江世永,龚崇斌,白绍亮等.大偏心受压围套加固钢筋混凝土柱的抗震性能试验研究[J].重庆建筑大学学报,1999,21(3):5-8.
    [69]蓝宗建,黄兴棣,田安国等.钢筋混凝上围套加固偏,心受压柱的试验研究[J].东南大学学报,1994,24(3):112-118.
    [70]袁广林,徐媛媛,沈华.二次受力条件下增大截面加固梁的试验研究[J].山东科技大学学报(自然科学版),2007,26(5):40-45.
    [71]白青侠.钢筋混凝土圆形截面偏心受压围套加固构件极限承载力分析[J].西安公路交通大学学报,2000,20(3):53-57.
    [72]胡惠荣.混凝土加固柱的二阶挠度计算[J].上海铁道大学学报(自然科学版),1997,18(4):45-49.
    [73]H.K.Cheong, N.MacAlevey. Experimental Behavior of Jacketed Reinforced Concrete Beams [J].Journal of Structural Engineering,2000,127(6):692-699.
    [74]G.E. Thermou, S.J. Pantazopoulou, A.S. Elnashai. Analytical modeling of interface behavior in reinforced concrete jacketed members [A].Advanced Technology in Structural Engineering Proceedings of Structures Congress 2000[C],2000:692-699.
    [75]G.E. Thermou, S.J. Pantazopoulou, A.S. Elnashai. Flexural Behavior of Brittle RC Members Rehabilitated with Concrete Jacketing[J].Journal of Structural Engineering, 2007,133(10):1373-1384.
    [76]张晶,钱永久.套箍法加固石拱桥主拱圈的正截面承载力的理论分析[J].公路交通科技,2008,25(6):76-80.
    [77]刘庆阳,周建庭,王玲等.增大截面法加固石拱桥最小加固层厚度[J].重庆交通大学学报(自然科学版),2008,27(1):20-23.
    [78]潘金炎.围套加固轴压柱的承载力计算[J].浙江建筑,2003,(2):10-12.
    [79]王天稳,陈适才.混凝土柱钢筋套箍加固试验研究[J].建筑技术,2002,33(6):415-416.
    [80]李建华.偏心受压对称配筋柱用双面围套补强实例[J].黑龙江科技信息,2007,(17):252.
    [81]唐绍东.框架柱采用钢筋混凝土围套加固法[J].广西大学学报(自然科学版),2001,26(4):254-256.
    [82]闰永伦,孙俊海.肋板式变截面套箍加固拱桥力学计算模式研究[J].公路,2008,(5):101-103.
    [83]李晓斌,杨永清,蒲黔辉.钢筋混凝土拱桥的评估与加固前后性能对比分析[J].四川建筑科学研究,2007,33(4):98-102.
    [84]周建庭,沈小俊等.劣化拱轴线石拱桥的综合加固整治技术[J].公路,2007,(3):87-89.
    [85]周建庭.钢筋混凝土套箍封闭主拱圈加固拱桥研究[J].公路,2002,(1):44-46.
    [86]肖岩,吴徽,陈宝春.碳纤维套箍约束混凝土的应力—应变关系[J].工程力学,2002,19(2):154-159.
    [87]Daniel Cusson, Patrick Paultre. Stress-Strain Model for Confined High-Strength Concrete[J].Journal of Structural Engineering,1995,121(3):468-477.
    [88]Y.Xiao, H.Wu.Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets[J]. Journal of Materials in Civil Engineering,2000,12(2):139-146.
    [89]J. Hoshikuma, K. Kawashima, K. Nagaya et al.Stress-Strain Model for Confined Reinforced Concrete in Bridge Piers[J].Journal of Structural Engineering,1997,123(5): 624-633.
    [90]Vistasp M.Karbhari, Yanqiang Gao.Composite Jacketed Concrete under Uniaxial Compression-Verification of Simple Design Equations[J].Journal of Materials in Civil Engineering,1997,9(4):185-193.
    [91]Murat Saatcioglu, Salim R. Razvi. Strength and Ductility of Confined Concrete[J]. Journal of Structural Engineering,1992,118(6):1590-1607.
    [92]Yu-Fei Wu, Ying-Wu Zhou. Unified Strength Model Based on Hoek-Brown Failure Criterion for Circular and Square Concrete Columns Confined by FRP[J]. Journal of Composites for Construction,2010,14(2):175-184.
    [93]陆新征,冯鹏,叶列平.FRP布约束混凝土方柱轴心受压性能的有限元分析[J].土木工程学报,2003,36(2):46-51.
    [94]Kazunori Fujikake, Sidney Mindess, Hanfeng Xu. Analytical Model for Concrete Confined with Fiber Reinforced Polymer Composite[J]. Journal of Composites for Construction,2004,8(4):341-351.
    [95]Beni Assa, Minehiro Nishiyama, Fumio Watanabe. New Approach for Modeling Confined Concrete. II:Rectangular Columns[J].Journal of Structural Engineering, 2001,127(7):751-757.
    [96]康希良,赵鸿铁,薛建阳等.钢管混凝土套箍机理及组合弹性模量的理论分析[J].工程力学,2007,24(11):121-125.
    [97]Roeder C W, Cameron B, Brown C B. Composite action in concrete filled tubes[J]. Journal of Structural Engineering,1999,125(5):477-484.
    [98]Zhong Shantong. The comparison of the composite rigidities with the conversion rigidities for CFST members[A].Proceedings of 6th ASCCS Conference, Los Angeles[C],2000:22-24.
    [99]Kloppel VK, Goder W. An Investigation of the Load Carrying Capacity of Concrete-Filled Steel Tubes and Development of Design Formula[J], Der Stahlbau, 1957,26(2):44-50.
    [100]Neogi P K, San HK, Chapman J C. Concrete Filled Tubular Steel Columns under Eccentrical Loading[J]. Journal of Structural Engineering,1969,47(5):187 - 195.
    [101]Furlong R W. Columns Rules of AC1, SSLC, and LRFD Compared[J]. Journal of Structural Division,1983,109(10):2375-2386.
    [102]Shams M, Saadeghvaziri MA. State of the Art of Concrete-Filled Steel Tubular Columns[J].ACI Structural Journal,1997,94(5):558-571.
    [103]Hajjar J F, Molodan A, Schiler PH. A Distributed Plasticity Model for Cyclic Analysisof Concrete-Filled Tube Beam-Columns and Composite Frames[J]. Engineering Structures,1998,20(4):398-412.
    [104]钟善桐.钢管混凝土拱桥设计中的几个问题[J].哈尔滨建筑大学学报,2000,33(2):13-17.
    [105]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究[J].建筑结构学报,2000,21(2):2-11.
    [106]钟善桐.钢管混凝土结构在我国的应用和发展[J].建筑技术,2001,32(2):80-82.
    [107]Iyengar S R, Desayi P, Reddy K N. Stress-Strain Characteristic of Concrete Confined in Steel Binders [J].Magazine of Concrete Research,1970,22(72):173-184
    [108]Mander J, Priestley M, Park R. Observed Stress-Strain Behavior of Confined Concrete[J].ASCE, Structural Journal,1988,100(2):215-221.
    [109]杨坤,史庆轩,王秋维等.高强箍筋约束混凝土轴心受压性能分析[J].西安建筑科技大学学报(自然科学版),2009,41(2):161-167.
    [110]张曰果,阎石.高强度螺旋箍筋约束下的高强混凝土圆柱延性分析[J].沈阳建筑大学学报(自然科学版),2006,22(5):713-717.
    [111]时卫民,江世永,付玉辉.轴心受压砖砌体结构加固中混凝土利用系数的确定[J].建筑结构,2001,31(3):13-15.
    [112]张明生,江世永.钢筋混凝土围套加固轴心受压砖柱若干问题[J].住宅科技,1999,(10):27-28.
    [113]黄海东,向中富,刘剑锋等.基于组合截面内力分配的拱桥加固内力计算方法[J].重庆交通大学学报(自然科学版),2008,27(2):200-203.
    [114]吕建鸣,宋建永.组合截面桥梁结构计算方法研究[J].公路交通科技,2005,22(6):68-71.
    [115]Joseph Plecnik, Thomas Cousins, Edward O'Conner. Strengthening of Unreinforced Masonry Buildings[J]. Journal of Structural Engineering,1986,112(5):1070-1087.
    [116]A.S.Prasada Rao.R.Jayaraman. Creep and Shrinkage Analysis of Partially Prestressed Concrete Members[J]. Journal of Structural Engineering,1989,115(5):1169-1189.
    [117]王成斌.桥梁加固新老混凝土收缩差分析研究[J].山西建筑,2009,35(10):54-55.
    [118]周履.混凝土收缩徐变引起的钢—混凝土结合梁的内力重分配[J].桥梁建设,2001,(2):1-4.
    [119]王宝万,张元海,梅山.结合梁中混凝土收缩徐变引起的次内力分析[J].兰州交通大学学报,2008,27(1):24-27.
    [120]Sandeep Chaudhary, Umesh Pendharkar, Ashok Kumar Nagpal. Control of Creep and Shrinkage Effects in Steel Concrete Composite Bridges with Precast Decks [J].Journal of Bridge Engineering,2009,14(5):336-345.
    [121]E.J. Sapountzakis, Katsikadelis.Creep and Shrinkage Effect on Reinforced Concrete Slab-and-Beam Structures[J]. Journal of Engineering Mechanics,2002,128(6): 625-634.
    [122]Lionel Bellevue, Paul J. Towell.Creep and Shrinkage effects in Segmental Bridges[A]. Advanced Technology in Structural Engineering Proceedings of Structures Congress 2000[C],2000:1-8.
    [123]Jiansheng Fan, Jianguo Nie, Quanwang Li, et al.. Long-Term Behavior of Composite Beams under Positive and Negative Bending. I:Experimental Study[J]. Journal of Structural Engineering,2010,136(7):849-857.
    [124]Jiansheng Fan, Jianguo Nie, Quanwang Li, et al.. Long-Term Behavior of Composite Beams under Positive and Negative Bending. II:Analytical Study [J]. Journal of Structural Engineering,2010,136(7):858-865.
    [125]Prasda, Jayaraman, Vimalanandam, et al.Predicting Creep and Shrinkage Effects in Cracked Concrete Elements[J]. Journal of Structural Engineering,1994,120(9): 2784-2792.
    [126]Philippe Turcry, Ahmed Loukili, Khalil Haidar, et al.Cracking Tendency of Self-Compacting Concrete Subjected to Restrained Shrinkage:Experimental Study and Modeling[J]. Journal of Materials in Civil Engineering,2006,18(1):46-54.
    [127]刘健,赵国藩.新老混凝土粘结收缩性能研究[J].大连理工大学学报,2001,41(3):339-342.
    [128]袁迎曙.钢筋混凝土结构局部补强的收缩应力分析[J].土木工程学报,1996,29(1):33-40.
    [129]王军文,石现峰,李建中.预应力混凝上连续组合梁桥的收缩徐变次内力分析[J].公路交通科技,2003,20(5):40-44.
    [130]祝小龙.钢筋混凝土肋拱桥实用加固技术研究[D].重庆:重庆交通学院硕士学位论文,2008:39-40.
    [131]李秋博.混凝上早期收缩、开裂对结构耐久性的影响[J].大众科技,2008,(11):100—101.
    [132]杨红霞,郑光明.混凝土温度收缩裂缝的产生机理及对策[J].延安大学学报(自然科学版),2004,23(2):43-44.
    [133]何庆芝.工程断裂力学[M].北京:北京航空航天大学出版社,1993:25-35.
    [134]仝瑞金,潘洁,储著胜.断裂力学钢筋混凝上结构中裂纹发展过程分析[J].山西建筑,2009,35(1):101-102.
    [135]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,2003:191-214.
    [136]黄东洲,李国豪,项海帆.桁梁桥的弹塑性侧倾稳定分析[J].土木工程学报,1991,24(3):27-37.
    [137]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:14-80.
    [138]柳俊哲,吕丽华,左红军.混凝土碳化腐蚀时亚硝酸钠保护钢筋作用的研究[J].混凝土,2003,(4):24-27.
    [139]龚洛书,柳春圃.混凝土耐久性及其防护修补[M].北京:中国建筑工业出版社1990:21-42.
    [140]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003:32-41.
    [141]Regourd M.31-RCA:Resistance of Concrete to Chemical Attack[J].Material and Structures,1981,14:130-137.
    [142]于忠,胡蔚儒.化工大气环境中混凝土的腐蚀机理及性能研究[J].工业建筑,2000,30(5):16-20.
    [143]陈友治,徐瑛,丁庆军等.酸性介质对钢筋混凝土腐蚀机理研究[J].武汉理工大学学报,2001,23(8):4-6.
    [144]王国忠.混凝土温度裂缝的成因及防治[J].工业建筑,2007,37(增刊):1197-1199.
    [145]李本伟,李大鸣.横置桥面板肋拱桥病害整治[J].西南公路,2006,(1):38-41.
    [146]张谊君.水泥混凝土桥面铺装病害及预防措施[J].北方交通,2009,(3):98-99.
    [147]张起听,闫长勇.桥面铺装裂缝的危害和预防措施[J].山西建筑,2009,35(8):327--328.
    [148]郑国华.公路桥面铺装层损伤成因与使用寿命预测[D].西安:长安大学硕士学位论文,2006:15-18.
    [149]王晓磊,肖维,黄晓明.淮安大桥桥面铺装层力学分析[J].中南公路工程,2007,32(3):151-155.
    [150]韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].大连:大连理工大学博士学位论文,2002.
    [151]张雷顺,韩菊红,郭进军等.新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用[J].土木工程学报,2003,36(4):82-85.
    [152]赵志方,赵国藩,刘健等.新老混凝土粘结抗拉性能的试验研究[J].建筑结构学报,2001,22(2):51-56.
    [153]赵志方.新老混凝土粘结机理和测试方法[D].大连:大连理工大学博士学位论文,1998.
    [154]高剑平,潘景龙,王雨光.不同界面剂对新旧混凝土粘结强度影响的试验研究[J].哈尔滨建筑大学学报,2001,34(5):25--29.
    [155]廖卫东,水中和,秦明强等.桥涵结构补强中新旧混凝土结合状态研究[J].武汉理工大学学报,2003,25(12):92-94.
    [156]Bruce S. Bonding New Concrete to Old[J].Concrete Construction,1988, (7): 676-680.
    [157]Giurgiutiu, Lyons, J. Petrou, et al. Fracture Mechanics Testing of the Bond between Composite Overlays and a Concrete Substrate [J]. Journal of Adhesion Science and Technology,2001,15 (11):135 -1371.
    [158]Li Gengying. A New Way to Increase the Long-Term Bond Strength of New-to-Old Concrete by the Use of Fly Ash[J].Cement and Concrete Research,2003,33(6):799-806.
    [159]Vaysburd, A.M. Sabnis, GM. Emmons, et al. Interfacial Bond and Surface Preparation in Concrete Repair[J]. Indian Concrete Journal,2001,75(1):27 - 34.
    [160]王振领.新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究[D].成都:西南交通大学博士学位论文,2006:66-79.
    [161]何伟.新老混凝土界面粘结强度的研究[D].长沙:湖南大学硕士学位论文,2004.
    [162]郭进军.高温后新老混凝土粘结的力学性能研究[D].大连:大连理工大学博士学位论文,2003.
    [163]贺小岗,关国雄.钢筋销栓模型及其在深梁分析中的应用[J].工程力学,2001,18(1):96-102.
    [164]刘伟庆,江东等.钢筋混凝土裂缝截面剪力传递性能的试验研究[J].建筑结构学报,1994,15(4):2-10.
    [165]R.C. Fenwiek, T. Pauley.Mechanism of Shear Resistance of Conerete Beams [J]. ASCE, Structural Division,1968,10.
    [166]Mattock, A.H., Hawkins, et al. Shear Transfer in Reinforced Conerete-Recent Research[J].Journal of the Prestressed Conerete Institute,1972,17(2):55 -75.
    [167]Mattock, A.H., Li, et al.Shear Transfer in Lightweighi Reinforced Concrete[J]. Journal of the Prestressed Conerete Institute,1976,21(1):20-39.
    [168]Franklin J A. Comparison of a ployester and mechanical rock anchor[J]. Trans IMM, 1977,17(4):25-32.
    [169]Biviridge R L W. Repairs and extensions to concrete structures using resin anchored bars[J]. Civil Engineering and Public Works Review.1973.23(3):609-617.
    [170]Lee N K. Resin anchors in concrete[J]. Civil Engineering.1980.35(4):35-41.
    [171]Doerr G T. Adhension anchors:behavior and spacing requirements[R]. Research Report, Center for transportion Research, Univ. of Texas at Austin,1989.
    [172]Collins D M. Load deflection behavior of cast-in-place and retrofit concrete anchors subjected to static, fatigue and impact tensile loads[R]. Research Report, Center for transportion Research, Univ.of Texas at Austin,1989.
    [173]Zavliaris K D. An Experimental study of adhesively bonded anchorages in concrete[J]. Magazine of Concrete Research,1996,48(175):79-93.
    [174]郭战胜,邹超英.化学粘结栓的弹性分析及设计建议[J].哈尔滨建筑大学学报,2002,35(2):35-39.
    [175]刘向华.植筋粘结锚固性能的试验研究及可靠度分析[D].合肥:合肥工业大学硕士学位论文,2004.
    [176]张雷顺,王二花,闫国新.植筋法新老混凝土粘结面剪切性能试验研究[J].郑州大学学报(工学版),2006,27(3):34-37.
    [177]F. Seible, C.T. Latham.Horizontal load transfer in structural concrete bridge deck overlays [J].Journal of Structural Engineering,1990,116(10):2691-2710.
    [178]Robert A. Bass, James O. Jirsa.Shear transfer across new and existing concrete interfaces[J].ACI Structural Journal,1989,86(4):383-393.
    [179]White, Gergely.Shear Transfer in Thick Walled Reinforced Concrete Structureunder Seismic Loading[R]. Cornell University, Report NO.75-10, Dec.1975.
    [180]万墨林,韩继云.混凝土结构加固技术[M].北京:中国建筑工业出版社,1995:8-10.
    [181]敖进涛,谢慧才,熊光晶,陈肇元.影响新老混凝土界面粘结强度的主要因素[J].工程力学(增刊第二卷),1997:328-333.
    [182]Fiebrich M.H. Influence of the Surface Roughness on Adherence between Concrete and Guite Mortar Overlays [J]. Adherence of Yong on Old Concrete,1994.
    [183]GB/T 50081-2002.普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.
    [184]万墨林,韩继云.混凝土结构加固技术[M].北京:中国建筑工业出版社,1995:22-33.
    [185]赵国藩.钢筋混凝土结构按极限状态计算[M].北京:建筑工程出版社,1961:201-204.
    [186]天津大学,同济大学,大连工学院.钢筋混凝土结构(上册)[M].北京:中国建筑工业出版社,1980:144-146.
    [187]滕智明.钢筋混凝上基本构件[M].北京:清华大学出版社,1985:154-157.
    [188]杭州市土木建筑学会.钢筋混凝土结构理论及设计讲座资料[M].杭州,1983:1-10.
    [189]TJ 10-89.混凝土结构设计规范[S].北京:中国建筑工业出版社,1989.
    [190]JTJ 023-85.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,1985.
    [191]JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004.
    [192]GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [193]JTG/T J22-2008公路桥梁加固设计规范[S].北京:人民交通出版社,2008.
    [194]GB 200150367-2006.混凝土结构加固设计规范[S].北京:中国建筑工业出版社,2006.
    [195]关萍,王清湘,赵国藩.高强约束混凝土应力-应变关系的试验研究[J].工业建筑,1997,27(11):27-30.
    [196]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版),2002,42(10):1369-1373.
    [197]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001:237--242.
    [198]董锍利.混凝土非线性力学基础[M].北京:中国建筑工业出版社,1996:23-58.
    [199]ANSYS帮助文档,ANSYS中国公司,2000.
    [200]单成林.旧桥加固设计原理及计算实例[M].北京:人民交通出版社,2007:150—232.
    [201]黄国兴,惠荣炎.混凝土的收缩[M].北京:中国铁道出版社,1990:1-14.
    [201]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994:145-170.
    [203]JTG D61-2005公路圬工桥涵设计规范[S].北京:人民交通出版社,2005.
    [204]西南交通大学结构试验中心.《乐山市大渡河大桥检测及评估报告》.2009-8.
    [205]四川省交通厅公路规划勘察设计研究院.《成渝高速公路(四川段)球溪河左线特大桥检测与诊断报告》.2004-1.
    [206]西南交通大学结构试验中心.《成渝高速公路(四川段)球溪河左线特大桥荷载试验报告》.2004-11.
    [207]西南交通大学结构试验中心.《成渝高速公路(四川段)球溪河左线特大桥加固后荷载试验报告》.2006-5.
    [208]西南交通大学结构试验中心.《成渝高速公路(四川段)球溪河左线特大桥加固3年后荷载试验报告》.2009-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700