列车荷载及地震作用下隔震铁路桥梁的动力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前隔震技术主要应用于结构和公路桥梁中,能够起到隔离地震并且消耗传到结构上的地震能量的作用,有效减小地震作用下结构的加速度响应,但一直很少应用于铁路桥梁中。铁路桥梁是有轨线路,车辆的编组形式和车辆运行速度等影响因素众多,分析复杂,关于隔震铁路桥梁在列车作用下和地震作用下的动力性能还不够明确。目前中国铁路列车不断提速,列车对轨道的平顺性要求更加严格。为使隔震技术能够应用于高速铁路桥梁,使桥梁在地震作用下满足安全性要求,并满足列车运行的安全性和舒适性的要求,本文做了如下几方面研究:
     1建立了隔震铁路桥梁纵桥向的车桥动力分析模型,将列车简化为多质点模型,隔震桥梁采用空间有限元模型,通过轮对与轨道的纵桥向相互作用力将车辆系统和桥梁系统联系起来。通过力的平衡关系,建立列车的动力平衡方程,用四五阶龙格库塔方法进行求解得到轮对制动力时程,采用二次离散方法将移动轮对制动力时程转换为结构固定节点的制动力时程,实现空间离散过程;通过通用有限元软件ANSYS对桥梁进行了动力响应分析,完成时间离散过程。分析结果表明:采用隔震设计的铁路桥梁,在纵桥向制动力作用下,桥梁的纵向位移响应大于非隔震桥梁的位移响应,隔震设计后可以使制动力在各个墩台间的分布更加合理。列车最不利的停车位置位于列车第一轮对出桥时。
     2采用模态综合法建立了车桥耦合振动模型,利用MATLAB软件编写了垂横向的车桥耦合动力响应分析程序,进行了铅芯橡胶双向隔震支座铁路桥梁的横桥向和竖向的车桥耦合振动响应分析,分析中采用27个自由度的车辆模型,分析了在轨道的不平顺和轮对的蛇形运动激励下,隔震桥梁的隔震周期和弹性隔震度、以及车辆行驶速度等因素对振动响应的影响。分析结果表明,采用常规的铅芯橡胶支座的设计方法的隔震铁路桥梁,在列车过桥时产生较大的横向动位移,不能满足列车运行安全性的要求。要使双向隔震技术应用于铁路桥梁需要对铅芯橡胶支座进行限位。
     3采用有限元软件ANSYS进行了铅芯橡胶支座双向隔震桥梁在设计地震和罕遇地震作用下纵桥向和横桥向的时程响应分析,分析结果表明,采用铅芯橡胶支座隔震铁路桥梁,在强震作用下取得了较好的隔震效果,但在设计地震和多遇地震作用下,隔震支座发生屈服,产生较大的位移,对于铁路桥梁容易引起轨道设备的破坏,严重影响列车运行的安全性,增加的对轨道维护的难度和工作量,带来不必要的经济损失。
     4为了限制铅芯橡胶支座隔震铁路桥梁在多遇地震和设计地震作用下桥梁上部结构的位移,设计了耗能型限位装置和非耗能型限位装置,为隔震支座提供足够的初始刚度和屈服强度,两类装置主要具有如下特点:
     a.耗能型限位装置:在设计地震和多遇地震作用下,限位器和铅芯橡胶支座处于弹性工作阶段,限位装置起到理想的限位作用,在罕遇地震作用下,限位装置先于铅芯橡胶支座进入屈服阶段,组合隔震支座起到隔震耗能作用。耗能型限位装置主要研究了X形钢板耗能限位器和X形钢棒双向耗能限位器。
     b.非耗能型限位装置:不具有塑性发展阶段,达到弹性极限即破坏。在设计地震和多遇地震作用下,限位装置和铅芯橡胶支座处于弹性工作阶段,罕遇地震作用下,限位装置发生破坏,退出工作,由铅芯橡胶支座单独工作,充分发挥铅芯橡胶支座的隔震减震作用。非耗能型限位器主要研究了X形脆性钢板和细长颈部的X形钢棒。
     5.分别对以上几种限位器进行了材料性能和构件的力学性能静力试验研究,为模型桥梁有限元分析中的模型本构关系和滞回关系的输入提供的试验依据。设计了三跨连续隔震铁路桥梁模型,对采用铅芯橡胶支座和三种组合隔震支座的桥梁模型在纵桥向进行了振动台试验研究,试验结果验证了设计方法的合理性以及桥梁模型有限元的模型简化和分析结果的的正确性,通过原型桥梁模型的分析,证明了组合隔震支座限位和隔震的有效性。
Seismic isolation technology is usually used in structures and bridges. This method can prevent and dissipate the input energy of earthquake and reduce the acceleration response of structures effectively. However the LRB is rarely used in railway bridges. The railway bridge with tracks is hardly to analysis for several reasons such as vehicle structure, groups organizing and velocity of vehicles. So far, the performance of railway bridge under train load and earthquakes is not clear. And in China the velocity of trains is frequently accelerated, the smooth of tracks is restricting restrained. In order to apply the seismic isolation technology to high speed railway bridge and to insure the safety and satisfaction, the following content had been studied:
     1. The vertical and longitudinal coupling oscillation between train and railway bridge had been analyzed. It is simplified to be the multi-particle model. The isolated bridge using finite element model connect the vehicle and bridge system together through the longitudinal interaction force between the wheel and rail. Set up the train’s dynamic equation through the force balance. The interaction force time history between wheels and tracks had been obtained. Multi degree of freedom model and forth and fifth order Runge-Kutta method is adopted when calculating the braking force time history. The bending and braking force time history had been second discrete transferred to braking force time history fixed node of structure to realize the space discrete. The time discrete is realized for the bridge dynamic analysis by the ANSYS. The result show that, when the train pass by the bridge, the vertical displacement response of isolation bridge is larger than non-isolation bridge. Longitudinal displacement response is smaller than non-isolation bridge. When brake at single pier the braking force is uniformly distributed to each pier. So the longitudinal displacement response of deck can be diminished effectively and the force distribution reasonably. The most unfavorable position of the train at the train stop on the bridge when the first pair of wheels go out of the bridge.
     2 Dynamic coupling responses between vertical and transverse dimension analysis program by composite mode method had been written by MATLAB. The vertical and transverse coupling response between train and bridge of bidirectional seismic isolation railway bridge with LRB had been analyzed. The analysis take into account the non-smooth of track and the snake moving of wheels and the vehicle is simulated by 27 DOF model. The influence of isolation period, isolation damp ratio, the initial stiffness and yield load to oscillate response had been studied. The result show that the train passes by the bridge with normal LRB the transverse displacement is large which can not satisfy the safety demand and the displacement of LRB must be restrained.
     3 The longitudinal and transverse time history response under designed and rare earthquakes of bidirectional seismic isolation bridge had been analyzed by FEM software ANSYS. The result show that the there will be good seismic isolation effect of railway bridge with LRB. Under occasional and design earthquakes the LRB yield and the displacement will be beyond the allowable value, which may cause the damage of track equipments. The large displacement have serious influence to the safety and increase the difficulty and work to the maintenance and economic loss.
     4 In order to restrain the displacement of bridge deck under occasional and frequency earthquakes, a composite bearing which is combined by LRB and displacement restrainer had been approved here to provide enough initial stiffness and yield strength for isolation bearings. There are totally two types of displacement restrainer:
     a. Energy dissipation and deform restrain damper: In the design and occousional earthquake the damper and LRB remain elastic state and restrain the deformation effectively. And under rare earthquakes the dampers yield and the composite bearing can isolate the earthquake and dissapate energy. In this section X shape steel plate damper and X shape steel rob had been studied.
     b. Non-energy dissipation deform restrainer: This restrainer has no plastic stage and when reach elastic limitation the restrainer crack. Under design and occousional earthquake, both of the deform restrainer and LRB remain elastic state. Under rare earthquake the deform restrainer quit and LRB works solely. In this section X shape brittleness steel plate and long neck X shape steel rob had been strudied.
     5 The material characteristics and mechanical static test is done for the above restrainers. The constitutional relationship and hysteretic relationship had been got by test for FEM simulation. A three spans continuous railway bridge with seismic isolation bearings had been designed. And the shake table test had been taken to the railway bridge, and the test verified the design method is reasonable and the FEM analysis result is right and proved the theory and test demonstration for the practice use of the three composite bearings.
引文
1王丽,阎贵平. LRB隔震桥梁减震效果分析[J].工程力学. 2003, 20(5):124-129
    2朱东生,劳远昌. LRB隔震桥梁的地震反应特点[J.]工程力学. 2000, 18(1):119-125
    3朱东生. LRB隔震桥梁地震反应初探[J].中国公路学报. 2000,14(4):47-51
    4王丽,阎贵平,方有亮.隔震桥梁非线性地震反应分析[J].北方交通大学学报. 2002, 26(1):80-84
    5张俊平,阎维明,周福霖.铁路桥梁隔震体系振动台试验研究简介[J].工程力学增刊. 1999, 3(03):432-438
    6安宁.铅芯橡胶支座隔震桥梁横向地震反应分析[D].西安建筑科技大学硕士学位论文. 2006年
    7吴彬.铅芯橡胶支座力学性能及其在桥梁工程中减、隔震应用的研究[D].铁道科学研究院博士学位论文. 2003
    8韩学敏,钟铁毅,朱正国.铅芯橡胶支座在铁路桥梁抗震中的应用研究[J].石家庄铁道学院学报. 2004, 17(1):34-38
    9武田寿一.構造物の免震防振製振[M].技報堂出版. 1998
    10 I. G. Buckle, R. L. Mayes. Seismic Isolation: History Application and Performance a World View[J]. Earthquake Spectra. 1990, 6(2):161-201
    11 J. M. Kelly. Progress and Prospects in Base Isolation, Seminar on Base Isolation and Passive Energy Dissipation [C], San Francisco, California, 1986:12-13
    12周福霖.工程结构减震控制[M].地震出版社. 1997
    13范立础,王志强.我国桥梁隔震技术的应用[J].振动工程学报. 1999, 12(2):173-181
    14 A. Ghobarah, H. M. Ali. Seismic Performance of Highway Bridges[J]. Engineering Structures. 1988, 10(3):157-166
    15 D. H. Turkington, A. J. Carr, N.Cookeetal. Seismic Design of Bridges on Lead Rubber Bearings [J]. ASCE. 1989, 115(12):3000-3016
    16 D. H. Turkington, A. J. Carr, N. Cookeetal. Design Method for Bridges on Lead Rubber Bearings[J]. ASCE. 1989, 115(12):3017-3030
    17 J. S. Hwang, L. H. Sheng. Equivalent Elastic Seismic Analysis of Base-isolated Bridges with Lead Rubber Bearings [J]. Engineering Structures. 1994, 16(3):201-209
    18 J. S. Hwang, J. M. Chiou. An Equivalent linear Model of Lead Rubber Seismic Isolation Bearings [J]. Engineering Structures. 1996, 18(7):528-536
    19 J. S. Hwang, K. C. Chang and M. H. Tsai. Composite Damping Ratio of Seismically Isolated Regular Bridges [J]. Engineering Structures, 1997, 19(1):55-62
    20 Eric Leonard Anderson. Performance Based Design of Seismically Isolated Bridges [R]. Berkeley: University of California, 2003
    21 Yoshikazu. Shaking Table Test for Frictional Isolated Bridges and Tribological Numerical Model of Frictional Isolator [C]. 13th World Conference on Earthquake Engineering. Vancouver. Canada August, 2004:15-31
    22 M. Dicleli, S. Buddaram. Effect of Isolator and Ground Motion Characteristics on the Performance of Seismic-isolated Bridges[J]. Earthquake Engineering & Structural Dynamics. 2005, 35(2):233-250
    23 M. H. Jasson, B. Bessason and E. Haflidason. Earthquake Response of a Base-isolated Bridge Subjected to Strong Near-fault Ground Motion [J]. Soil Dynamics and Earthquake Engineering. 2010, 30(6):447-455
    24 Kazuhiro Nakajima, Hirokazu Iemura. Pseudo Dynamic Tests and Implementation of Sliding Bridge Isolators with Vertical Motion [C]. 12WCEE. 2000:1365-1371
    25 A. Parvin, Z. Ma. The Use of Helical Spring and Fluid Damper Isolation Systems for Bridge Structures Subjected to Vertical Ground Acceleration [J]. Electronic Journal of Structural Engineering. 2001, 1(2):98-110
    26 W. H. huang. Bi-directional Testing, Modeling, and System Response of Seismically Isolated Bridges [R]. University of California Berbeley, 2002
    27 G. Ghosh, Y. Singh. Bi-directional Effects on the Response of an Isolated Bridge[J]. International Journal of Recent Trends in Engineering. 2009, 1(6):6-10
    28 W. H. Huang. Bi-directional Testing, Modeling, and System Response of Seismically Isolated Bridges [D]. Berkeley: University of California, 2002
    29 P. K. Banerjee, Wilson R B and Raveendra S T. Advanced applications of BEM to three-dimensional problems of monotonic and cyclic plasticity[J]. International Journal of Mechanical Sciences. 1987, 29(9):637-653
    30 H. Iemura, T. Taghikhany and Y. Takahashi, et al. Effect of Variation of Normal Force on Seismic Performance of Resilient Sliding Isolation Systems in Highway Bridges [J]. Earthquake engineering and structural dynamics. 2005, 34(15):1777-1797
    31袁涌,熊世树,朱宏平.隔震桥梁地震反应速度控制型实时子结构试验[J].华中科技大学学报. 2008, 36(8):117-120
    32于泳波.减隔桥梁的空间动力分析及动力试验[D].长安大学博士学位论文. 2004年
    33张春浓.隔震桥梁的理论分析与振动台试验研究[D].北京工业大学硕士学位论文. 2004
    34龚一琼,胡勃,袁万城,胡世德.连续梁桥的减隔震设计[J].同济大学学报. 2001, 29(1):94-98
    35韩学敏,钟铁毅,朱正国.铅芯橡胶支座在铁路桥梁抗震中的应用研究[J].石家庄铁道学院学报. 2004, 17(1):34-42
    36钟铁毅,杨风利,吴彬.铅芯橡胶支座隔震铁路简支梁桥双向地震响应分析[J].中国铁道科学. 2007, 28(03):38-43
    37钟铁毅,杨风利,夏禾.基于能量法的铅芯橡胶支座隔震桥梁设计方法[J].中国铁道科学. 2009, 30(02):43-48
    38杨风利.铁路桥梁减隔震设计方法及设计参数研究[D].北京交通大学博士学位论文. 2007
    39王常峰,朱东生,陈兴冲.基于位移的隔震桥梁非迭代设计方法研究[J].世界地震工程. 2005, 21(03):35-39
    40郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报. 2006, 39(3):81-85
    41 M. C. Kunde, Jangid R S. Seismic Behavior of Isolated Bridges: A-state-of-the-art review[J]. Electronic Journal of Structural Engineering. 2003, 3(2):140-169
    42叠层橡胶支座隔震技术规程[S].中国工程建设标准化协会. 2001
    43 R. I. Skinne.工程隔震概论[Z].地震出版社. 1996
    44川島一彦.道路橋の免震設計法マニュアル(案)[S].土木研究センター. 1992
    45 J. M. Biggs. Introduction to Structural Dynamics[M]. Mc-Graw-Hill Book New York. 1964.
    46 L. Fryba. Vibration of Solids and Structures under Moving Loads[M]. Noordhoff International Publishing. 1972
    47胡人礼译.工程中的振动问题[M].北京:人民铁道出版社, 1978
    48李小珍,强士中.列车一桥梁耦合振动研究的现状与发展趋势[J].铁道学报. 2002, 24(5):112-120
    49松浦章夫.高速鉄道における車両と橋桁の動的相互作用[R].鉄道技術研究資料. 1974
    50松浦章夫.高速鉄道における車両と橋桁の動的挙動に関する研究[R].土木学会論文集. 1976
    51松浦章夫.二軸貨車走行性からみた長大吊橋の折れ角限度[R].鉄道技術研究報告. 1978
    52 K. H. Chu, et al. Dynamic Interaction of Railway Train and Bridges [J]. Vehicle System Dynamics. 1980, 9(4):207-236
    53 K. H. Chu, et al. Railway bridge Impact: Simplified Train and Bridge model [J]. Structural Engineering. ASCE. 1979, 105(9):1823-1844
    54 A. Wiriyachai, K. H. Chu and V. K. Gary. Bridge Impact Due to Wheel and Track irregularities [J]. Engineering Mechanics Division. ASCE. 1982, 108(4):648-665
    55 A. Wiriyachai, K. H. Chu, Garg V K. Impact Itudy by Various Bridge Models [J]. Earthquake Engineering & Structural Dynamics. 1982, 10(1):31-45
    56 G Diana, et al. A Numerical Method to Define the Dynamic Behavior of A Train Running on A Deformable Structure [J]. MECCANICA. 1988, Special Issue:27-42
    57 G. Diana, F. Cheli. Dynamic Interaction of Railway Systems with Large Bridges [J]. Vehicle System Dynamics. 1989, 18(13):71-106
    58 G. Diana, et al. Wind Effects on the Dynamic Behavior of Suspension Bridge. International Report [R]. Milano, 1986
    59 L. Fry’ba. A Rough Assessment of Railway Bridges for High Speed Trains [J]. Engineering Structures. 2001, 23(5):548-556
    60 Y. S. Wu. A Semi-analytical Approach of Analyzing Ground Vibrations Caused by Trains Moving over Elevated Bridges [J]. Soil Dynamics and Earthquake Engineering. 2004, 24(12):949-962
    61 B. Biondi. A Substructure Approach for the Dynamic Analysis of Train-Tack-Bridge System [J]. Computers and Structures. 2005, 83(28-30):2271-2281
    62 E. Savin. Dynamic Amplification Factor and Response Spectrum for the Evaluation of Vibrations of Beams under Successive Moving loads [J]. Journal of Sound and Vibration. 2001.248(2):267-288
    63 Y. B. Yang. Dynamics Stability of Trains Moving over Bridges Shaken by Earthquakes [J]. Journal of Sound and Vibration. 2002, 258(l):65-94
    64 S. H. Ju. A Resonance Characteristic of High Speed Trains Passing Simple Supported Bridges [J]. Journal of Sound and Vibration. 2003, 267(5):1127-1141
    65 Y. S. Wu. Steady-state response and riding comfort of trains moving over a series of simply supported bridges [J]. Engineering Structures. 2003, 25(2):251-265
    66 C. H. Lee. Dynamic Response of a monorail steel bridge under a moving train [J]. Journal of Sound and Vibration. 2006, 294(3):562-579
    67 J. W. Kwark. Dynmaic Behavior of Two Span Continuous Concrete Bridges under Moving High Speed Train [J].Computers and Structures. 2004, 82(4-5):463-474
    68 C. H. Lee. Dynamic Response Analysis of Mono Rail Bridges Under Moving Trains and Riding Comfort of Trains [J]. Engineering Structures. 2005, 27(14):1999-2013
    69李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社. 1996
    70夏禾,徐幼麟.大跨度悬索桥在风与列车荷载同时作用下的动力响应分析[J].铁道学报. 2002, 24(4):83-91
    71夏禾,张宏杰,曹艳梅,De Roeck G.车桥耦合系统在随机激励下的动力分析及其应用[J].工程力学. 2003, 20(3):142-140.
    72夏禾,张楠,张鸿儒. 300km/h高速铁路PC槽型梁动力试验研究[J].工程力学. 2003, 20(6):99-105.
    73陈英俊.车辆荷载下桥梁振动理论的演进[J]. 1975, 2(2): 21-36
    74夏禾等.高速铁路轨道动力分析与结构模式[J].北方交通大学学报. 1996, 20(2):192-199
    75夏禾.高速铁路连续梁桥动力响应分析[J].北方交通大学学报. 1997, 21(4):399-404
    76夏禾,陈英俊.列车提速情况下铁路双线简支钢构梁动力响应分析[J].铁道学报. 1996, 18(5):75-82
    77杨风利,钟铁毅,夏禾.基础弹性刚度变化对铁路简支梁桥地震响应的影响研究[J].中国安全科学学报. 2004,14(11):100-104
    78郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北方交通大学博士学位论文. 2004
    79张楠.高速铁路铰接式列车车桥动力耦合问题的理论分析与实验研究[D].北方交通大学博士学位论文. 2002
    80汪胜,王庆波,夏禾等.高速铁路双线简支梁桥空间振动响应分析[J].北方交通大学学报. 1998, 22(4):37-30
    81 H. Xia, Y. L. Xu, et al. Dynamic Interaction of Long Suspension Bridges with Running Trains [J]. Sound and Vibration. 2000, 237(2):263-280
    82 H. Xia, et al. Dynamic Analysis of High Speed Railway Bridge under Articulated Trains [J]. Computers and Structures, 2003, 8(1):2467-2478
    83 H. Xia, Y. L. Xu, et al. Dynamic Response of Train-Suspension Bridge under High Wind Action [C]. TIVC. Bejing, 2001:231-238.
    84 H. Xia, N. Zhang. Experimental Analysis of Railway Bridge under High Speed Trains [J]. Sound and Vibration. 2005, 282(1-2):517-528.
    85杨岳民.大跨度铁路桥桥梁车桥动力响应理论分析及试验研究[D].铁道部科学研究院博士学位论文. 1995
    86程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析[C].全国桥梁结构学术大会论文集.武汉, 1992.1163-1168.
    87高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究[D].铁道部科学研究院博士学位论文. 2001
    88许慰平.大跨度铁路桥桥梁车桥空间耦合振动研究[D].铁道部科学研究院博士学位论文. 1987
    89黄维平,强士中.大跨度悬索桥环境振动的双向TMD控制[J].地震工程与振动. 1999, 19(l):100-103
    90刘长军.移动车辆对桥梁动力作用模拟简化方法的研究[J].山西建筑. 2007, 33(4):295-296
    91宁晓骏,何发礼,强士中.车桥耦合振动研究中轮轨接触几何非线性的考虑[J].桥梁建设. 1999, 2(3):8-10
    92宁晓骏.高速铁路列车-桥梁-基础空间耦合振动研究[D].西南交通大学博士学位论文. 1998
    93单德山.高速铁路曲线梁桥车桥耦合振动分析及大跨度曲线梁桥设计研究[D].西南交通大学博士学位论文. 1999
    94葛玉梅,袁向荣.机车-高架桥梁耦合振动研究[J].西南交通大学学报. 1998, 33(2):138-142
    95李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究[D].西南交通大学博士学位论文. 2000
    96李小珍,马文彬,强士中.车桥系统耦合振动分析的数值解法[J].振动与冲击. 2002, 21(3):21-25
    97李小珍,强士中.京沪高速南京越江钢斜拉桥车桥耦合振动分析[J].西南交通大学学报. 1999, 34(2):153-157
    98何发礼.高速铁路中小跨度曲线梁桥车桥耦合振动研究[D].西南交通大学博士学位论文. 1999
    99沈锐利.高速铁路桥梁与车辆耦合振动研究[D].西南交通大学博士学位论文. 1998
    100曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用[M].中国铁道出版社. 1999
    101曾庆元等.列车-桥梁时变系统的横向振动分析[J].铁道学报. 1991, 13(2):38-46
    102曾庆元.关于铁路桥梁的刚度问题[J].长沙铁道学院学报. 1991, 9(3):1-15
    103夏禾,张楠.车辆与结构动力相互作用[M].科学出版社. 2005
    104卢耀荣,冯淑卿.桥上无缝线路挠曲力计算.铁道学报. 1987, 9(2):56~67
    105蔡成标.高墩桥上无缝线路制挠力的整体分析方法[D].西南交通大学硕士学位论文. 1989
    106王天伟.高墩桥上无缝线路制挠力的模型试验研究[D].西南交通大学硕士学位论文. 1989
    107卜一之.高速铁路桥梁纵向力传递机理及传力构造的研究[R].铁道部科学研究院铁道建筑研究所. 1996
    108卜一之.高速铁路桥梁纵桥向力传递机理研究[D].西南交通大学博士学位论文. 1997
    109阴存欣.铁路桥梁纵向附加力静动力非线性分析与仿真研究[D].铁道部科学研究院博士论文. 2000
    110李宏年.列车制动力荷载及对桥梁作用机理的研究[D].北京交通大学博士学位论文. 2001
    111阴存欣,潘家英,庄军生.铁路桥梁纵向附加力的静动力非线性分析与仿真研究[J]. 2001, 22(5):133-134
    112徐庆元,张旭久.高速铁路博格纵连板桥上无砟轨道纵向力学特性[J].中南大学学报. 2009, 40(2):526-532
    113曹雪琴,朱金龙.城市轨道交通桥梁纵向制动力传递分析[J].中国铁道科学. 2004, 25(4):73-79
    114黄问盈,杨宁清,黄民.列车制动力的二次换算计算[J].中国铁道科学. 1999, 20(2):67-78
    115田文野,李宏年.铁路简支梁桥墩承受列车制动力的研究[J].中国安全科学学报. 2002, 12(6):21-24
    116王锐锋,李宏年.铁路桥梁列车制动力荷载研究[J].北方交通大学学报. 2003, 27(1):63-67
    117卫星,刘名君,李俊,强士中.大跨度铁路无砟轨道桥梁动力性能试验研究[J].中国铁道科学. 2008, 29(5):40-45
    118铁道第二勘察设计院.遂渝线无砟轨道桥涵动力性能试验报告[R].铁道第二勘察设计院, 2007
    119李宏年,朱晞,季文玉. PC简支梁铁路桥承受制动力的动力分析[J].铁道学报. 2000, 22(4):64-67
    120 M. J. Steenbergen. Assessment of Design Parameters of a Slab Tracks Railway System from a Dynamic Viewpoint [J]. Journal of Sound and Vibration. 2007, 306(1/2):361-371
    121 W. Czyczula, J. Solkowski and K.Towpik. Interaction between CWR Track and Bridges in Longitudinal Direction [J]. Archives of Civil Engineering. 1997, 43(1):51-69
    122 M. D. Symans, et al. Seismic Protection of Bridge Structures Using Hybrid Isolation Systems[C]. the 6th U.S. National Conference on Earthquake Engineering. Seattle Washington, 1998
    123 A. Tena-Colunga. Mathematical Modeling of the ADAS Energy Dissipation Device[J]. Engineering Structures. 1997, 19(10):811-821
    124 G. P. Warn, A. S. Whittaker. Performance Estimates in Seismically Isolated Bridge Structures [J]. Engineering structures. 2004, 26(9):1261-1278
    125 A. S. Whittaker, V. V. Bertero, J. Alonso, et al. Earthquake simulator testing of steel plate added damping and stiffness elements [R]. Earthquake Engineering Research Center, University of California, Berkeley, 1989
    126滕军.结构振动控制的理论、技术和方法[M].科学出版社. 2009
    127李冀龙,欧进萍. X型和三角形钢板阻尼器的阻尼力模型(Ⅱ)—基于R-O本构关系[J].世界地震工程. 2004, 20(2):129-133
    128邢书涛,郭迅.一种新型软钢阻尼器力学性能和减震效果的研究[J].地震工程与工程振动. 2003, 23(6):179-186
    129蔡克铨,黄立宗.含三角形加劲阻尼装置构架的设计方法与应用[J].结构工程师(增刊). 2000:19-30
    130 I.G. Buckle, P.G. King. Mechanical Properties of Cantilevered Mild Steel Energy Dissipators [C]. Proceedings of the International Symposium on Remote Sensing of Environment. Auckland, New Zealand. 1980:156-164
    131 R.G. Tyler. Tapered Steel Energy Dissipators for Earthquake Resistant Structures [J].Bulletin of The New Zealand National Society for Earthquake Engineering. 1978, 11(4):282-294
    132王亚勇,薛彦涛,欧进萍,吴斌,龙旭,程懋堃,王志刚.北京饭店等重要建筑的消能减振抗震加固设计方法[J].建筑结构学报. 2001, 22(2):35-39
    133高岩,张煅.高速铁路中小跨度桥梁竖、横向刚度限值及合理分布的研究[J].铁道建筑技术. 2000, (4):11-14
    134谢旭.桥梁结构地震响应分析与抗震设计[M].人民交通出版社. 2006
    135矢作枢,和田克哉等.橋梁下部構造物の耐震設計[M].山海堂. 2002
    136土木学会地震工学委员会.橋の動的設計[M].土木学会. 2003
    137朱石坚等.振动理论与隔震技术[M].国防工业出版社. 2006
    138道路橋示方書V耐震設計編. 2002
    139张相庭,王志培等.结构振动力学(第二版)[M].同济大学出版社. 2005
    140高岩,张煅.高速铁路中小跨度桥梁竖、横向刚度限值及合理分布的研究[J].铁道建筑技术. 2000, 4:11-14
    141李广慧等.车辆-无碴轨道-桥梁系统振动特性及其应用[M].黄河水利出版社. 2007
    142李忠献,张媛,丁阳.轻轨铁路站桥结构体系抗震分析与隔震研究[J].地震工程与工程振动. 2003, 23(6):163-168
    143李延枢,李宏年,雷俊卿.制动力作用下线-桥结构动力分析的二次离散方法[J].铁道标准设计. 2004, (1):29-31
    144施洲,夏招广,葛玉梅.高墩大跨连续梁铁路桥动力试验[J].西南交通大学学报. 2006, 41 (3):349-354
    145蒋丽忠,丁发兴,余志武.钢-混凝土连续组合铁路桥梁综合动力性能试验研究[J].中国铁道科学. 2006, 27(5):60-65
    146雷俊卿,李宏年,冯东.铁路桥梁列车制动力的试验研究与计算分析[J].工程力学. 2006, 23(3):134-140
    147 C. J. BOWE, T. P. MULLARKEY. Wheel-rail contact elements incorporating irregularities [J]. Advances in Engineering Software. 2005, 36(11-12):827-837.
    148建筑抗震设计规范(GB50011-2001)[S].中国标准出版社. 2001
    149铁路工程抗震设计规范(GB50111-2006)[S].中国计划出版社. 2006
    150郑健,中国高速铁路桥梁[M].高等教育出版社. 2008
    151铁道车辆动力学性能评定和试验鉴定规范(GB5599-85)[S].中国标准出版社. 1985
    152·邢书涛.新型软钢阻尼器及其在结构控制中的应用研究[D].中国地震局工程力学研究所硕士论文. 2003
    153 W. D. Iwan and N. C. Gates. Estimation Earthquake Response of Simple Hysteretic Structures. Journal of Engineering Mechanics Division. ASCE. 1979, 1053):391-405
    154欧进萍,吴斌,龙旭.耗能减振结构的抗震设计方法[J].地震工程与工程振动. 1998, 18(2):98-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700