组合隔震与三维隔震(振)理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1994年美国北岭地震、1995年日本阪神地震、1999年土耳其伊兹米特地震、1999年中国台湾集集地震和2008年中国汶川地震,均产生了重大的人员伤亡和结构破坏。隔震是一种代表性的减震技术,在新建工程和旧房改造中已广泛应用。隔震通过延长结构自振周期、增加阻尼而避免与短周期为主的地震发生共振。最近,为减小结构地震响应,隔震技术也在柔性结构中得到应用。
     至今,在城市地铁和交通运输线旁边建造了许多建筑,列车的轮轨接触产生的噪声和振动通过地基传到附近的建筑,因而降低了居民的生活质量。隔震技术虽然能有效地减小水平地震反应,但无竖向减振功能。为降低结构的地震和振动响应,新型的三维隔震(振)系统有待研究和开发。
     目前,我国在减振领域进行了丰富的研究工作,大量的论文和文章重点关注理论研究和隔震改良,然而,在隔震设计及应用问题等却缺乏重视。本文对隔震技术应用有关方面进行了研究,包括:(1)推导了隔震结构的谐振响应,研究了系统参数对响应的影响,分析了反应过程; (2)设计了一新型三维隔震(振)支座,对该支座进行了试验验证。对弹性滑板支座进行了试验研究;(3)对5层钢框架模型进行了隔振对比试验、纯滑移隔震和组合隔震的振动台试验研究;(4)采用简化模型对试验结果进行了仿真分析;(5)研究并探讨了近断层隔震结构的地震反应和隔震设计;(6)对隔震设计谱进行了修正,提出了等效线性预测方法;(7)介绍了组合隔震技术、三维隔震(振)技术的工程应用。对于隔震分析,掌握结构最大地震反应规律比了整个反应过程更为重要。出于上述目的,第2章推导了单自由度隔震结构模型稳态反应,对于刚性摩擦滞回模型,在自由振动和稳态反应基础上,探讨了系统的反应整体过程。得出了隔震结构的最大反应与输入的最大速度、隔震结构周期和频比相关的结论。
     第3章介绍了本文研究的隔震和隔振支座,并进行了试验研究。三维隔震(振)支座包括联接板、竖向隔振体和水平隔震支座。竖向隔振体和水平隔震支座刚度小,可使隔震(振)结构在竖向和水平向的基频远离环境振动和地震的主要频率。对三维支座进行了验证试验。另外,弹性滑板支座是组合隔震技术中重要的隔震支座。本章还对弹性滑板支座进行了压缩试验、压剪试验、压力相关性能试验和频率相关性能试验研究。探讨了新型的聚氨酯橡胶支座在隔震(振)中的应用。
     纯滑移隔震技术在国内有许多工程应用,而该技术存在罕遇地震中隔震层有很大位移、上部结构产生扭转反应和地震后存在较大的不可恢复位移等缺陷。第4章中,为研究纯滑移隔震性能,进行了一维、二维和三维的地震模拟振动台试验。试验采用5层钢框架模型,两方向高宽比分别为2.5和5,尺寸相似比为1/4,隔震层由4个直径100 mm的弹性滑板支座构成。对试验结果进行了数值模拟对比分析。试验与数值模拟结果证明了纯滑移隔震技术存在的缺陷。试验还表明,虽然模拟地震试验中,单个支座的轴力变化大,水平性能不稳定,但隔震层的竖向荷载变化相对较小,隔震层的整体滞回性能稳定。所以,采用弹性滑板支座和不承压的橡胶支座的组合隔震技术是解决纯滑移隔震技术缺陷的有效方法之一,也为较经济的隔震技术应用提供了选择。
     第5章对5层钢框架模型进行了组合基础隔震振动台试验研究。隔震系统包括4个低硬度铅芯橡胶隔震支座和2个弹性滑板支座,以不同特点隔震支座组合使用达到降低上部结构反应的目的。振动台试验和时程分析结果表明,组合隔震技术能有效减小上部结构响应,且隔震层变形在安全范围之内。
     第6章对近断层隔震结构的地震反应进行了理论和试验研究。采用了单周正弦波对速度脉冲记录进行了模拟,并采用第2章的解析法计算了脉冲模型的反应谱。结果表明,大幅值速度脉冲会导致隔震层产生过大的变形。对于近断层隔震结构设计,本文提出了双滑动面的滑板支座和弹性限位滑板支座方案。
     与国外规范相比,比如美国IBC2003规范,隔震设计时,我国隔震设计规范主要存在以下两方面的不同,一,反应曲线的长周期段定义为直线段,其结果是速度谱是直线上升;二,在相似的场地类型,场地特征周期较国外的短。依据基岩周期相同和真实地震记录反应谱在长周期段速度谱是恒定的事实,在本文第7章中建议采用修正系数1.6对现规范的场地周期进行修正。对于隔震设计,本文建议1阶模态的响应采用恒定的速度谱计算,其余的振型质量响应采用恒定的加速度谱进行计算。
     第8章介绍了组合隔震技术的工程应用,并对三维隔震(振)技术工程应用进行了现场实测。对比测试结果表明,隔振系统对隔振效果显著。
The 1994 Northridge earthquake in the United States, the 1995 Kobe(Hyogo-Ken Nanbu) earthquake in Japan, the 1999 Izmit earthquake in Turkey, the 1999 Chi-Chi earthquake in Taiwan, China and 2008 Wenchuan earthquake in China, all caused significant loss of lives and damage to civil engineering structures. Seismic isolation, as a typical means of response control technology, has been widely used in both new and existing buildings to protect from the devastating effects of earthquakes. The concept of isolation is to prolong natural period and provide higher damping level to traditional structure to avoid resonance with the relatively short period components dominant in earthquake ground motions. Recently, seismic isolation has been utilized in more flexible structures to reduce acceleration or displacement response.
     Today, many buildings have been constructed near subways or other traffic facilities in inner city areas of the world. Transportation systems generate noise and vibration by the wheel-rail contact of the trains, which is transmitted through the ground and the foundations into the neighboring structures and reduce the quality of life of the people living in. Although seismic isolation systems are effective in reduce the responses of horizontal vibrations such as earthquakes, the systems are typically not effective in control of the vertical vibrations resulted from traffic operations. To reduce building responses towards seism and transportation vibration, a special 3D isolation system is necessary to investigate.
     Number of studies in the fields of response control and seismic isolation have been conducted in China. Many papers and dissertations have shed light on the theory research and development of seismic isolation, however, with less emphasis on the problems of design and application of the technologies in the daily practice of structural engineering. This dissertation represents comprehensive experimental and analytical study of base isolation technology for practical application in civil engineering, including following aspects: (1) Inferring the isolation responses under the sinusoidal wave by closed-analysis method and studying on the influences of system parameters and the entire response process. (2) Designing an innovative 3D isolator, and conducting the verifying tests of the 3D isolator and the routine and dependence tests of elastic sliding bearing. (3) Completing of the shaking table tests of a five-storey steel structure model, including vibration isolation comparison tests, pure sliding isolation tests and combined base isolation tests. (4) Proposing a simplified numerical model and comparing the simulation results and tests results. (5) Studying seismic isolation response under near-fault earthquake and discussing the means of seismic isolation design. (6) Revising the seismic isolation design response spectrum and the site characteristic period and establishing the equivalent linear forecast method. (7) Introducing the engineering application of the combined base isolation and the three-dimensional seismic and vibration isolation techniques and presenting the site test of vibration isolation.
     For seismic isolation building, it’s more important to master the law of the maximum responses than to understand the process of seismic reactions. For the purpose, in Chapter 2, the steady-state response of single-degree-of-freedom system with isolation devices are derived. Considering the free vibration and steady-state response of rectangular hysteretic model, the entire response process are discussed. Draw the conclusion that the maximum response of isolation building are correlated with the maximum velocity of input wave and the period of isolation layer and the frequency ration of input to isolated building.
     In Chapter 3, seismic isolation and vibration isolation devices are introduced and tested. The 3D isolator is composed of the connecting plate, vertical rubber pad and horizontal rubber bearing. The vertical rubber pad and horizontal rubber bearing have very low stiffness, and both vertical and horizontal natural frequencies of the isolated building can be designed far from metro train and earthquake main frequency to insulate both environment vibration and seism. The verifying tests of the 3D isolator were carried out. Additionally, the elastic sliding bearing is a key isolator to combined base isolation technique. In this Chapter, compression test, compressive-shear test, compressive force dependence of horizontal properties and frequency dependence of horizontal properties test of elastic sliding bearings were conducted. The polyurethane rubber isolator applied in seismic and vibration isolation was discussed herein.
     In China, some buildings were isolated by pure sliding isolation technique, thus the large residual displacements, super-structure rotation response and large isolation deformation are the shortcomings of the isolation system. In Chapter 4, one, two and three-dimensional shaking table tests are carried out to investigate the performance of the pure sliding isolation system. A 5-story steel frame model with aspect ratios of 2.5 and 5 had a length scale of 1/4. The isolation layer contents four 100mm-diameter elastic sliding bearings. Dynamic response analysis was conducted to simulate the test results. Test and analysis results proved the shortcomings of the system. Although the single isolator vertical load change large and the horizontal properties is lack of physical stability, the isolation layer axial loads were change small, and the hysteresis loop of isolation system is stable. Therefore, the combined system of elastic sliding bearings uplifting super-structure and rubber bearings without vertical load is considered one of the measures to develop the pure sliding isolation technique. This gives a chance to build the most economical isolated building.
     Tri-axial earthquake simulator testing of a five-storey steel structure model with combined base isolation system was conducted in Chapter 5. The system includes 4 lower hardness lead rubber bearings and 2 elastic sliding bearings, and the merits of different seismic isolation devices can be applied to reduce seismic reaction of superstructure. Both the shaking table test results and time history analysis results show that the combined base isolation system can effectively reduce the superstructure reaction and the deformation of isolation layer and greatly improve the safety of the structure.
     In Chapter 6, seismic analysis of base-isolated structures subjected to near-fault ground motions was analytically and experimentally studied. The velocity pulse motions were simulated by one cycle sinusoidal wave, and the response spectra of the pulse model were calculated by analysis method, which studied in Chapter 2. it is illustrated that the large velocity pulse caused very large deformation of isolation layer. The sliding bearing with two sliding plate and Sliding bearing with polyurethane elastomer were presented for seismic isolation design in near-fault region.
     As for Chinese seismic design code, there are two aspects different from foreign design code for seismic isolation design, such as IBC2003 code. First, the design response spectrum curve in long period portion is defined by straight line and results the spectrum velocity additionally increased. Secondly, at the similar site class, the site characteristic period is much shorter than foreign code. According to periods are identical at the bedrock and the fact that real earthquake spectrum with a uniform velocity portion in the longer-period range, the site characteristic periods have been revised by a coefficient 1.6, as shown in Chapter 7. For seismic isolation design, this dissertation suggested that calculating the 1st mode response by uniform velocity spectrum and the rest mode mass response by uniform acceleration spectrum.
     In addition, Chapter 8 introduces the application of the combined base isolation technology and 3D isolator. An apartment building employing the isolation technology on a platform of subway is also presented. The in-situ tests of isolated building and non-isolated building were carried out. The comparative test results show that the vibration isolation system is effective in reducing building responses in high frequency domain.
引文
[1]胡聿贤.地震工程学.地震出版社, 2006
    [2]叶列平译.图解隔震结构入门.科学出版社,1998
    [3]卢福水,郑栋,王建荣. 2005年11月26日九江-瑞昌5.7级地震震害特征.震灾防御技术, 2006:70~72
    [4]陈颙.城市地震灾害及其应对:过去、现在和将来.城市灾害管理.群言出版社, 2004:73~80
    [5]谢礼立,周雍年,赵兴权译.工程隔震概论.地震出版社, 1996
    [6]刘文光译.隔震结构设计.地震出版社, 2006.
    [7] Masahiko Higashino, Shin Okamoto. Response Control and SeismicIsolation of Buildings, 2006:63~87
    [8] International Code Council. International Building Code, 2000
    [9] European Standard. Eurocode 8: Design of structures for earthquakeresistance (FINAL DRAFT), Dec.2000
    [10] MRIT,etc. The Notification and Commentary on the Structural CalculationProcedures for Building with Seismic Isolation -2000-, in Japanese, 2000
    [11] GB 50011-2001.建筑抗震设计规范.中国建筑工业出版社, 2001
    [12] Skinner, I.R., Robinson, H.W., Mcverry, H.G.. An Introduction to SeismicIsolation.John Wiley & Sons Ltd, 1993
    [13] Robinson, W.H., and Tuker, A.G.. Test results for Lead-Rubber Bearings forthe William M. Clayton Building, Toe Toe Bridge, and Waiotukupuna Bridge.Bull. New Zealand Natl. Soc. Eng. 1983(1):21~33
    [14]李杰,李国强.地震工程导论.地震出版社, 1992
    [15]福田滋夫,村松佳孝,山口直之,中田安洋,田中久也.錫プラグ入り積層ゴム免震装置の開発(その1)~(その5).日本建築学会大会学術講演梗概集,B-2,2005.9:747~756
    [16]刘伟庆,董军,王曙光.宿迁市文体综合馆基础隔震设计.建筑结构学报.2003(2):20~24
    [17]吕西林,朱玉华,施卫星.组合基础隔震房屋模型振动台试验研究.土木工程学报. 200(2):43~49
    [18]朱玉华,吕西林,杜芳.组合隔震系统滑动支座的滑移系数研究.结构工程师. 2001(2):34~40
    [19]魏陆顺,周福霖,刘文光.组合基础隔震在建筑工程中的应用.地震工程与工程振动. 2007(2):158~163
    [20]魏陆顺,周福霖,刘文光.广州大学城应用组合基础隔震技术.建设科技.2005(2) :30~31
    [21] Zayas, V.A., Low, S. S. and Mahin, S. A.. A simple pendulum technique forachieving seismic isolation. Earthquake Spectra.1990(6):317~334
    [22] ZHOU, F.L. Seismic Isolation of Civil Buildings in P.R.China. Progress inStructural Engineering and Materials. 2002 Vol.3, No.3
    [23] Seigenthaler R. Earthquake-proof Building Supporting Structure with ShockAbsorbing Damping Elements. Schweizerische Bauzeitung, No.20:102~109.
    [24] Naeim, F. and Kelly, J. M.. Design of Seismic Isolated Structures. JohnWiley & Sons, Inc. 1999
    [25] Megget L M. Analysis and Design of a Base-isolated Reinforced ConcreteFrame Building. Bulletin of the New Zealand National Sociaty forEarthquake Engineering. 1978.11(4):78~85
    [26]基礎絶緑による免震構法.Structure. No.8,1983年10月号
    [27] J M Kelly. Base Isolation: Origins and Development. EERC News.1991.Vol.12(1):130~146
    [28]周福霖.工程结构减震控制.地震出版社. 1997
    [29] A. N. Gent, P.B. Lindley. The Compression of Bonded Rubber Blocks.Proc. Instn. Mech. Engrs.. 1959 Vol. 173, No.3
    [30] A. N. Gent, E. A.Meinecke. Compression, Bending, and Shear of BondedRubber blocks. Ploymer Engineering and Science. 1970 Jan., Vol.10, No.1
    [31] A. N. Gent, R. L. Henry. M. L. Roxbury. Interfacial Stresses for BondedRubber Blocks in Compression and Shear. Journal of Applied Mechanics.1974. Vol.15, No.12
    [32] J.A. Haringx. On Highly Compressible Helical Springs and Rubber Rods,and Their Application for Vibration-Free Mountings, Philips ResearchReports. 1948:Vol.3&Vol.4
    [33]藤田隆史,藤田聪,铃木重信等.建筑隔震用橡胶隔震支座相关试验研究.日本机械学会论文集. 1988. C, Vol.54, No.507:2618~2623
    [34]可见长英,岩部直征,高山峰夫等.天然橡胶、高阻尼橡胶、铅芯橡胶的剪切拉伸特性.日本建筑学会学术讲演梗概集. 1999(B-2):559~566
    [35]多田英之,高山峰夫,多天罗史郎等.隔震支座模型试验相关研究.日本建筑学会学术讲演梗概集. 1982(B-2):781~782
    [36]高山峰夫.基础隔震建筑物结构设计相关研究.东京大学博士论文. 1990
    [37]周锡元,韩淼,曾德民等.组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法.地震工程与工程振动. 1999(4) :38~44
    [38]唐家祥.建筑结构隔震设计.华中理工大学出版社, 1993
    [39]刘文光,周福霖,庄学真,三山刚史等.中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究.地震工程与工程振动. 2002(1):114~120
    [40] Feng, D., T. Miyama, K. Masuda, Liu, W.. A detailed experimental study on Chinese lead rubber bearing, Paper no.0202, 12WCEE, 2000
    [41]刘文光,杨巧荣,周福霖等.建筑橡胶座非线性弹性压缩特性的理论和试验研究.地震工程与工程振动. 2003(5):110~118
    [42]刘文光,杨巧荣,周福霖.建筑橡胶座非线性弹性弹性回转剪切特性的理论和试验研究.地震工程与工程振动. 2004(1):158~167
    [43]刘文光,杨巧荣,周福霖等.建筑橡胶座非线性弹性拉伸特性的理论和试验研究.地震工程与工程振动. 2004(2):172~179
    [44] LIU, W.G., YANG, Q.R., ZHOU, F.L. The New Mechanic Concept of Rubber Bearings with Stiffness Factor. 8th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structure,Yerevan, Armenia. 2003:6~10
    [45]宫崎光生.中高层隔震建筑地震时的特性(LRB的场合)、隔震技术的开发和地震观测结果.日本建筑中心. 1992:598~610
    [46]和田章,吉田献一.考虑橡胶隔震支座上下变形的隔震结构动力特性相关研究.日本建筑学会学术讲演梗概集. 1992(B-2):769~770
    [47]濑户裕,竹中康雄.修正双线性模型表现隔震装置两方向非线性模型的延伸.日本建筑学会学术讲演梗概集. 1996( B-2):805~806
    [48] Feng, D., T. Miyama, T. Toriietc.. A new analytical model for the lead rubber bearing. Paper no.0203, 12WCEE, 2000
    [49] M.C. Constantinou,A.M. Reinhorn. Study of sliding and helical-steel-spring isolation system. J.struct.eng.,1990 (4):1257~1275
    [50]李立,刘德馨.建筑物的滑动隔震技术的研究与应用.地震出版社,1991
    [51] R.G. Tyler. Dynamic Tests on PTFE Sliding Layers under Earthquake Conditions. Bull. NZ Nat. Soc. Earthq. Eng.. 1997(10): no.3
    [52]张文芳,李爱群等.建筑物滑移隔震研究现状及新进展.东南大学学报. 1997(Vol.27增刊):45~49
    [53]周锡元,彭尚达等.建筑结构隔震、减震、控震技术的研究和应用.第二届全国结构减振控制学术会议论文集.武汉,1992:41~53
    [54]樊水荣,苏经宇等.建筑基础摩擦滑移技术及其应用.工程抗震. 1997(1):39~43
    [55]陕DBJ/T24-23-2000.陕西省建筑物滑移隔震技术规程.西安. 2000
    [56] Zayas V. Low S.S. A simple pendulum technique for achieving seimic isolation. Earthquake Spectra.1990(2): 317~334
    [57]李大望,周锡元,霍达等. FPS自治系统及其性态分析.振动与冲击. 1999(1):23~25
    [58]杨林,周锡元,苏幼坡,常永平. FPS摩擦摆隔震体系振动台试验研究与理论分析.特种结构. 2005(4): 43~46
    [59] Tsopelas P, Constantinou M.C., Kim Y.S., Okamoto S.. Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering and Structural Dynamics. 1996(25):65~783
    [60] Mokha A.S., Amin N., Constantinou M.C., Zayas V.. Seismic isolation retrofit of large historic building.Journal of Structural Engineering. 122(3):298~308
    [61] P.L. Lee, N.R. Amin, C. Hartman. Design of the new international terminal at San Francisco international airport. In: Structural Engineering World Wide. 1998:19~44
    [62] Hyakuda, T. Saito, K., Matsushita, T., Tanaka, N., Yoneki, S., Yasuda, M., Miyazaki, M., Suzuki, A., and Sawada, T. The structural design and earthquake observation of a seismic isolation building using friction pendulum system, Proceedings. 7th International Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibration of Structures, Assisi, Italy. 2001:2~5
    [63] J. M. Kelly. Aseismic base isolation: review and bibliography. Soil Dyn. Earthquake Engng. 1986(3):212 ~ 226
    [64] M. S. Chalhoub, J.M. Kelly. Sliders and tension controlled reinforced elastomeric bearings combined for earthquake isolation. Earthquake Engrg. Struct. Dyn. 1990(19):333 ~ 344
    [65] Motaghel, N., Khodaverdian M.. Dynamics of resilient friction base isolator (R - FBI). Earthquake Engrg. Struct. Dyn. 1987 (3) :379 ~ 390
    [66]吕西林,朱玉华等.组合基础隔震房屋模型振动台试验研究.土木工程学报. 2001(2) :43~48
    [67]朱玉华,吕西林.滑移摩擦隔震系统在多向地面运动作用下的试验研究.地震工程与工程振动. 2002(5) :77~84
    [68]魏陆顺,周福霖,刘文光.广州大学城应用组合基础隔震技术.建设科技.2005 (2):30~31
    [69]魏陆顺,周福霖,刘文光.组合基础隔震在建筑中的应用,地震工程与工程振动. 2007(2):158~163
    [70] Heck l.M, Hauck G,W. Ettschureck R. Structure-borne sound and vibration from rall traffic. J S V , 1996,193 (1) :175~184
    [71] Wilson G P. Control of Ground-Borne Noise and Vibration. J.of Sound and Vibration. 1983,87(2):339~350
    [72] Kurzweil L G. Ground-Borne Noise and Vibration from Underground Rail Systems. J.of Sound and Vibration. 1979,66(3):363~370
    [73] Kurzweil L. Prediction of noise and vibration in buildings near the NEW. J.of Sound and Vibration. 1979,66(3):363~370
    [74] Fujikake T. A Prediction Method for the Propagation of Ground Vibration from Railway Trains. J.of Soundand Vibration. 1986,111(2):289~297
    [75]青木一郎.铁道交通による振动とその周边居民に对する影响.东京都环境科学研究所年报.1994(18):24~30
    [76] Hayakawa K. Reduction Effects of Ballast Mats and EPS Blocks on Ground Vibration Caused by Train and its Evaluation. Proc.Inter-Noise′92. 1992:233~240
    [77]王毅.北京地下铁道振动对环境影响的调查与研究.噪声振动与控制,1992 (1) :15~17
    [78]王毅,等.地铁车辆段平台居住小区振动与噪声污染控制.中国环境监测. 1999 (6) :43~45
    [79]章小安等.地铁环境振动预测方法浅析.环境工程. 1996 (5) :35~39
    [80]陈实,徐国彬,高日.列车震动对铁路沿线结构物影响的动力分析.北方交通大学学报. 1998 (4) :57~60
    [81]夏禾,等.城市轨道交通引起的环境振动问题.北方交通大学学报. 1999 (4) :126
    [82] Fujita, T.; et al. A three-dimensional isolation floor for earthquake and ambient micro-vibration using multi-stage rubber bearings (1st report, tests for the performance of the floor by a large-scale experimental model), Transactions of the Japan Society of Mechanical Engineers, Part C, v 53, n496, Dec. 1987: 2521~2528
    [83] Kashiwazaki, A.; Tanaka, M.; Tokuda, N.. Shaking test of seismic isolation floor system by using 3-dimensional isolator. Proceedings, Ninth World Conference on Earthquake Engineering, 1989: 845~850
    [84] Fujita S , Kato E , Kashiwazaki A et al.Shake Table Tests on Three-Dimensional Vibration Isolation System Comprising Rubber Bearing andCoil Spring, Proceedings of 11th World Conference on Earthquake Engineering, 1996
    [85] T.Fujita; et al. Int.Behavior of Base-Isolated Buildings in the 1995 Great Hanshin Earthquake and Overview of Recent Activities on Seismic Isolation in Japan Post-SMiRT Conference Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, Santiago, Chile, 1995
    [86] B. Yoo; et al. Applications and Development in Base Isolation and Passive Energy Dissipation for Civil and Industrial Structures in Korea. International Post-SMiRT Conference Seminar in Cheju, Korea, 1999
    [87] S Yabana. Development of Thick Rubber Bearing for Three-Dimensional Seismic Isolation, Proc. of 12th World Conference on Earthquake Engineering. 2000:104~106
    [88] Kageyama Mitsuru, Iba Tsutomu, Somaki Takahiro, et al. Development of Cable Reinforced 3-dimensional Base Isolation Air Spring. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP. 2002 (2):19~25
    [89] Bujar Myslimaj, Mitsumasa Midorikawa et al. Seismic Behavior of a Newly Developed Base Isolation System for Houses. Journal of Asian Architecture and Building Engineering. 2002 (2):17~24
    [90]熊世树.陈金凤,梁波.三维基础隔震结构多维地震反应的非线性分析.华中科技大学学报(自然科学版) . 2004.(12) :81~84
    [91]孟庆利,林德全,张敏政.三维隔震系统振动台实验研究.地震工程与工程振动. 2007(3):116~120
    [92]魏陆顺,周福霖等.三维隔震(振)支座的工程应用与现场测试.地震工程与工程振动. 2007(3):121~125
    [93]魏陆顺,周福霖等.三维隔震新技术保障地铁平台上部安全.建设科技. 2007(9):38~39
    [94]董霜,朱元清.地铁振动环境及对建筑影响的研究概况.噪声与振动控制. 2003(2):1~49
    [95] Den Harton J.P. Forced Vibration with Combined Coulomb and Viscous Friction. Transactions of the ASME, APM, 1931,53(9) :107~115
    [96] Caughey T.K. Sinusoidal Excitation of a System with Bilinear Hysteresis. J. of A: Mech., Trans. ASME. 1960(12):640~643
    [97] Caughey T.K. Random Excitation of a System with Bilinear Hysteresis. J. of A: Mech., Trans. ASME. 1960(12):649~652
    [98] Caughey T.K.Eqivalent Linearization Techniques. J. of the Acoustical Society of America. 1963,35(11):2557~2573
    [99] Iwan W.D. The Dynamic Response of Bilinear Hysteretic Systems. Ph.D. Thesis. California Institute of Thchnology. 1961
    [100] Wen Y.K. Method for Random Vibration of Hysteretic Systems. J. of the Eng. Mech. Div.. 1976(102):249~263
    [101] Evan-Iwanowski R.M. Effects of Hysteretic Dissipation on Forced Dynamic Resonance Vibrations. Material Nonlinearity in Vibration Problem, ASME. 1985(71):61~67
    [102] Roberts J.B.. The Response of an Oscillator with Bilinear Hysteresis to Stationary Random Excitation. Transactions of the ASM E, JAM. 1978, 45 (4):923~928
    [103] Wen Y.K. Method for Random Vibration of Hysteretic System. J. of the Eng. Mech. Div.,1976(102):249~263
    [104]白鸿泊,张培林,郑坚,吕建刚.滞迟振动系统及其工程应用.科学出版社, 2002
    [105]彭凌云,周锡元.向心式摩擦阻尼器的理论分析与应用研究.北京工业大学硕士论文. 2004
    [106]文明,邓子辰.干摩擦抗振系统性能及控制方法的研究.西北工业大学博士士论文. 2003
    [107] T.T.Soong, G.F.Dargush. Passive Energy Dissipation Systems in Structural Engineering. Wiley & Sons, Incorporated, John. 1997
    [108]姚谦峰,梅占馨,吴敏哲.滑移隔震结构振动分析.西安建筑科技大学学报, 1999(3):208~210
    [109]张文芳等.九层房屋基础滑移隔震结构的试验.分析及应用研究.建筑结构学报. 2000,21(3):60~68
    [110]坂田功,深崛美英,加茂和世等.原型木结构隔震住宅的振动台试验.日本建筑学会学术讲演梗概集. 1999. B-2 :715~731
    [111] Jangid.R.S. Optimum fictional elements in sliding isolated system. Computers and Structures. 2000,76(6): 62~66
    [112] Bray J D, RodriguezMarek. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynam Earthquake Eng.. 2004( 24): 815~828
    [113] Mavroeidis G P, A S Papageorgiou. A mathematical rep resentation of near-fault ground motions. Bull.Seism.Soc. Am. 2003, 93: 1099~1131
    [114] Hall J.F., Heaton T.H. Halling M W. Near-source ground motion and its effects on flexible buildings. Earthquake Spectra.1995,11(4): 569~ 605
    [115] Shin T C, Ta liang Teng. An overview of the 1999 Chi Chi, Taiwanearthquake. Bull, Seism. Soc. Am, 2001(91):895~913
    [116]王国权. 921台湾集集地震的近断层地面运动特征.中国地震局地质研究所, 2001
    [117] Yen W H. Lessons learned about bridges from earthquake in Taiwan. Public Roads. 2002 (4) : 20~23
    [118] Rodriguez-Marek A. Near fault seismic site response. Berkeley Civil Engineering, University of California. 2000
    [119]徐龙军,谢礼立.近断层地区抗震设计谱研究东南大学学报(自然科学版). Vol.35 Sup(I):105~108
    [120]周锡元,樊水荣,苏经宇.场地分类和设计反应谱的特征周期.工程抗震. 1999(vol4):3~8
    [121]周雍年,周正华,于海英.设计反应谱长周期区段的研究.地震工程与工程振动. 2004(vol102):15~18
    [122]赵斌,王亚勇.关于《建筑抗震设计规范》GB50011—2001中设计反应谱的几点讨论.工程抗震. 2003(vol1):13~14
    [123]郭明珠,陈厚群.场地类别划分与抗震设计反应谱的讨论.世界地震工程. 2003(02):108~111
    [124]陈勇,俞言祥.《建筑抗震设计规范》(GB50011-2001)中多阻尼比反应谱长周期区段的适用性.中国地震. 2007(vol102):131~140
    [125] Demin FENG, Wenguang LIU, Keiji MASUDA. A Comparative Study of Seismic Isolation Codes Worldwide, Part I. Design Spectra. First European Conference on Earthquake Engineering and Seismology,Geneva, Switzerland, Paper no.63, 2006
    [126] Wenguang LIU, Demin FENG, Keiji MASUDA. A Comparative Study of Seismic Isolation Codes Worldwide, Part II. Response Analysis. First European Conference on Earthquake Engineering and Seismology,Geneva, Switzerland, Paper no.66, 2006
    [127]秋山宏.エネルギーの釣合に基づく建築物の耐震設計.技報堂出版,1999
    [128] James Kelly. Earthquake-Resistant Design with Rubber. 2nd Edition, Springer, 1997
    [129]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究.北京工业大学博士学位论文. 2004
    [130]付伟庆.磁流变智能隔震与橡胶垫高层隔震的理论与试验研究.哈尔滨工业大学博士学位论文. 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700