混合原料沼气厌氧发酵影响因素分析及工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开展农业废弃物多元物料混合厌氧发酵研究是实现农业废弃物资源化利用和减少环境污染的重要途径。开展多种类物料混合厌氧发酵技术研究,可避免单一原料厌氧发酵缺陷,提高沼气发酵产气效率,从而高效率地解决环境污染与能源生产问题。基于该技术的产业价值和科学问题的前沿性,进行此方面的研究具有重要意义。本研究从原料配比、碳氮比(C/N)、底物浓度、接种物比例和温度等方面分析了这些因素对混合原料沼气厌氧发酵效果的影响,并基于这些因素,对混合原料沼气厌氧发酵工艺进行了优化。研究取得以下主要结果:
     (1)原料混合发酵CH_4产量较原料单独发酵时有显著提高;3种原料按一定比例混合后沼气发酵效率高于2种原料混合。不同原料混合组,随原料配比的变化,沼气产量和CH_4产量呈先增加后减少的趋势;沼气产量和CH_4产量最大时的原料配比不同,牛鸡麦组为牛粪和鸡粪配比50:50,牛猪麦组为牛粪和猪粪配比75:25,鸡猪麦组为鸡粪和猪粪配比25:75。适宜配比下较高的发酵效率在于其保持了发酵料液中适宜的pH、总铵态氮和游离态NH3含量。混合原料发酵存在协同作用,鸡猪麦混合后CH_4产量提高程度最大,其次为牛猪麦组,牛鸡麦组最小,说明猪粪最适宜与其它粪便混合发酵。
     (2)C/N对混合原料沼气发酵效果有显著影响。不同原料混合组,随C/N的增加,沼气产量和CH_4产量呈先增加后减少的趋势。对牛鸡麦组,适宜C/N为30:1,沼气产量和CH_4产量分别为589.6mL g~(-1)VS和262.5mL g~(-1)VS;对牛猪麦组,适宜C/N为25:1,沼气产量和CH_4产量分别为614.0mL g~(-1)VS和286.5mL g~(-1)VS;对鸡猪麦组,适宜C/N为25:1,沼气产量和CH_4产量分别为543.5mL g~(-1)VS和259.7mL g~(-1)VS。低C/N易导致铵态氮积累,降低产气率;高C/N易导致发酵液pH降低,抑制CH_4菌活性而降低产气效率。
     (3)混料试验设计结果表明,3种原料混合厌氧发酵的CH_4产量显著高于单一原料及2种原料混合发酵;多原料间在发酵过程中的协同作用提高了CH_4产量;在混合发酵中,粪便对整体CH_4产量的贡献量显著高于秸秆,但不同种类粪便及秸秆间差异不明显。中心组合试验设计结果表明,原料配比和C/N比均影响CH_4产量,且两因素间存在交互作用,说明混合原料发酵体系中不同原料间的协同作用不仅仅在于平衡C/N比,还可能存在微生物协同、营养平衡等方面的作用。混料设计和中心组合设计均得到了优化的原料配比及对应的CH_4产量,两者间差异不明显,但中心组合设计具有更高的精度和更广泛的适用性。
     (4)底物浓度对混合原料沼气发酵效果有显著影响。当底物浓度小于20gVS L~(-1)时,累积产气量和CH_4产量都随底物浓度的增加而线性增大,但过高的底物浓度会导致料液酸化,降低发酵效率。同一底物浓度下,牛猪麦组发酵效率最高,其次为牛鸡麦组,鸡猪麦组最差。接种比例(ISR)对混合原料沼气发酵效果有显著影响。当ISR小于2.4时,随接种比例增大,累积产气量和CH_4产量均线性增大;ISR越低,有机酸越容易积累而抑制CH_4菌活性,降低发酵效率。当ISR高于2.4时,进一步提高接种物量,并不能提高发酵效率。各组累积产气量和CH_4产量在同一ISR下表现的大小规律与底物浓度影响相同。
     (5)温度对混合原料沼气厌氧发酵有显著影响。随温度升高,料液pH、铵态氮和游离NH3含量都显著增加。20℃下,料液酸化降低了产气效率;中温及高温下,CH_4菌对游离NH3的耐受性增强,较高的游离NH3浓度没有对发酵过程产生明显的抑制作用。不同温度下,C/N对混合原料沼气厌氧发酵的影响存在差异。35℃下,C/N15:1和20:1发生氨氮抑制,而55℃下C/N25:1也产生一定的氨氮抑制。35℃下,最佳C/N为25:1,CH_4产量为272mL g~(-1)VS;55℃下,最佳C/N为30:1,CH_4产量为286mL g~(-1)VS。氨氮是否对发酵产生抑制同时取决于底物的C/N和发酵温度。
     (6)响应面法可以用于牛粪(DM)、鸡粪(CM)和麦秆混合厌氧发酵产沼气的工艺参数优化。C/N、DM/CM、底物浓度、ISR对混合厌氧发酵CH_4产量都有显著影响并且C/N和DM/CM、C/N和底物浓度、底物浓度和ISR之间存在的交互作用对CH_4产量也有显著影响。随C/N和DM/CM的增大,CH_4产量呈先升高后下降的趋势,但C/N对CH_4产量的影响大于DM/CM;随C/N和底物浓度的增大,CH_4产量呈先升高后下降的趋势,但C/N对CH_4产量的影响大于底物浓度;随底物浓度和接种比例的增加,CH_4产量呈先增大后减小的趋势,接种比例对CH_4产量的影响大于底物浓度,在底物浓度和ISR都较小时,CH_4产量较低。通过模型预测得到牛粪、鸡粪和麦秆混合厌氧发酵产沼气的最优工艺组合为C/N为26.31,DM/CM为42.96:57.04,底物浓度为15.90g VS L~(-1),ISR为2.34,预期可得最大CH_4产量为394mL g~(-1)VS。
Developing knowledge in anaerobic co-digestion of various substrates is an importantway to transform agricultural residues into resources and to reduce environmental pollution.Anaerobic co-digestion, for one thing, can replace the digestion of single substrate with thedrawbacks of low efficiency, long retention time and floating, and for another, improve theproduction efficiency and the economic benefit of organic waste treatment process during theindustrialization of methane production. Therefore, based on the industrial value of thistechnology and as the key scientific problem, conducting the research in anaerobicco-digestion is of great significance. This research analyzed the influences of feedingcomposition, C/N, inital substrate loadingand inoculum to substrate ratio (ISR) on theefficiency of anaerobic co-digestion, and based on these factors, optimized this process. Themain results were as followed:
     (1) The methane yield in anaerobic co-digestion was increased compared with thedigestion of single substrate. Anaerobic co-digestion of three raw substrates were better thanthat of two raw substrates. With the changes of feeding composition, the biogas yield andmethane potential increased first and then decreased. The feeding composition was differentfor different mixtures in the highest biogas yield and methane potential, with DM (Dairymanure)/CM (Chicken manure)50:50in the mixture of DM, CM and wheat straw (WS),DM/SM (Swine manure)75:25in the mixture of DM, SM and WS, and CM/SM75:25in themixture of CM, SM and WS. The high efficiency in suitable feeding ratios lied in theappropriate pH value and total ammonia and free NH3contents. There were synergetic effectsamong various substrates, with the best effects in the mixture of CM, SM and WS, followedby the mixture of DM, SM and RS, and the least in the mixture of DM, CM and RS,suggesting that SM was the best substrate for anaerobic co-digestion.
     (2) C/N had significant effects on the effects of anaerobic co-digestion. For differentmixtures, with the increase of C/N, the biogas yield and methane potential increased first andthen decreased. For the mixture of DM, CM and RS, the biogas yield and methane potentialwere589.6mL g~(-1)VS and262.5mL g~(-1)VS, respectively; for the mixture of DM, SM and WS,the biogas yield and methane potential were614.0mL g~(-1)VS and286.5mL g~(-1)VS,respectively; for the mixture of CM, SM and RS, the biogas yield and methane potential were 543.5mL g~(-1)VS and259.7mL g~(-1)VS, respectively. Lower C/N led to the accumulation ofammonia and then reduced the biogas yield, whereas, higher C/N led the decrease of pH value,inhibiting the activities of methanobacteria and reducing the efficiency.
     (3) The results in mixture design (MD) suggested that the methane potential of three rawsubstrates was higher than those of single or two substrates. The synergetic effects amongsubstrates improved the methane potential and the contribution of manure on the improvedmethane potential was higher than straw, but no significant difference was found amongdifferent manures or straws. The results in central composite design (CCD) suggested that thefeeding composition, C/N and their interaction affecting the methane potential, indicating thatthe synergetic effects were not only due to the balanced C/N, but also the synergy ofmicroorganisms and nutritional balance. Optimum feeding compositions were obtainedthrough MD and CCD, but no significant difference was found between these two methods.However, CCD was more accurate and had wider range of applicability.
     (4) The initial substrate loading had significant effects on biogas production. When thesubstrate concentration was below20gVS L~(-1), the biogas yield and methane potential linearlyincreased with the increase of substrate concentration, however, higher substrateconcentration easily led to the acidification of liquid and reduce fermentation efficiency.Under the same substrate concentration, the mixture of DM, SM and RS had the highestfermentation efficiency, followed by the mixture of DM, CM and RS, and the mixture of CM,SM and RS is the worst. ISR had a significant impact on biogas production. When the ISRwas less than2.4, with the increase of ISR, the cumulative biogas production and methanepotential linearly increased. The lower the ISR, the more easily the acid accumulated, withhigher inhibition on methanobacteria. When the ISR was higher than2.4, increased ISR wasunable to further improve the efficiency. Under the same ISR, the biogas yield and methanepotential were the same with the treatment under the same substrate concentration.
     (5) Temperature significantly influenced the biogas production. With increasedtemperature, pH in liquid, total ammonium and free NH3contents all increased significantly.Under20°C, accumulated liquid acids reduced the efficiency. Under mesophilic andthermophilic temperatures, methanobacteria had higher tolerance on free NH3and the higherfree NH3contents did not inhibit the fermentation process. Under different temperature, theeffects of C/N on anaerobic co-digestion were different. Under35°C, ammonia inhibitionoccurred under C/N15:1and20:1, whereas, under55°C, the same inhibition also occurredunder C/N25:1. Under35°C, the optimum C/N was25:1, with the methane potential of272mL g~(-1)VS, and under55°C, the optimum C/N was30:1, with the methane potential of286mLg~(-1)VS. Whether the ammonia inhibition occurred or not depended both on the C/N and temperature.
     (6) Response surface methodology can be used for optimizing the process of anaerobicco-digestion of DM, DM and RS. C/N, DM/CM, initial substrate loading and ISR all hadsignificant effects on methane potential and interctions between C/N and DM/CM, C/N andinitial substrate loading were significant on methane potential, initial substrate loading andISR. With the increase of C/N and DM/CM, the methane potential increased first and thendecreased, but the effects of C/N were higher than DM/CM. With the increase of C/N andsubstrate concentrations, the methane potential increased first and then decreased, but theeffects of C/N were higher than substrate concentrations. With the increase of substrateconcentrations and ISR, the methane potential increased first and then decreased, but theeffects of ISR were higher than substrate concentrations. When the initial substrate loadingand ISR were low, methane potential was also low. The highest methane of394mL g~(-1)VSwas predicted under optimum conditions with C/N of26.31, DM/CM of42.96:57.04, aninitial substrate loading of15.90g VS L~(-1)and ISR of2.34.
引文
陈广银,郑正,邹星星.2009.稻草与猪粪混合厌氧消化特性研究[J].农业环境科学学报,28(1):185~188.
    陈广银,郑正,常志洲,等.不同氮源对小麦厌氧消化过程的影响[J].中国环境科学,2011,31(1):73~77.
    程序,梁近光,郑恒受,等.2010.中国”产业沼气”的开发及其应用前景[J].农业工程学报,26(1):1~5.
    丁琨,苏有勇,张无敌.2012.响应面法优化猪粪和玉米秸秆混合厌氧发酵产沼气工艺[J].中国沼气,(06):12~17.
    董保成,陈羚,张玉华,等.2011.猪粪对秸秆一体化两相厌氧产气的影响[J].农业工程学报,27(1):48~53.
    胡锋平.1997.氨氮对中温厌氧处理抑制作用的试验研究[J].中国给水排水,(增刊):19~22.
    李宝玉,毕于运,高春雨,等.2010.我国农业大中型沼气工程发展现状、存在问题与对策措施[J].中国农业资源与区划,31(2):57~61.
    李连华,马隆龙,袁振宏,等.2007.农作物秸秆的厌氧消化实验研究[J].农业环境科学学报,26(1):335~338.
    李亚娜,林永成,佘志刚.2004.响应面分析法优化羊栖菜多糖的提取工艺[J].华南理工大学学报:自然科学版,32(11):29~31.
    李玉春,陈广银,常志洲,等.2012.碳氮比对稻秸厌氧发酵过程的影响[J].中国沼气,30(4):25~29.
    刘代新,宁喜斌,张继伦.2008.响应面分析法优化副溶血性弧菌生长条件[J].微生物学通报,35(2):306~310.
    刘丹.2008.混合畜禽粪便厌氧发酵特性试验研究[硕士学位论文].哈尔滨:东北农业大学.
    刘军海,黄宝旭,蒋德超.2009.响应面分析法优化艾叶多糖提取工艺研究[J].食品科学,30(2):1114~118.
    刘荣厚,王远远,孙晨.2009.温度对蔬菜废弃物沼气发酵产气特性的影响[J].农业机械学波,40(9):116~121.
    刘荣厚,郝元元,武丽娟.2006.温度条件对猪粪厌氧发酵沼气产气特性的影响[J].可再生能源,129(5):32~35.
    刘睿,万楚筠,黄茜,等.2009.秸秆预处理技术存在的问题与发展前景[J].环境科学与技术,(05):88-91.
    刘洋,赵谋明,杨宁.2006.响应面分析法优化仙人掌多糖提取工艺的研究[J].食品与机械,22(6):42~45.
    刘战广,朱洪光,王彪,等.2009.粪草比对干式厌氧发酵产沼气效果的影响[J].农业工程学报,25(4):130~134.
    潘云锋,李文哲.2006.微量金属元素对牛粪厌氧发酵产气特性的影响[J].江苏环境科技,19(4):4~6.
    潘云霞,李文哲.2008.接种物浓度对厌氧发酵产气特性影响的研究[J].农机化研究,2(1):142~146.
    彭良才.2011.论中国生物能源发展的根本出路[J].华中农业大学学报(社会科学版),92(2):1~6.
    任峰,刘应宗,牛东晓.2012.农村生物质废弃物沼气化利用回收模式优化[J].农业工程学报,28(1):190~195.
    宋籽霖,李轶冰,杨改河,等.2010.温度及总固体浓度对粪秆混合发酵产气特性的影响[J].农业工程学报,26(7):260~265.
    汪仁官.1998.试验设计与分析[M].北京:中国统计出版社.
    王晓曼.2010.早熟禾厌氧发酵特性和产气潜力的研究.[硕士学位论文].陕西:西北农林科技大学.
    王晓娇,李轶冰,杨改河,等.2010.牛粪、鸡粪和稻秆混合的沼气发酵特性与工艺优化[J].农业机械学报,3:104~108.
    王晓娇,杨改河,冯永忠,等.2011.牲畜粪便与秸秆混合的厌氧发酵效果及影响因素分析[J].农业环境科学学报,12:2594~2601.
    王永泽,邵明胜,杨立,等.2009.水稻秸秆厌氧发酵产沼气工艺的响应面法优化[J].化学与生物工程,11:42~46.
    徐龙君,吴江.2006.预处理对城市固体有机垃圾厌氧发酵的影响[J].环境污染与防治,28(1):62~64.
    徐文龙,卢英方,Rudolf Walder.2006.城市生活垃圾管理与处理技术[M].北京:中国建筑工业出版社:113~133.
    徐鑫,寇巍,张大雷,等.2010.以秸秆和厨余垃圾为原料发酵产甲烷工艺的优化[J].可再生能源,28(6):32~36.
    徐鑫.2011.多原料混合厌氧共发酵制沼气工艺优化.[硕士学位论文].沈阳:沈阳航空航天大学.
    杨文雄,高彦祥.2005.响应面法及其在食品工业中的应用[J].中国食品添加剂,2(2):68~71.
    尹伟伦.2008.我们需要一个怎样的”新经济”. http://www.newenergy.org.cn/html/0089/9110821107.html[2008-9-11].
    喻爱和,刘邵兵,赵克勤,蔡立湘,纪雄辉,石丽红.2010.提高稻草产沼气效率的C/N和C/P参数初步研究[J].湖北农业科学,49(3):547~549.
    赵凤敏,李树君,方宪法.2006.中心组合设计法优化马铃薯薯渣固态发酵工艺[J].农业工程学报,37(8):45~48.
    赵华,陈磊,王虹,等.2011.木薯酒糟沼气发酵污泥生物干燥条件优化[J].环境科学与技术,11:122~125.
    张翠丽,李轶冰,卜东升,杨改河.2008.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报,19(8):1817~1822.
    张大皓,谭天伟,王炳武.2006.响应面试验设计优化脂肪酶发酵培养基[J].北京化工大学学报,33(2):41~45.
    张建华,李里特,丁长河.2004.中心组合设计法优化曲霉豆豉纯种发酵制曲工艺(上)[J].中国调味品.6(6):7~10.
    张仁瑞.1997. VFA作为厌氧生物学指标的可行性研究[J].青岛建筑工程学院学报,2:51~55.、
    中华人民共和国国家统计局.2011年中国国家统计年鉴[M].北京:中国统计出版社,2012.
    周玲.2003.有机废弃物厌氧发酵特性的研究.[硕士学位论文].长春:东北农业大学.
    Agdag O N, Sponza D T.2007. Co~digestion of mixed industrial sludge with municipal solid wastes inanaerobic simulated landfilling bioreactors. Journal of Hazardous Materials,140:75~85.
    Aghamohammadi N, Aziz H A, Isa M H.2007. Powdered activated carbon augmented activated sludgeprocess for treatment of semi-aerobic landfill leachate using response surface methodology.Bioresource Technology,98(18):3570~3578.
    Ahring B, Angelidaki I, Johansen K.1992. Anaerobic treatment of manure together with industrial waste.Water Science Technology,25:311~318.
    Akhbari A, Zinatizadeh A A L, Mohammadi P.2011. Process modeling and analysis of biological nutrientsremoval in an integrated RBC-AS system using response surface methodology. Chemical EngineeringJournal,168(1):269~279.
    Alvarez R, Villca S, Liden G.2006. Biogas production from llama and cow manure at high altitude.Biomass and Bioenergy,30(1):66~75.
    Angelidaki I, Ahring B K.1994. Anaerobic thermophilic digestion of manure at diferent ammonia loads:Efect of temperature. Water Research,28(3):727~731.
    Angelidaki I, Ahring B K.1993. Thermopilic anaerobic digestion of livestock wastes: the effect of ammonia.Applied Microbiology and Biotechnology,38:560~564.
    Ashima Vohra.2002. Statistical optimization of the medium components by response surface methodologyto enhance phytase production by Pichia anomala.Process Biochemistry,37:999~1004.
    Bas D, Boyaci I H.2007. Modeling and optimization I: Usability of response surface methodology. Journalof Food Engineering,78(3):836~845.
    Box G E P, Draper N R.1987. Empirical model-building and response surfaces: Wiley Series in probabilityand mathematical statistics.
    Box G E P, Wilson K B.1951. On the experimental attainment of optimum conditions. Journal of the RoyalStatistical Society Series B-Statistical Methodology,13:1~45.
    Braun R, Huber P, Meyrath J.1981. Ammonia toxicity in liquid piggery manure digestion. BiotechnologyLetters,3:159~164.
    Braun AM, Pintori IG, Popp HP.2004. Technical development of UV-C-and VUV-photochemicallyinduced oxidative degradation processes. Water Science and Technology,49(4):235~240.
    Callaghan F J, Luecke K, Wase DAJ, et al.1997. Co-digestion of cattle slurry and waste milk under shockloading conditions. Journal of Chemical Technology and Biotechnology,68:405~410.
    Callaghan F J, Wase D A J, Thayanithy K, Forster C F.1999. Co-digestion of waste organic solids: batchstudies. Bioresource Technology,67:117~122.
    Callaghan F J, Wase D A J, Thayanithy K, et al.1998. An ex amination of the continuous anaerobicco-digestion of cattle slurry and fish offal. Process Safety and Environmental Protection,76:224~228.
    Campos E.2001. Optimizacion de la digestión Anaerobia de purines de cerdo mediante codigestión conresiduos orgánicos de la industria agroalimentaria.PhD Thesis.Spain: Universitat de Lleida.
    Carter W H, Wampler G L, Stablein D M.1983. Review of the Application of Response SurfaceMethodology in the Combination Therapy of Cancer. Cancer Treatment Reports,70:133~140.
    Chen H, Wu H Y.2010. Optimization of volatile fatty acid production with co-substrate of food wastes anddewatered excess sludge using response surface methodology. Bioresource Technology,101(14):5487~5493.
    Chen Y, Cheng Jay J, Creamer Kurt S.2008. Inhibition of anaerobic digestion process: A review.Bioresource Technology,99:4044~4064.
    Chong M L, Rahman N A, Rahim R A.et al.2009.Optimization of biohydrogen production by Clostridiumbutyricum EB6frompalm oil mill effluent using response surface methodology. International Journalof Hydrogen Energy,34:7475~7482.
    De Baere L.2000. Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology,41(3):283~290.
    El-Mashad H M, Zeeman G, van Loon W K P.2004. Effect of temperature and temperature fluctuation onthermophilic anaerobic digestion of cattle manure. Bioresource Technology,95(2):191~201.
    Fischer J R, Iannotti E L, Fulhage C D.1983. Production of methane gas from combinations of wheat strawand swine manure. Transactions of the ASAE,26:546~548.
    Gallert C, Henning A, Winter J.2003. Scale-up anaerobic digestion of the biowaste fraction from domesticwastes. Water Resource,37:1433~1441.
    Garcia-Ochoa F, Santos V E, Naval L.1999. Kinetic model for anaerobic digestion of livestock manure.Enzyme and Microbial Technology,25(1):55~60.
    Garcoa M L., Angenent L T.2009. Interaction between temperature and ammonia in mesophilic digestersfor animal waste treatment. Water Research,43:2373~2382.
    Gallert C., Winter J.1997. Mesophilic and thermophilic anaerobic digestion of source-sorted organicwastes: effect of ammonia on glucose degradation and methane production. Applied MicrobiologyBiotechnology48:405~410.
    Giovinni M.1982. Response surface methodology and product optimization. Food Technology,37(9):41~45.
    Gelegenis J, Georgakakis D, Angelidaki I.2007. Optimization of biogas production from olive-oil millwastewater, by codigesting with diluted poultry-manure. Applied Energy,84(6):646~663.
    Habiba L, Hassib B, Moktar H.2009. Improvement of activated sludge stabilisation and filterability duringanaerobic digestion by fruit and vegetable waste addition. Bioresource Technology,100(4):1555~1560.
    Hamzawi N, Kennedy K J, Mclean DD.1998. Technical feasibility of anaerobic co-digestion of sewagesludge and municipal solid waste. Environmental Technology,19:993~1003.
    Hanaki K, Nagase M.1981. Mechanism of inhibition caused by long chain fatty acids in anaerobicdigestion process. Biotechnology and Bioengineering,23:1591~1610.
    Hansen K H, Angelidaki I, Ahring B K.1998. Anaerobic digestion of swine manure: Inhibition byammonia. Water Res,32:5~12.
    Hansen H H, Angelidaki I, Ahring B K.1999. Improving thermophilic anaerobic digestion of swine manure.Water Res,33(8):1805~1810.
    Hartman H, Ahring B K.2005. Anaerobic digestion of the organic fraction of municipal solid waste:influence of co-digestion with manure. Water Research,39:1543~1552.
    Hashimoto A G, Varel V H, Chen Y R.1981. Ultimate methane yield from beef cattle waste: efects oftemperature, reaction constituents, antibiotics and manure. Agricultural Wastes,3:241~256.
    Hashimoto A D.1983. Conversion of straw manure mixtures to methane at mesophilic and thermophilictemperatures. Biotechnology and Bioengineering,25:185~200.
    Hartmann L, Megeath S T, Allen L.2005. IRAC Observations of Taurus Pre-Main-Sequence Stars, theAstrophysical Journal,629:881~896.
    Hartmann, H., Ahring, B.K.,2005. A novel process configuration for anaerobic digestion of source-sortedhousehold waste using hyper-thermophilic post-treatment. Biotechnology Bioenergy90,830~837.
    Hills D J, Roberts D W.1981. Anaerobic digestion of dairy manure and field crop residues. AgriculturalWastes,3:179~189.
    Hills DJ.1980. Biogas from a high solids combination of dairy manure and barley straw. Transactions ofthe ASAE,123:1500~1504.
    Hobson P N, Bousfield S, Summers R, Mills P J.1980. Anaerobic digestion of piggery and poultry wastes.In: Staford B E, Wheatley B I, Hughes D E (Eds.), anaerobic digestion. Applied Science Publishers,London:237~253.
    Horan NJ, Fletcher L, Betmal SM.2004. Die-off of enteric bacterial pathogens during mesophilicanaerobic digestion. Water Research,38(5):1113~1120.
    Jorgensen Niels O G, Stepanauskas Ramunas.2009. Biomass of pelagic fungi in Baltic rivers.Hydrobiologia,623(1):105~112.
    Kabouris J C, Tezel U, Pavlostathi S G, et al.2009. Mesophilic and thermophilic anaerobic digestion ofmunicipal sludge and fat, oil, and grease. Water Environment Research,81:476~485.
    Kaparaju P, Luostarinen S, Kalmart E, et al.2002. Co-digestion of energy crops and industrialconfectionery by-products with cow manure: batch-scale and farm-scale evaluation. Water Scienceand Technology,45(10):275~280.
    Kayhanian M.1999. Ammonia inhibition in high-solids biogasification: An overview and practical solutions.Environmental Technology,20(4):355~365.
    Kayhanian M, Hardy S. The impact of4design parametes on the performance of a high-solids anaerobic-digestion of municipal solid waste for fuel gas production. Environmental technology,15(6):557~567.
    Kelleher B P, Leahy J J, Henihan A M.2002. Advances in poultry litter disposal technology-a review.Bioresource Technology,83(1):27~36.
    Keshtkar A, Ghaforian H, Abolhamd G.2001. Dynamic simulation of cyclic batch anaerobic digestion ofcattle manure. Bioresource Technology,80(1):9~17.
    Khursheed K, Thomas K, Rebecca H, Sadie R.2005a. Anaerobic digestion of animal waste: effect ofmixing. Bioresource Technology,96:1607~1612.
    Khursheed K, Rebecca H, Thomas K K.2005b. Anaerobic digestion of animal waste: effect of mode ofmixing. Water Research,39:3597~3606.
    Khursheed K, Rebecca H, Thomas KI.2005c. Anaerobic digestion of animal waste: Waste strength versusimpact of mixing. Bioresource Technology,96:1771~1781.
    Kroeker E J, Sdulte D D, Spatling A B,et al.1979. Anaerobic treatment process stability. JWPCF,51:718~727.
    Krylova NI, Khabiboulline RE, Naumova RP.1997. The influence of ammonium and methods for removalduring the anaerobic treatment of poultry manure. Journal of Chemical technology and Biotechnology,70(1):99~105.
    Kugelman I J, Chin K K, Gould R F.1971. Anaerobic biological treatment processes. Advances inChemistry Series,105:55~90.
    Lay J J, Li Y Y, Noike T, et al.1997. Analysis of environmental factors affecting methane production fromhigh-solids organic waste. Water Science and Technology,36:493~500.
    Lehtomaki A, Huttunen S, Rintala J A.2007. Laboratory investigations on co-digestion of energy crops andcrop residues with cow manure for methane production: Effect of crop to manure ratio. ResourcesConservation and Recycling,51(3):591~609.
    Li R, Chen S, Li X.2009. Anaerobic Co-digestion of Kitchen Waste and Cattle Manure for MethaneProduction. Energy Sources Part a Recovery Utilization and Environmental Effects,31(20):1848~1856.
    Macias-Corral M, Samani Z, Hanson A.2008. Anaerobic digestion of municipal solid waste andagricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology,99(17):8288~8293.
    Madigan M C, Kingsley E A, Cozzi P J.2008. The role of extracellular matrix metalloproteinase inducerprotein in prostate cancer progression. Cancer Immunology Immunotherapy,57(9):1367~1379.
    Magbanua Jr B, Adams T T, Johnston P.2001. Anaerobic co-digestion of hog and poultry waste.Bioresource Technology76,165~168.
    Mata Alvarez J, Dosta J, Mace S, et al.2011. Co-digestion of solid wastes: A review of its uses andperspectives including modeling. Critical Reviews in Biotechnology,31:99~111.
    Maya-Altamira L, Baun A, Angelidaki I, Schmidt J E.2008. Influence of wastewater characteristics onmethane potential in food processing industry wastewaters. Water Res,42:2195~2203.
    Monou M, Pafitis N, Kythreotou N, et al.2008. Anaerobic co-digestion of potato processing wastewaterwith pig slurry and abattoir wastewater. Journal of Chemical Technology and Biotechnology,83:1658~1663.
    Mshandete A, Kivaisi A, Rubindamayugi M. et al.2004. Anaerobic batch co-digestion of sisal pulpand fish wastes. Bioresource Technology,95(1):19~24.
    Mu Y, Zheng X J, Yu H Q.2009. Determining optimum conditions for hydrogen production from glucoseby an anaerobic culture using response surface methodology (RSM). International Journal ofHydrogen Energy,34(10):7959~7963.
    Muteki K, MacGregor J F.2007. Sequential design of mixture experiments for the development of newproducts. Journal of Chemometrics,21:496~505.
    Myint M, Nirmalakhandan N, Speece R E.2007. Anaerobic fermentation of cattle manure: Modeling ofhydrolysis and acidogenesis. Water Research,41(2):323~332.
    Nayono S E, Gallert C, Winter J.2009. Food waste as a co-substrate in a fed-batch anaerobic biowastedigester for constant biogas supply. Water Science and Technology,59(6):1169~1178.
    Nicholson R J, Webb J, Moore A.2002. A review of the environmental effects of different livestock manurestorage systems, and a suggested procedure for assigning environmental ratings. BiosystemsEngineering,81(4):363~377.
    Parawira W, MurtoM, Zvauya R, MattiassonB.2004. Anaerobic batch digestion of solid potatowaste alone and in combination with sugar beet leaves.Renewable Energy,29,1811~1823.
    Pavan P, Musacco A, Cecchi F.1994. Thermophilic semidry anaerobic digestion process of theorganic fraction of municipal solid waste during transient conditions. Environmental Technology,15(12):1173~1182.
    Pecharaply A, Parkpian P, Annachhatre A P,et al.2007. Influence of anaerobic co-digestion of sewageand brewery sludge on biogas production and sludge quality. Journal of Environmental Scienceand Health Part A,42:911~923.
    Poggi Varaldo H M, Oleszkiewicz J A.1992. Anaerobic co-composting of municipal solid waste and wastesludge at high total solids levels. Environmental Technology,13:409~421.
    Poliafico M, Murphy J D.2007. Anaerobic Digestion in Ireland: decision support system [Master’s DegreeDissertation]. Ireland: Cork Institute of Technology, Department of Civil, Structural andEnvironmental Engineering.
    Rao P V, Baral S S, Dey R.2010. Biogas generation potential by anaerobic digestion for sustainable energydevelopment in India. Renewable and Sustainable Energy Reviews,14(7):2086~2094.
    Raposo F, Banks C J, Siegert I, Heaven S, Borja R.2006. Influence of inoculum to substrate ratio on thebiochemical methane potential of maize in batch tests, Process Biochemistry,41:1444~1450.
    Sahlstrom L, Aspan A, Bagge E.2004. Bacterial pathogen incidences in sludge from Swedish sewagetreatment plants.Water Research,38(8):1989~1994.
    Salminem JK, Saarijarvi S, Toikka T.2002. Alexithymia and health-related quality of life. Journal ofPsychosomatic Research,52(5):324~324.
    Sanjoy K, Bhattacharya S K, Patkin G F, et al.1989. The effect of ammonia on methane fermentationprocesses. JWPCF,61:55~59.
    Schober G, Trosch W.2000. Degradation of digestion residues by lignolytic fungi. Water Research,34(13):3424~3430.
    Shechter M, Headye O.1970. Response Surface Analysis and Simulation Models in Policy Choices.American Journal of Agricultural Economics,52:41~50.
    Shi X Y, Yu H Q.2005. Response surface analysis on the effect of cell concentration and light intensity onhydrogen production by Rhodopseudomonas capsulata. Process Biochemistry,40(7):2475~2481.
    Shih T L, Wyvratt MJ, Mrozik H.1987. Total synthesis of (+/-)-5-o-methyllicoricidin. Journal of organicchemistry,52(10):2029~2033.
    Smith R L, Buckwalter S P, Repert D A.2005. Small-scale, hydrogen-oxidizing-denitrifying bioredctor fortreatment of nitrate-pontaminated drinking water. Water Research,39(10):2014~2023.
    Somayaji D, Khanna S.1994. Biomethanation of rice and wheat Straw. World Journal of Microbiology&Biotechnology,10:521~523.
    Song Y C, Kwon S J, Woo JH.2004. Mesophilic and thermophilic temperature co-phase anaerobicdigestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge. WaterResearch,38(7):1653~1662.
    Stroot P G, Memahon K D, Mackie R I, et al.2001. Anaerobic codigestion of municipal solid waste andbiosolids under various mixing conditions-I. Digester performance. Water Resource,35(7):1804~1816.
    Uludag-Demirer S, Demirer G N, Frear C.2008.Anaerobic digestion of dairy manure with enhancedammonia removal. Journal of Environmental Management,86(1):193~200.
    Vanassche P, Poels J, Verstraete W.1983. Anaerobic digestion of pig manure with cellulose as cosubstrate.Biotechnology Letters,5:749~754.
    Vavlin V A, Lokshina L Ya, Rytova S V, et al.2000.Decription of two-steps kinetics in methaneformation during psychrophilic H2/CO2and mesophilic glucose conversions. BioresourceTechnology,71(2):195~209.
    Wu X, Yao W Y, Zhu J, et al.2010. Biogas and CH4productivity by co-digesting swine manure with threecrop residues as an external carbon source. Bioresource Technology,101:4042~4047.
    Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y.2011. Thermophilic two-stage dry anaerobicdigestion of model garbage with ammonia stripping. Journal of Bioscience and Bioengergy,111,312~319.
    Zinatizadeh A A L, Younesi H, Bonakdari H.2009. Effects of process factors on biological activity ofgranular sludge grown in an UASFF bioreactor. Renewable Energy,34(5):1245~1251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700