药用植物ABC转运蛋白基因的克隆与特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物次生代谢产物中许多成分具有极高的药用价值,如红豆杉产生的紫杉醇等次生代谢产物在临床治疗中、晚期癌症中疗效明显,长春花产生的长春碱和长春新碱等多种次生代谢产物具有抗肿瘤等作用,而银杏产生的黄酮类化合物和银杏内酯等次生代谢产物也因其越来越多的药用价值被发现而引起人们的广泛关注。然而,天然植株中许多目标次生代谢产物含量极低,而且由于人们对药用植物的盲目采集,许多植物趋于濒危,而引种栽培、化学合成及植物组织培养等由于成本高、产量低,阻碍了次生代谢产物的商业化生产。人们发现开展植物次生代谢工程和代谢调控研究是提高植物次生代谢产物含量的有效方法之一。系统深入研究药用次生代谢产物生物合成途径及其累积的分子调控机理是利用基因工程技术提高药用次生代谢产物含量的前提和关键。其中,ABC(ATP-Binding Cassette)转运蛋白由于可将植物细胞产生的有毒次生代谢产物从细胞内转运到细胞外或胞内细胞器以减少对细胞自身的毒性,已成为植物代谢工程和代谢调控研究的重要方向之一。
     红豆杉(Taxus)、长春花(Catharanthus roseus)和银杏(Ginkgo biloba)是可产生重要次生代谢产物的药用植物,是植物次生代谢研究的重要材料。为了深入了解这三种药用植物中重要次生代谢产物生物合成与累积的分子机制,本文从ABC转运蛋白及其相关基因的克隆和表达分析等方面开展了一系列的工作,取得了以下结果:
     1.首次成功地从东北红豆杉中克隆了一个ABC转运蛋白基因Tcmdr1(GenBank登录号:DQ660357)。该基因属于MDR亚家族,全长cDNA为4485 bp,含有一个长度为3951 bp的开放阅读框,编码一个具有1316个氨基酸残基的蛋白。序列比对和结构预测发现,TcMDR1蛋白与其它MDR蛋白尤其是植物MDR蛋白具有较高的同源性, TcMDR1蛋白有两个跨膜域TMD和两个核苷酸结合域NBD按照正向的“TMD1-NBD1-TMD2-NBD2”顺序排列,这与典型的有功能的MDR类ABC转运蛋白是一致的,而且在TcMDR1蛋白序列中也发现了所有ABC转运蛋白共同的高度保守基序:“Walker A”、“Walker B”和C基序,这表明TcMDR1可能与其他MDR类ABC转运蛋白一样都是通过结合和水解ATP为特定的底物转运提供能量。组织特异性表达分析结果表明,Tcmdr1在根、茎和叶中的表达都很高。Southern blot结果显示,东北红豆杉中Tcmdr1基因属于一个小基因家族。此外,还成功构建了含Tcmdr1的酵母表达载体pDR196-Tcmdr1并转化了酵母突变菌株AD12345678,得到了酵母转化菌株。进一步通过TcMDR1蛋白表达的检测和底物分析确定TcMDR1蛋白的转运功能将有助于深入研究TcMDR1在提高特定药用次生代谢产物中的潜在作用。
     2.首次成功地从长春花中克隆了一个ABC转运蛋白基因Crmdr1(GenBank登录号:DQ660356)。该基因属于MDR亚家族,全长cDNA为4395 bp,含有一个3801 bp的开放阅读框,编码一个具有1266个氨基酸残基的蛋白。序列比对和结构预测发现,CrMDR1蛋白与其它MDR蛋白具有较高的同源性,而且预测的CrMDR1蛋白与TcMDR1一样具有典型的MDR类ABC转运蛋白的结构特点,这表明CrMDR1可能与其他MDR类ABC转运蛋白一样能通过结合和水解ATP为特定底物的转运提供能量。组织特异性表达分析结果表明,Crmdr1基因在叶片中表达较弱,而在根和茎等部位表达量较高。Southern blot结果显示,长春花中Crmdr1基因属于一个小基因家族。
     3.首次成功地从银杏中克隆了一个ABC转运蛋白基因Gbmdr1(GenBank登录号:DQ779968)。该基因属于MDR亚家族,全长cDNA为4275 bp,含有一个3840 bp的开放阅读框,编码一个具有1279个氨基酸残基的蛋白。序列比对和结构预测发现,GbMDR1与其它MDR蛋白具有较高的同源性,预测的GbMDR1蛋白具有典型的MDR类ABC转运蛋白的结构特点,这表明GbMDR1可能与其他MDR类ABC转运蛋白具有同样的功能,即通过结合和水解ATP为特定底物的转运提供能量。组织特异性表达分析结果表明,Gbmdr1基因在根中表达水平极低,而在茎和叶等部位表达量较高。Southern blot结果显示银杏中Gbmdr1基因属于一个小基因家族。
     4.首次对药用植物MDR类ABC转运蛋白基因进行了比较研究。序列比较结果显示,长春花CrMDR1、黄芪CjMDR和东北红豆杉TcMDR1蛋白同源性较高(超过60%),而银杏GbMDR1同源性则相对较低,仅为40%左右,这可能与银杏这一物种进化上较为古老有关。研究还发现,GbMDR1和TcMDR1蛋白结构中都具有AtPGP4和CjMDR等内向摄取蛋白共有的N末端突出卷曲序列,推测GbMDR1和TcMDR1可能也具有内向摄取功能,进一步的酵母和植物转化及底物分析研究将有助于对这三个ABC转运蛋白进行确切的功能鉴定。进化树分析显示MDR蛋白总体分为三簇,其中药用植物MDR蛋白CrMDR1、CjMDR和TcMDR1都位于第I簇,与内向转运蛋白AtMDR4同在一簇中。通过组织特异性表达分析比较发现,这四个基因的组织表达谱不相同,对其进行功能分析将有助于阐明药用植物中MDR类ABC转运蛋白的主要作用机制及这些机制与药用次生代谢产物累积的关系,为进一步通过基因工程方法提高目的次生代谢产物含量提供依据。
     5.对紫杉醇累积相关ABC转运蛋白基因进行研究需要详细了解紫杉醇的生物合成途径。本研究首次成功地从曼地亚红豆杉中克隆了一个紫杉醇生物合成相关基因Tmmecs(GenBank登录号:DQ286391),该基因编码2-C-甲基-D-赤藓醇-2,4-环焦磷酸合成酶,全长cDNA为1081 bp,含有一个741 bp的开放阅读框,编码一个具有247个氨基酸残基的蛋白。序列比对和进化分析结果显示, TmMECS蛋白与其它植物MECS蛋白具有较高的同源性。同源三维结构建模分析显示,TmMECS与E.coli来源的MECS蛋白具有相似的三维空间结构,而且在TmMECS结构中也发现了MECS蛋白家族中高度保守的氨基酸残基Asp98、His100和His132,提示TmMECS与其他MECS可能具有相似的生物学功能;组织特异性表达分析表明,Tmmecs是一个组成型表达的基因,在植物根、茎和叶中均呈高水平表达。Southern blot杂交结果显示Tmmecs基因属于一个小基因家族。通过将该基因在大肠杆菌中的超量表达实验证实该酶能够推动大肠杆菌中β-胡萝卜素合成的代谢流向下游流动导致β-胡萝卜素的累积增加,从而证明了TmMECS蛋白具有催化功能。
     本文从东北红豆杉、长春花和银杏三种药用植物中分别克隆了一个MDR类ABC转运蛋白基因并对其进行了结构及生物信息学分析,为今后对植物ABC转运蛋白中MDR这类最大的全分子亚家族进行克隆及功能研究提供了重要的实验依据;对四个药用植物MDR类ABC转运蛋白基因的结构及组织表达进行了比较分析,对其进行功能分析将有助于阐明药用植物中MDR类ABC转运蛋白的主要作用机制及这些机制与药用次生代谢产物累积的关系,为进一步通过基因工程方法提高目的次生代谢产物含量提供依据;从曼地亚红豆杉中克隆了紫杉醇生物合成相关基因Tmmecs并验证了功能,丰富了紫杉醇生物合成途径研究的基因资源,也为进一步研究红豆杉中与紫杉醇累积相关的ABC转运蛋白基因提供了前提和基础。
Plants produce a large number of secondary metabolites of important medicinal values, such as vinblastine and vincristine in Catharanthus roseus, taxol in Taxus, flavonoids and ginkgolides in Ginkgo biloba. Vinblastine, vincristine and taxol are highly effective anti-tumor medicines, while flavonoids and ginkgolides are well-known for their preventive and therapeutic functions against cardiovascular and cerebrovascular diseases. But most of these secondary metabolites are produced at very low levels in the natural plants and many of the natural plants are threatened with extinction due to overharvest. Other methods such as plant cultivation, chemical synthesis, plant cell and tissue culture are not suitable for commercialization of the secondary metabolites because of the high cost and low yield. As one of the most promising approaches, metabolic engineering has been developed to improve the product composition and increase the product yield in plants and cultured cell systems. However, the biosynthetic pathways of the medicinal secondary metabolites and the detailed molecular regulation of their accumulation are yet to be fully elucidated. ABC transporters are among the important research areas for plant metabolic engineering because of their capabilities of transporting the toxic secondary metabolites produced by plant cells either out of the cells or into the organelles so as to reduce the toxicity to the cells themselves.
     Taxus,Catharanthus roseus and Ginkgo biloba are important medicinal plants which can produce valuable secondary metabolites and they are important materials for the study of plant secondary metabolism. In order to further understand the biosynthetic pathways and the accumulating molecular basis of the valuable secondary metabolites in the medicinal plants, gene cloning, expression profiles and a series of work of ABC transporter genes were performed and reported in this study as follows:
     1. A novel full-length cDNA encoding an ABC transporter protein (named as Tcmdr1; GenBank accession number: DQ660357) was cloned from Taxus cuspidata by rapid amplification of cDNA ends (RACE) for the first time. This gene,a member of MDR subfamily,had a total length of 4385 bp with an open reading frame (ORF) of 3951 bp encoding a predicted polypeptide of 1316 amino acids. Sequence analysis showed that TcMDR1 had high similarity with other plant MDRs. The domains analysis showed that TcMDR1 possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranged in“TMD1-NBD1-TMD2-NBD2”direction, consistent with MDR-type ABC transporters. Within NBDs three characteristic motifs common to all ABC transporters,“Walker A”,“Walker B”and C motif, were found. Expression patterns analysis revealed that Tcmdr1 expressed at high levels in the root, stem and leaf. Southern blot analysis showed that Tcmdr1 belonged to a low-copy gene family. These results indicated that TcMDR1 was a MDR-type ABC transporter protein that might be involved in the transport and accumulation of secondary metabolites in T. cuspidata. The expression construct pDR196-Tcmdr1 containing Tcmdr1 was constructed and transformed into mutant yeast strain AD12345678. The detection of TcMDR1 protein expression and further substrate analysis will disclose the exact function of TcMDR1, which may help us to increase the yield of certain medicinal secondary metabolites through genetic engineering.
     2. A novel full-length cDNA encoding an ABC transporter protein (named as Crmdr1; GenBank accession number: DQ660356) was cloned from Catharanthus roseus by RACE for the first time. This gene, belonging to MDR subfamily, had a total length of 4395 bp with an ORF of 3801 bp encoding a predicted polypeptide of 1266 amino acids. The CrMDR1 shared high identity with other plant MDRs. The domains analysis showed that CrMDR1 possessed the common structural characteristics of all functional MDR-type ABC transporter proteins. Expression pattern analysis revealed that Crmdr1 was enriched in the root and stem, but low in the leaf. Southern blot analysis showed that Crmdr1 belonged to a low-copy gene family. These results indicated that CrMDR1 was an MDR-type ABC transporter protein that might be involved in the transport and accumulation of secondary metabolites in C. roseus.
     3. A new full-length cDNA encoding an ABC transporter protein (named as Gbmdr1; GenBank accession number: DQ779968) was cloned from Ginkgo biloba by RACE for the first time. This gene, which was included in MDR-type ABC transporters, had a total length of 4275 bp with an open reading frame of 3840 bp encoding a predicted polypeptide of 1279 amino acids. The GbMDR1 possessed high homology with other MDRs. Amino acid sequence analysis showed that GbMDR1 had the common structural characteristics of all functional MDR-type ABC transporter proteins. Expression pattern analysis revealed that Gbmdr1 was enriched in the stem and leaf, but very low in the root. Southern blot analysis showed that Gbmdr1 belonged to a low-copy gene family. These results indicated that GbMDR1 was an MDR-type ABC transporter protein that might be involved in the transport and accumulation of secondary metabolites in G. biloba.
     4. MDR-type ABC transporter proteins from medicinal plants were compared for the first time. The sequence comparison showed that CrMDR1 from C. roseus, CjMDR from C. japonica and TcMDR1 from T. cuspidata shared higher homology among each other (60%), while GbMDR1 from G. biloba shared lower homology with the other three (about 40%). In addition,it was found that GbMDR1 and TcMDR1 possessed the coiled-coil structure on N-terminus which was the common structural characteristics of the inward-uptaking AtPGP4 and CjMDR. Therefore, it was supposed that GbMDR1 and TcMDR1 might also possess the function of inward uptake. Phylogenetic analysis showed that plant MDR proteins were grouped generally into three classes. Together with inward-uptaking AtPGP4, CrMDR1,CjMDR and TcMDR from medicinal plants were classified into Class I. Expression patterns analyses revealed great differences among the four MDR genes from medicinal plants. The function determination of these MDR-type ABC transporters is needed to illustrate the main action styles of MDR-type ABC transporter proteins from medicinal plants and the relationship between the MDR proteins and the accumulation of medicinal secondary metabolites.
     5. The study of ABC transporter genes involved in the accumulation of Taxol requires the detailed acquaintance of the biosynthetic pathway of Taxol. In this study a new full-length cDNA encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (designated as Tmmecs, GenBank accession number: DQ286391), the fifth enzyme of the nonmevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and further Taxol biosynthesis, was isolated from T. media by RACE for the first time. The full-length cDNA of Tmmecs was 1081 bp containing a 741 bp ORF encoding a deduced protein of 247 amino acid residues. Comparative and bioinformatic analyses revealed that TmMECS had extensive homology with MECSs from other plant species. Phylogenetic analysis indicated that TmMECS was more ancient than other plant MECSs. The homology-based 3D structural modeling of TmMECS was analyzed, which showed TmMECS had a similar 3D structure with the E.coli MECS. Besides, the three highly conserved amino acid residues of MECS family were also found in TmMECS including Asp98, His100 and His132, correspondingly, suggesting that TmMECS had a similar biological function with other MECSs. Southern blot analysis revealed that Tmmecs belonged to a small gene family. Tissue expression pattern analysis indicated that Tmmecs expressed constitutively in all tested tissues including roots, stems and leaves. Furthermore, overexpression of Tmmecs in the E.coli pushed forward the metabolic flux ofβ-carotin synthesis and led to the increase ofβ-carotin accumulation, confirming that TmMECS had enzymic activity.
     In this paper three MDR-type ABC transporter genes were cloned from medicinal plant T. cuspidata,C. roseus and G. biloba and, meanwhile,their structural and bioinformatic analyses were carried out, which helped to establish a significant experimental basis for the isolation and functional research of plant ABC transporters of MDR subfamily,the largest full-molecule subfamily. The structures and tissue expression of four MDR-type ABC transporter genes from four medicinal plants were compared and further functional analysis would be helpful to illustrate the main action styles of MDR-type ABC transporter proteins from medicinal plants and the relationship between the action styles of MDR proteins and the accumulation of medicinal secondary metabolites, which would be beneficial to the increase of target secondary metabolites by genetic engineering.Tmmecs, a gene involved in Taxol biosynthesis, was isolated from T. media and its function was confirmed, which enriched the gene data of Taxol biosynthesis and helped further study of ABC transporter genes related with the accumulation of Taxol in Taxus.
引文
[1].Oksman-Caldentey KM, Inzé D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci, 2004, 9(9):433-40.
    [2].陈晓亚, 刘培. 植物次生代谢的分子生物学及基因工程. 生命科学, 1996,8(2):8-11。
    [3].Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett, 2006, 580:1183-1191.
    [4].龚一富. 长春花萜类吲哚生物碱代谢工程. 上海交通大学博士学位论文, 2004.
    [5].Higgins CF, Haag PD, Nikaido K, et al. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of styphimurium. Nature, 1982, 298:723-727.
    [6].Linton KJ, Higgins CF. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol,1998,28:5-13.
    [7].Gottesman M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem,1993,62:385-427.
    [8].Theodoulou FL. Plant ABC transporters. Biochim Biophys Acta,2000,1465:79-103.
    [9].Rommens JM, Iannuzzi MC, Kerem B, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science, 245(1989):1059-1065.
    [10].Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science, 268(1995): 423-426.
    [11].Fardel O, Lecureur V, Guillouzo A. The P-glycoprotein multidrug transporter. Gen Pharmacol, 1996, 27 (8):1283-1291.
    [12].Jones PM, George AM. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling. Int J Parasitol, 2005, 35(5):555-66.
    [13].Lubelski J, Mazurkiewicz P, van Merkerk R, et al. ydaG and ydbA of Lactococcus lactis encode a heterodimeric ATP-binding cassette-type multidrug transporter. J Biol Chem, 2004, 279(33):34449-34455.
    [14].Walker JE, Saraste M, Runswick MJ, et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and otherATP-requiring enzymes and a common nucleotide binding fold. EMBO J, 1982, 1:945-951.
    [15].Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992, 20 Suppl:2013-2018.
    [16].Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol, 1992, 8:67-113.
    [17].Sánchez-Fernández R, Davies TG, Coleman JO, et al. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem, 2001, 276:30231-30244.
    [18].Loo TW, Clarke DM. Membrane topology of a cysteine-less mutant of human P-glycoprotein. J Biol Chem, 1995, 270:843-848.
    [19].Kast C, Canfield V, Levenson R, et al. Membrane topology of P-glycoprotein as determined by epitope insertion: transmembrane organization of the N-terminal domain of mdr3. Biochemistry, 1995, 34:4402-4411.
    [20].Rosenberg MF, Callaghan R, Ford RC, et al. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem, 1997, 272:10685-10694.
    [21].Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science, 2001, 293:1793-1800.
    [22].Locher KP, Lee AT, Rees DC. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science, 2002, 296:1091-1098.
    [23].Dawson RJ, Locher KP. Structure of a bacterial multidrug ABC transporter. Nature, 2006, 443(7108):180-185.
    [24].Schulz B, Kolukisaoglu Hü. Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett, 2006, 580:1010-1016.
    [25].Dudler R, Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana: Evolutionary implications. J Biol Chem, 1992, 267:5882-5888.
    [26].Rea PA. Plant ATP-Binding Cassette Transporters. Annu Rev Plant Biol, 2007, [Epub ahead of print].
    [27].Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins. Nat Genet, 1997, 15:137-145.
    [28].Sheps JA, Ralph S, Zhao Z, et al. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol, 2004, 5(3):R15.
    [29].Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res, 2001, 11:1156-1166.
    [30].Zuin VG, Vilegas JH. Pesticide residues in medicinal plants and phytomedicines. Phytother Res, 2000, 14:73-88.
    [31].R í os JL, Recio MC. Medicinal plants and antimicrobial activity. J Ethnopharmacol, 2005, 100:80-84.
    [32].Rocha LG, Almeida JR, Macêdo RO, et al. A review of natural products with antileishmanial activity. Phytomedicine, 2005, 12:514-535.
    [33].Yazaki K. Transporters of secondary metabolites. Curr Opin Plant Biol, 2005, 8:301-307.
    [34].瞿礼嘉, 顾红雅, 白书农, 等译. 植物生物化学与分子生物学. 北京:科学出版社, 2004.
    [35].Sato H, Kobayashi Y, Fukui H, et al. Specific differences in tolelrance to exogenous berberine among plant cell cultures. Plant Cell Rep, 1990, 9:133-136.
    [36].Terasaka K, Sakai K, Sato F, et al. Thalictrum minus cell cultures and ABC-transporter. Phytochemistry, 2003, 62:483-489.
    [37].Sato H, Tanaka S, Tabata, M. Kinetics of alkaloid uptake by cultured cells of Coptis japonica. Phytochemistry, 1993, 34:697-701.
    [38].Sakai K, Shitan N, Sato F, et al. Characterization of berberine transport into Coptis japonica cells and the involvement of ABC protein. J Exp Bot, 2002, 53:1879-1886.
    [39].Yazaki K, Shitan N, Takamatsu H,et al. A novel Coptis japonica multidrug resistant protein preferentially expressed in the alkaloid-accumulating rhizome. J Exp Bot, 2001, 52:877-879.
    [40].Shitan N, Bazin I, Dan K, et al. Involvement of CjMDR1, a plant MDR-type ABC protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci USA, 2003, 100:751-756.
    [41].Otani M, Shitan N, Sakai K, et al. Characterization of vacuolar transport of the endogenous akaloid berberine in Coptis japonica. Plant Physiol, 2005, 138:1939-1946.
    [42].Terasaka K, Shitan N, Sato F, et al. Application of vanadate-induced nucleotide trapping to plant cells for detection of ABC proteins. Plant Cell Physiol, 2003, 44:198-200.
    [43].Bock A, Wanner G, Zenk MH. Immunocytological localization of two enzymes involved in berberine biosynthesis. Planta, 2002, 216:57-63.
    [44].Shoji T, Nakajima K, Hashimoto T. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol, 2000, 41:1072-1076.
    [45].Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr Opin Biotechnol, 2003, 14:163-168.
    [46].Weid M, Ziegler J, Kutchan TM. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc Natl Acad Sci USA, 2004, 101:13957-13962.
    [47].Bird DA, Franceschi VR, Facchini PJ. A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell, 2003, 15:2626-2635.
    [48].Noh B, Murphy AS, Spalding EP. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell, 2001, 13:2441-2454.
    [49].Geisler M, Blakeslee JJ, Bouchard R, et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J, 2005, 44:179-194.
    [50].Terasaka K, Blakeslee JJ, Titapiwatanakun B, et al. PGP4, an ATP-binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell, 2005, 17:2922-2939.
    [51].Santelia D, Vincenzetti V, Azzarello E,et al. MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett, 2005, 579:5399-5406.
    [52].Jambois A, Ditengou FA, Kawano T, et al. The indole alkaloids brucine, yohimbine, and hypaphorine are indole-3-acetic acid-specific competitors which do not alter auxin transport. Physiol Plant, 2004, 120:501-508.
    [53].Jasinski M, Stukkens Y, Degand H, et al. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell, 2001, 13:1095-1107.
    [54].Sasabe M, Toyoda K, Shiraishi T, et al. cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor responsive gene. FEBS Lett, 2002, 518:164-168.
    [55].Campbell EJ, Schenk PM, Kazan K, et al. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol, 2003, 133:1272-1284.
    [56].Smart CC, Fleming AJ. Hormonal and environmental regulation of a plant PDR5-like ABC transporter. J Biol Chem, 1996, 271:19351-19357.
    [57].van den Br?le S, Müller A, Fleming AJ,et al. The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J, 2002, 30:649-662.
    [58].Crouzet J, Trombik T, Fraysse ?S, et al. Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett, 2006, 580(4):1123-1130.
    [59].van den Br?le S, Smart CC. The plant PDR family of ABC transporters. Planta, 2002, 216:95-106.
    [60].Lange BM, Croteau R. Genetic engineering of essential oil production in mint. Curr Opin Plant Biol, 1999, 2:139-144.
    [61].Martin DM, Faldt J, Bohlmann J. Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol, 2004, 135:1908-1927.
    [62].Chen F, Tholl D, D’Auria JC, et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell, 2003, 15:481-494.
    [63].Dudareva N, Martin D, Kish CM, et al. (E)-Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell, 2003, 15:1227-1241.
    [64].Martin DM, Gershenzon J, Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol, 2003, 132:1586-1599.
    [65].Schmelz EA, Alborn HT, Tumlinson JH. Synergestic interactions between volicitin, jasmonic acid and ethylene medite insect-induced volatile emission in Zea mays. Physiol Plant, 2003, 117:403-412.
    [66].R?se USR, Tumlinson JH. Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta, 2004, 218:824-832.
    [67].Tabata M, Tanaka S, Cho HJ, et al. Production of an anti-allergic triterpene bryonolic acid, by plant cell cultures. J Nat Prod, 1993, 56:165-174.
    [68].Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126:485-493.
    [69].Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55:481-504.
    [70].Wang HK, Xia Y, Yang ZY, et al. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv Exp Med Biol, 1998, 439:191-225.
    [71].Bartholomew DM, van Dyk DE, Lau SC,et al. Alternate energy-dependent pathways for the vacuolar uptake of glucose and glutathione conjugates. Plant Physiol, 2002, 130:1562-1572.
    [72].Klein M, Weissenb?ck G, Dufaud A, et al. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J Biol Chem, 1996, 271:29666-29671.
    [73].Frangne N, Eggmann T, Koblischke C, et al. Flavone glucoside uptake into barley mesophyll and Arabidopsis cell culture vacuoles. Energization occurs by H+-antiport and ATP-binding cassette-type mechanisms. Plant Physiol, 2002, 128:726-733.
    [74].Marrs KA, Alfenito MR, Lloyd AM, et al. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375:397-400.
    [75].Alfenito MR, Souer E, Goodman CD, et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell, 1998, 10:1135-1149.
    [76].Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J, 2004, 37:104-114.
    [77].Larsen ES, Alfenito MR, Briggs WR, et al. A carnation anthocyanin mutant is complemented by the glutathione S-transferases encoded by maize Bz2 and petunia An9. Plant Cell Rep, 2003, 21:900-904.
    [78].Goodman CD, Casati P, Walbot V. A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays. Plant Cell, 2004, 16:1812-1826.
    [79].Walczak HA, Dean JV. Vacuolar transport of the glutathione conjugate of trans-cinnamic acid. Phytochemistry, 2000, 53:441-446.
    [80].Kolukisaoglu Hü, Bovet L, Klein M, et al. Family business: the multidrug-resistance related protein, (MRP) ABC transporter genes in Arabidopsis thaliana. Planta, 2002, 216:107-119.
    [81].Rea PA, Li ZS, Lu YP, et al. From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:727-760.
    [82].Ishikawa T, Li ZS, Lu YP, et al. The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep, 1997, 17:189-207.
    [83].Pighin JA, Zheng H, Balakshin LJ, et al. Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306:702-704.
    [84].Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol, 1999, 39:361-398.
    [85].Haimeur A, Conseil G, Deeley RG, et al. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab, 2004, 5:21-53.
    [86].Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther, 1992, 263:840-845.
    [87].Tang-Wai DF, Brossi A, Arnold LD, et al. The nitrogen of the acetamido group of colchicine modulates P-glycoprotein-mediated multidrug resistance. Biochemistry, 1993, 32:6470-6476.
    [88].Stephens RH, Tanianis-Hughes J, Higgs NB, et al. Region-dependent modulation of intestinal permeability by drug efflux transporters: in vitro studies in mdr1a(-/-) mouse intestine. J Pharmacol Exp Ther, 2002, 303:1095-1101.
    [89].Yang C, Yu L, Li W, et al. Disruption of cholesterol homeostasis by plant sterols. J Clin Invest, 2004, 114:813-822.
    [90].Lee MH, Lu K, Hazard S, et al. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet, 2001, 27:79-83.
    [91].Berge KE, Tian H, Graf GA, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science, 2000, 290:1771-1775.
    [92].Klett EL, Patel S. Genetic defenses against noncholesterol sterols. Curr Opin Lipidol, 2003, 14:341-345.
    [93].Del Sorbo G, Schoonbeek H, De Waard MA. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol, 2000, 30:1-15.
    [94].Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J, 1999, 18:512-521.
    [95].Stergiopoulos I, Zwiers LH, De Waard MA. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant Microbe Interact, 2003, 16:689-698.
    [96].Zwiers LH, De Waard MA. Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola. Fungal Genet Biol, 2000, 30:115-125.
    [97].Schoonbeek H, Del Sorbo G, De Waard MA. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact, 2001, 14:562-571.
    [98].Del Sorbo G, Andrade AC, Van Nistelrooy JG, et al. Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet, 1997, 254:417-426.
    [99].Nakaune R, Adachi K, Nawata O, et al. A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol, 1998, 64:3983-3988.
    [100].Gaertner LS, Murray CL, Morris CE. Transepithelial transport of nicotine and vinblastine in isolated Malpighian tubules of the tobacco hornworm (Manduca sexta) suggests a P-glycoprotein-like mechanism. J Exp Biol, 1998, 201:2637-2645.
    [101].Murray CL, Quaglia M, Arnason JT, et al. A putative nicotine pump at the metabolic blood-brain barrier of the tobacco hornworm. J Neurobiol, 1994, 25:23-34.
    [102].Brown DE, Rashotte AM, Murphy AS, et al. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol, 2001, 126:524-535.
    [103].Buer CS, Muday GK. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell, 2004, 16:1191-1205.
    [104].Imai Y, Tsukahara S, Asada S, et al. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res, 2004, 64:4346-4352.
    [105].Wang EJ, Barecki-Roach M, Johnson WW. Quantitative characterization of direct P-glycoprotein inhibition by St. John’s wort constituents hypericin and hyperforin. J Pharm Pharmacol, 2004, 56:123-128.
    [106].Molnar J, Gyemant N, Mucsi I, et al. Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In Vivo, 2004, 18:237-244.
    [107].Chearwae W, Anuchapreeda S, Nandigama K, et al. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from turmeric powder. Biochem Pharmacol, 2004, 68:2043-2052.
    [108].Munoz-Martinez F, Lu P, Cortes-Selva F, et al. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance. Cancer Res, 2004, 64:7130-7138.
    [109].Perez-Victoria JM, Di Pietro A, Barron D, et al. Multidrug resistance phenotype mediated by the P-glycoprotein-like transporter in Leishmania: a search for reversal agents. Curr Drug Targets, 2002, 3:311-333.
    [110].Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev, 2004, 36:57-104.
    [111].Wang EJ, Barecki-Roach M, Johnson WW. Elevation of P-glycoprotein function by a catechin in green tea. Biochem Biophys Res Commun, 2002, 297:412-418.
    [112].Zhang S, Wang X, Sagawa K, et al. Flavonoids chrysin and benzoflavone, potent breast cancer resistance protein inhibitors, have no significant effect on topotecan pharmacokinetics in rats or mdr1a/1b (-/-) mice. Drug Metab Dispos, 2005, 33:341-348.
    [113].Yoshikawa M, Ikegami Y, Sano K, et al. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J Exp Ther Oncol, 2004, 4:25-35.
    [114].de Wet H, McIntosh DB, Conseil G, et al. Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein: structure-activity relationships for flavonoid binding. Biochemistry, 2001, 40:10382-10391.
    [115].Trompier D, Baubichon-Cortay H, Chang XB, et al. Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell Mol Life Sci, 2003, 60:2164-2177.
    [116].Ahmed-Belkacem A, Pozza A, Munoz-Martinez F, et al. Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res, 2005, 65:4852-4860.
    [117].Sesink AL, Arts IC, de Boer VC, et al. Breast cancer resistance protein (Bcrp1/Abcg2) limits net intestinal uptake of quercetin in rats by facilitating apical efflux of glucuronides. Mol Pharmacol, 2005, 67:1999-2006.
    [118].Martinoia E, Klein M, Geisler M, et al. Multifunctionality of plant ABC transporters-more than just detoxifiers. Planta, 2002, 214:345-355.
    [119].Klein M, Perfus-Barbeoch L, Frelet A, et al. The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. Plant J, 2003, 33:119-129.
    [120].Sheps JA, Ralph S, Zhao Z, et al. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol, 2004, 5:R15.
    [121].Smit JJM, Schinkel AH, Oude Elferink RPJ, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell, 1993, 75:451-462.
    [122].Jasinski M, Ducos E, Martinoia E, et al. The ATP-binding cassette transporters: Structure, function, and gene family comparison between rice and Arabidopsis. Plant Physiol, 2003, 131:1169-1177.
    [123].黄培堂译. 分子克隆实验指南(第三版). 北京:科学出版社, 2002.
    [124].Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap [J]. Evolution, 1985, 39(4):783-791.
    [125].Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology Evolution, 1987, 4(4):406-425.
    [126].Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Research, 1994, 22(22):4673-4680.
    [127].Kumar S, Tamura K, Jakobsen IB, Nei M. MEGA2: molecular evolutionary genetics analysis software [J]. Bioinformatics, 2001, 17(12):1244-1245.
    [128].Decottignies A, Grant AM, Nichols JW, et al. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem, 1998, 273(20):12612-12622.
    [129].Chambon C, Ladeveze V, Servouse M, et al. Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids, 1991, 26(8):633-636.
    [130].Gietz D, St Jean A, Woods RA, et al. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res, 1992, 20(6):1425.
    [131].Wani MC, Taylor HL, Wall ME, et al. The isolation and structure of Taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 1971, 93:2325-2327.
    [132].Goldspiel BR. Clinical overview of the Taxanes. Pharmacotherapy, 1997, 17:1105-1255.
    [133].Michaud LB, Valero V, Hortobagyi G. Risks and benefits of Taxanes in breast and ovarian cancer. Drug Safety, 2000, 23:401-428.
    [134].Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by Taxol. Nature, 1979,277:665-667.
    [135].Holton RA, Somoza C, Kim HB, et al. The total synthesis of paclitaxel starting with camphor. ACS Symp Ser, 1995, 583:288-301.
    [136].Nicolaou KC, Yang Z, Liu JJ, et al. Total synthesis of Taxol. Nature, 1994, 367:630-634.
    [137].Walker K, Croteau R. Molecules of interest: Taxol biosynthetic genes. Phytochemistry, 2001, 58:1-7.
    [138].Bach TJ. Some new aspects of isoprenoid biosynthesis in plants: A review. Lipids, 1995, 30:191-202.
    [139].Jennewein S, Croteau R. Taxol: Biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol, 2001, 57:13-19.
    [140].Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci, 1995, 11(6):681-684.
    [141].Loo TW, Clarke DM. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J Membr Biol, 2005, 206:173-185.
    [142].Geisler M, Kolukisaoglu Hü, Bouchard R, et al. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell, 2003, 14:4238-4249.
    [143].Windsor B, Roux SJ, Lloyd A. Multiherbicide tolerance conferred by AtPgp1 and apyrase overexpression in Arabidopsis thaliana. Nat Biotechnol, 2003, 21:428-433.
    [144].唐中华, 于景华, 杨逢建, 祖元刚. 植物生物碱代谢生物学研究进展. 植物学通报, 2003, 20(6):696-702.
    [145].Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol, 2002, 20:522-531.
    [146].Memelink J, Verpoorte R, Kijne JW. ORCAnization of jasmonate responsive gene expression in alkaloid metabolism. Trends in Plant Sci, 2001, 6:212-219.
    [147].Johnson JS, Wright HF, Svoboda GH. Experimental basis of clinical evalution of antitumor principles derived from Vinca rosea L. Lab Clin Med, 1959, 54:380.
    [148].赵剑, 朱蔚华. 长春花生物碱生物合成途径和相关酶及其基因调控的研究进展. 植物生理学通讯, 1999, 35(1):60-68。
    [149].张广辉, 陈春秋, 李竞芸,等. 银杏离体培养生产次生代谢物研究进展. 北京林业大学学报, 2002, 24(4):130-134.
    [150].陈学森,张艳敏, 李健,等. 叶用银杏资源评价及选优的研究. 园艺学报, 1997, 24(3):215-219.
    [151].程水源, 顾曼如, 束怀瑞. 银杏叶黄酮研究进展. 林业科学, 2000, 36(6):110-115
    [152].Shen G, Pang Y, Wu W, et al. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba. Mol Biol Rep, 2006, 33(2):117-127.
    [153].Shen G, Pang Y, Wu W, et al. Cloning and characterization of a flavanone 3-hydroxylase gene from Ginkgo biloba. Biosci Rep, 2006, 26(1):19-29.
    [154].Suffness M, Wall ME. Discovery and development of Taxol. Suffness M (ed.) Taxol Science and Applications. CRC Press, Boca Raton. 1995, 1-25.
    [155].包怡红, 王振宇. 红豆杉资源及紫杉醇的研究概况. 国土与自然资源研 究,2003,2:85-87.
    [156].Herz S, Wungsintaweekul J, Schuhr CA, et al. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate to 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Proc Natl Acad Sci USA, 2000, 97(6):2486-2490.
    [157].Castor TP, Theodore AT. Determination of Taxol in Taxus media needles in the presence of interfering components. J Liq Chromatogr, 1993, 16:723-731.
    [158].Cragg GM, Saul AS, Matthew S, et al. The Taxol suppy crisis; New NCI polices for handing the large-scale production of novel natural product anticancer and anti-HIV. J Nat Prod, 1993, 56(10):1657-1668.
    [159].高山林, 朱丹妮, 周荣汉. 东亚和北美红豆杉属七种植物中紫杉醇及短 叶醇的含量. 中国药科大学学报, 1995, 26(l):8-10.
    [160].Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 2003, 31(13):3381-3385.
    [161].Steinbacher S, Kaiser J, Wungsintaweekul J, et al. Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J Mol Biol, 2002, 316(1):79-88.
    [162].廖志华. 紫杉醇前体生物合成的分子生物学与抗癌萜类吲哚生物碱的代谢工程. 复旦大学博士学位论文, 2004.
    [163].Gallagher CE, Cervantes-Cervantes M, Wurtzel ET. Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Appl Microbiol Biotechnol, 2003, 60(6):713-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700