谷子抗锈基因RUS分子标记和抗病相关基因的克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由单胞锈菌(Uromyces setariae-italicae)引起的谷子锈病是威胁谷子生产安全的重要病害之一,常造成严重经济损失。选育并合理利用抗病品种是减轻锈病最经济、有效、安全的方法。同时,抗病基因的研究也是抗病育种的基础,克隆谷子抗锈或抗锈相关基因不仅可以加快抗病育种工作,而且有助于揭示谷子抗锈机理,为开发快速、高效的防治技术提供理论依据。本研究以谷子抗锈/感锈病材料及其杂交的F2代群体为材料,对谷子抗锈基因连锁的分子标记及抗病相关基因的克隆等方面进行了研究,为谷子抗锈基因的分子鉴定、辅助选择及抗病机制相关研究奠定基础。本论文内容包括以下几方面:
     1.应用AFLP标记技术筛选获得了10对能够揭示抗感材料之间多态性的AFLP引物组合;应用所获得的AFLP引物组合对谷子抗锈/感锈病材料及其F2代群体中的抗感基因池进行扩增,获得了18个抗锈材料中特有的差异条带;生物信息学分析结果表明,2个差异条带与玉米的W22 pol基因和水稻的丝氨酸-苏氨酸蛋白激酶基因的同源性分别为86%和92%,其他差异条带未发现同源的基因,推测可能为新的基因。
     2.根据差异条带的测序结果设计PCR特异引物,成功地将AFLP标记“E+GC/M+TC”转化为结果稳定、操作简单的SCAR标记“SCEM-187”。以转化成功的SCAR标记对抗锈基因进行定位,结果表明标记“SCEM-187”与谷子抗锈基因间的遗传距离为27.4 cM。
     3.应用RGA技术对谷子基因组DNA和cDNA进行扩增,获得了7个抗病材料十里香中特异的NBS类型抗病基因同源序列。NBS类型抗病基因同源序列均含有P-loop和Kinase 2α结构域,与水稻含有的NB-ARC保守结构域的蛋白、水稻和玉米的NBS-LRR类型抗病蛋白、小麦的抗病蛋白等的同源性分别在47%~98%之间。聚类分析结果表明,7个RGA片段分为三类:第一类包括RUS1-1、RUS1-2、RUS1-3和RUS1-6,与水稻Pib基因聚在一起,属于NBS-LRR类型抗病基因;第二类包括RUS1-5和RUS1,与LZ-NBS-LRR类型的拟南芥RPP8和HRT基因聚在一起;第三类包括RUS1-4,与番茄NBS-LRR类型I2基因聚在一起。
     4.根据番茄Fen和水稻Xa21等蛋白激酶基因保守结构域设计引物,从抗病材料十里香中获得了1个STK类型抗病基因同源序列。BLASTX分析结果表明,STK类型抗病基因同源序列与水稻中推测的丝氨酸/苏氨酸受体激酶PR5K、小麦LRK33和抗锈激酶Lr10同源性在77%~78%之间。
     5.根据已知的RUS1序列,利用Genome Walking和Reverse PCR技术获得了RUS1的全长DNA(GenBank登录号:FJ467296)和cDNA序列。DNA全长2673 bp,cDNA为2193 bp,编码731个氨基酸,含有3个外显子和2个内含子。RUS1基因编码产物分子量为82.588 kD,等电点(pI)为8.20。半定量RT-PCR分析结果表明,谷子NBS类型抗病基因同源序列RUS1表达方式为组成型表达。随着接菌时间的延长,RUS1表达量增加,参与谷子抗锈病反应。
     6.生物信息学分析确定了RUS1基因具有NBS、LRR、HD等一系列植物抗病基因的保守结构域,且与NBS-LRR类抗病Pib、HRT和RPP8的亲缘关系较近。确定了RUS1基因属于NBS-LRR类型的抗病基因。RUS1蛋白的二级结构以α-螺旋为主,其次为无规线团;RUS1基因与大麦NBS-LRR类型抗病蛋白同源性为58%,与水稻含有NB-ARC结构域的蛋白同源性为63%,与小麦的抗病蛋白同源性为59%。
     7. Southern杂交结果表明,RUS1以多拷贝形式存在于谷子十里香基因组DNA中。
     8.根据已知的RUS1基因序列,利用Genome Walking技术获得了RUS1基因的启动子序列,长度为675 bp。成功构建了RUS1∷GUS双元载体。GUS染色结果表明,含有双元载体RUS1∷GUS的农杆菌经染色后溶液变蓝,表明该启动子具有活性。
     9.通过PCR扩增获得含有启动子序列的RUS1基因。成功构建了植物表达载体p1300∶RUS1。
     10.利用SSH技术对抗锈病材料十里香接种锈菌后诱导基因的表达情况进行了研究,共获得了11个诱导表达的序列。BLASTX分析结果表明,1个序列与小麦、大麦和水稻的SGT1和水稻、玉米的skp1等位基因g2抑制因子的同源性在91%~97%之间;4个序列未发现同源的序列,可能为新的基因;其他序列与水稻保守的假定蛋白、葡萄未知蛋白、水稻和玉米光合系统I亚基IX、玉米未命名蛋白和核糖体蛋白S14的同源性在58%~96%之间。
Uromyces setariae-italicae is a destructive pathogen of Setariae-italicae Beauv. all over the world and causes significant yield losses. Resistance cultivars are the most economical and environmentally-friendly way to reduce the damage caused by millet leaf rust. Researches on resistant genes are important and provide the base for the resistance breeding. Not only can our results accelerate the process of plant breeding, but also lay a foundation for the elucidate resistance mechanism and development of rapid and efficient control strategy. Taking Setaria italica Beauv. cultivar Shilixiang (resistant to leaf rust) and Yugu No.1(susceptible to leaf rust) and their F2 progenies as material, research on screening of AFLP marker which closely linked with Setaria italica Beauv. leaf rust resistant gene and cloning of resistant gene was done. Result will contribute to the marker assisted selection (MAS) and identification of resistance mechanism of Setaria italica Beauv. against leaf rust infection. The main results as follows:
     1. AFLP technology was employed to isolate Setaria italica Beauv. leaf rust resistant gene. 10 primer pairs could reveal the polymorphism of resistance and susceptible parents. Bioinformatics analysis result indicated that two bands had 86% and 92% homology with pol gene of Zea mays cultivar W22 and serine/threonine protein kinase of Oryza sativa respectively. Other bands had no significant similarity with sequence in GenBank database and may be new genes.
     2. Primers were designed according to known sequences. SCAR marker“SCEM-187”converted from AFLP marker“E+GC/M+TC”which closely linked with leaf rust resistant gene of Setaria italica Beauv. was obtained through the optimized PCR condition. Using SCAR marker“SCEM-187”, 118 F2 progenies were employed to analysis separate ratio of resistance and susceptible plants. Results showed that“SCEM-187”linked to resistant gene of Setaria italica Beauv. against leaf rust infection with a distance of 27.4 cM.
     3. RGA(resistance gene analogs) analysis was employed on genomic DNA and cDNA of Setaria italica Beauv.. Seven NBS-like sequences contained conserved motifs P-loop and kinase 2αwhich were the characteristics of NBS type resistant gene of plant was obtained. These sequences had 47% to 98% homology with protein contained NB-ARC domain of Oryza sativa, NBS-LRR resistance protein of Oryza sativa and so on. Phylogenetic analysis indicated that there were three categories of RGAs. One group included RUS1-1, RUS1-2, RUS1-3 and RUS1-6 which were similar to NBS-LRR type disease resistant gene Pib of Oryza sativa. The second group included RUS1-5 and RUS1 which were similar to LZ-NBS-LRR type disease resistance gene RPP8 and HRT of Arabidopsis. The third group included RUS1-4 which was similar to NBS-LRR type disease resistant gene I2 of tomato.
     4. Using the primers which designed according to the conserved domain of Fen and Xa21 protein kinase, one STK-like sequence was obtained. BLASTX result indicated that it had 77% to 78% homology with putative receptor serine/threonine kinase PR5K of Oryza sativa, LRK33 and resistance-related receptor-like kinase Lr10 of Triticum aestivum.
     5. Using the method of Genome Walking and reverse PCR, DNA and cDNA sequence of RUS1 was obtianed. RUS1 included a 2673 bp DNA sequence with a 2193 bp coding region, 3 exons and 2 introns and it encode 731 aa. Molecular mass of RUS1 protein was 82.588 kDa and the pI of it was 8.20. The RUS1 gene could be induced by Uromyces setariae-italicae and was a constitutive gene with low abundance in the genome by semi-quantitative RT-PCR. The expression was increasing with the time of inoculation.
     6. Bioinformatic result showed that RUS1 contained conserved NBS, LRR and HD domains which were the characteristics of NBS type resistant gene of plant. RUS1 belonged to NBS-LRR class resistant gene and had the most similarity to Pib, HRT and RPP8. Swissplot software analysis result showed that alpha helix was the main type in the predicted secondary structure of RUS1 protein. RUS1 had 58% to 63% homology with NB-ARC domain containing protein of Oryza sativa, NBS-LRR disease resistant protein of Hordeum vulgare and disease resistance protein of Triticum aestivum.
     7. Southern blotting result displayed that there were multi-copies of RUS1 in the Setaria italica Beauv. genome DNA.
     8. Promoter sequence of RUS1 gene was obtained. The length of it was 675 bp. RUS1 gene promoter and pCAMBIA1300 vector were fused to construct RUS1∷GUS vector. GUS histochemistry staining result showed that promoter could activate gene expression.
     9. RUS1 gene (include promoter sequence) was obtained by the method of PCR.RUS1 gene and pCAMBIA1300 vector were fused to construct p1300∶RUS1 vector.
     10. Technology of SSH was employed to analyze gene express of Setaria italica Beauv. after inoculated with Uromyces setariae-italicae. Eleven sequences related to resistant gene of Setaria italica Beauv. against leaf rust infection were obtained. One sequence had 91% to 97% homology with SGT1 of Oryza sativa, Triticum aestivum, Hordeum vulgare and suppressor of g2 allele of skp1 of Oryza sativa and Zea may. Four sequences had no significant similarity with sequence in GenBank database and may be new genes. Others sequences had 58% to 96% homology with hypothetical protein of Oryza sativa, unnamed protein of Vitis vinifera, photosystem I subunit IX of Oryza sativa and Zea mays, unnamed protein and ribosomal protein S14 of Zea mays.
引文
[1] Li Y,Wu S. Traditional maintenance and multiplication of foxtail millet (Setaria Italica (L) Beauv.) landrace in China[J]. Euphytica, 1996, 87: 33~38.
    [2] Kothari S L, Satish K, Vishnoi R K, et al. Applications of biotechnology for improvement of millet crops: Review of progress and future prospects[J]. Plant Biotechnology Journal, 2005, 22: 81~88.
    [3] Purseglove J W. Tropical crops[M]. London: Monocotyledons, 1972.
    [4] Acheampong E, Anishetty N M, Willams J T. A world survey of sorghum and millets germplasm[M]. IBPGR, 1984.
    [5] Budak H, Pedraza F, Cregan P B, et al. Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm[J]. Crop Science, 2003, 43: 2284~2290.
    [6]梁克恭,武小菲,刘维.粟锈病菌夏孢子生活力及寄主范围的研究[J].植物病理学报, 1999, 24(1): 90~94.
    [7] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(21): 9828~9832.
    [8] Vos P, Horgers, Bleeker M, et al. AFLP: a new technique for DNA fingerptinging[J]. Nucleic Acids Research, 1995, 23: 4407~4414.
    [9] Bent A F. Plant disease resistance genes: function meets structure[J]. The Plant Cell, 1996, 8(10): 1757~1771.
    [10] Dodds P N, Lawrence G J, Ellis J G. Six amino acid changes confined to the leucine-rich repeatβ-strand/β-turn motif determine the difference between the P and P2 rust resistance specificities in flax[J]. The Plant Cell, 2001, 13: 163~178.
    [11] Warren R F, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J]. The Plant Cell, 1998, 10: 1439~1452.
    [12] Song W Y, Wang G L, Ronald P, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270: 1804~1806.
    [13] Kobe B, Reisenhofer J. The leucine-rich repeats: A versatile binding motif[J]. Trends in Biochemical Sciences, 1994, 19(6): 415~421.
    [14] Buschges R, Hollrichner K, Panstruga R. The barely Mlo gene: a novel control element of plant pathogen resistance[J]. Cell, 1997, 88: 695~705.
    [15]王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报, 2004, 21(5): 521~530.
    [16] Jia Y, Loh Y T, Zhou J, et al. Alleles of Pto and Fen occur in bacterial speck-susceptible andfenthion-insensitive tomato cultivars and encode active protein kinases[J]. The Plant Cell, 1997, 9(1): 61~73.
    [17] Salmeron J M, Oldroyd G E, Rommens C M, et al. Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster[J]. Cell, 1996, 86(1): 123~33.
    [18] Simons G, Groenendijk J, Wijbrandi J, et al. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy[J]. The Plant Cell, 1998, 10(6): 1055~1068.
    [19] Bent A F, Kunkel B N, Dahlbeck D, et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes[J]. Science, 1994, 265(5180): 1856~1860.
    [20] Grant M R, Godiard L, Straube E, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance[J]. Science, 1995, 269(5225): 843~846.
    [21] Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 17, 95(4): 1663~1668.
    [22] Johal G S, Briggs S P. Reductase activity encoded by the Hm1 disease resistance gene in maize[J]. Science, 1992, 258: 985~987.
    [23] González L R, Tsitsigiannis D I, Ludwig A A, et al. The U-box protein CMPG1 is required for efficient activation of defense mechanisms triggered by multiple resistance genes in tobacco and tomato[J]. The Plant Cell, 2006, 18(4): 1067~1083.
    [24] Steve W, Sheila M, Barbara B. The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato hypersensitive responseyplant disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 8776~8781.
    [25] Lawrence G J, Finnegan E J, Ayliffe M A, et al. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N[J]. The Plant Cell, 1995, 7(8): 1195~1206.
    [26] Anderson P A, Lawrence G J, Morrish B C, et al. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region[J]. The Plant Cell, 1997, 9(4): 641~651.
    [27]易图永,谢丙炎,张宝玺,等.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用[J].生物技术通报, 2002, 2: 16~20.
    [28] Dodds P N, Lawrence G L, Ellis J G. Contrasting modes of evolution acting on the complex N locus for rust resistance in flax[J]. The Plant Journal, 2001, 27: 439~452.
    [29] Deng Z, Gmitter F G. Cloning and characterization of receptor kinase class disease resistance gene candidates in citrus[J]. Theoretical and Applied Genetics, 2003, 108:53~61.
    [30] Bendahmane A, Farnham G, Moffett P, et al. Constitutive gain of function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato[J]. The Plant Journal, 2002, 32: 195~204.
    [31] Feuillet C, Schachermagr G, Keller B. Molecular cloning of a new receptor-like kinase geneencoding the Lr10 disease resistance Iocus of wheat[J]. The Plant Journal, 1997, 11(1): 45~52.
    [32] Yu Y G, Buss G, Saghaih M A. Isolation of a superfamily of candidate disease-resistance gene in soybean based on a conserved nucleotide-binding site[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 11751~11756.
    [33] Leister D, Ballvora A, Salamini F, et al. A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 14: 421~429.
    [34] Collies N L, Webb C A, Seah S, et al. The isolation and mapping of disease resistance gene analogs in maize[J]. Molecular Plant-Microbe Interactions, 1998, 11: 968~978.
    [35] Ohmori T, Murata M, Motoyoshi F. Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato[J]. Theoretical and Applied Genetics, 1998, 96: 331~338.
    [36] Harts M G M, Hekkert B L, Holub E B, et al. Identification of R gene homologous DNA fragments genetically linking to disease resistance loci in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 1998, 11: 251~258.
    [37] Leister D, Kurth T, Schulze P, et al. RFLP and physical mapping of resistance gene homologues in rice (O. sativa) and Barley(H.vulgare)[J]. Theoretical and Applied Genetics, 1999, 98: 509~520.
    [38] Fourmann M, Chariot F. Froger N, et al. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues[J]. Genome, 2001, 44: 1083~1099.
    [39] Vicente J G, King G J. Characterisation of disease resistance gene-like sequences in Brassica oleracea L[J]. Theoretical and Applied Genetics, 2001, 102: 555~563.
    [40] Gaspero G D, Cipriani G. Resistance gene analogs are candidate markers for disease resistance genes in grape (Vitis ssp.)[J]. Theoretical and Applied Genetics, 2002, 106: 163~172.
    [41] Brotman Y, Silberstein L, Kovalski 1, et al. Resistance gene homologues in melon are linked to genetic loci conferring disease and pest resistance[J]. Theoretical and Applied Genetics, 2002, 104: 1055~1056.
    [42] Hunger S, Di G, Mohring S, et al. Isolation and linkage analysis of expressed disease resistance gene analogues of sugar beet (Beta wlgaris L.)[J]. Genome, 2003, 46: 7082.
    [43] He L, Du C, Covaleda L, et al. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploidy cotton (Gossypium hirsutum L.)[J]. Molecular Plant-Microbe Interactions, 2004, 17: 1234~1241.
    [44]薛静,于静娟,赵倩,等.谷子f103基因的克隆及其特性分析[J].中国农业大学学报, 2004, 9(1): 7~10.
    [45]崔润丽,智慧,王永芳,等.谷子DnaJ蛋白基因的克隆[J].华北农学报, 2007, 22(4): 9~13.
    [46] Leelavathi S, Sunnichan V G, Kumria R, et al. A Simple and rapid agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutumL.): embryogenic calli as a source to generate large numbers of transgenic plants[J]. The Plant Cell, 2004, 22: 465~470.
    [47]王慧中,赵培洁,周小云.转WMV-CP基因黄瓜植株的再生[J].植物生理学报, 2000, 26(3): 267~272.
    [48]彭昊,王志兴,窦道龙,等.由根癌农杆菌介导将葡萄糖氧化酶基因转入水稻[J].农业生物技术学报, 2003, 11(1): 16~19.
    [49] Kanzaki H, Nirasasawa S, Saitoh H, et al. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice[J]. Theoretical and Applied Genetics, 2002, 105: 809~814.
    [50]郭余龙,鲁秀敏,祝钦泷,等.基因枪法转化棉花胚性愈伤组织获得转基因植物[J].农业生物技术学报, 2005, 13(2): 162~166.
    [51]张秀君,刘俊起,赵倩,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测[J].农业生物技术学报, 1999, 7(4): 363~367.
    [52] Snyder G W, Ingersoll J C, Smigocki A C. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet by agrobacterium or particle bombardment[J]. The Plant Cell, 1999, 18: 829~834.
    [53] Ivic, Snezana D, Smiqocki, et al. Transformation of sugar beet cell suspension cultures[J]. In Vitro Cellular and Developmental Biology, 2003, 39(6): 1~6.
    [54]王罡,杜娟,张艳华.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究[J].玉米科学, 2002, (1): 38~39.
    [55]冀俊丽,盛长忠,石明,等.通过负压花粉管法将耐盐基因HVA1转入小麦的研究[J].麦类作物学报, 2002, 22(2): 10~13.
    [56]刘国权,孟巧霞,倪进斌,等.水稻花粉管通道法育种研究[J].中国农学通报, 2003, 19(5): 75~77.
    [57]王立新,常利芳,段绍光,等.通过花粉管通道导入外源DNA创造抗白粉病小麦新种质[J].中国农业科学, 2003, 36(12): 1576~1581.
    [58] Krens F A, Zijlstra C, Molen V C, et al. Transformation and re-generaction in sugar beet induced by“shooter”mutants of Agrobacterium tumefactions[J]. Euphytica, 1988, 5: 185~194.
    [59] Nyman M, Wallin A. Transicent gene expression strawberry(Fragaria×ananassa Dach) protoplast and the recovery of transgenic plants[J]. The Plant Cell, 1992, 11: 105~108.
    [60] Neuhaus G, Spangenberg G, Scheid O M, et al. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids[J]. Theoretical and Applied Genetics, 1987, 75: 30~36.
    [61]刘颖慧,于静娟,赵倩,等.农杆菌介导谷子的遗传转化[J].农业生物技术学报, 2005, 13 (1): 32~37.
    [62] Yinghui L, Jingjuan Y, Guangming A, et al. Factors Influencing Agrobacterium-mediated transformation of Foxtail Millet (Setaria italica)[J]. Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(7): 531~536.
    [63]袁进成,石云素,胡洪凯,等.谷子显性雄性不育基因Msch的AFLP标记[J].作物学报, 2005, 31(10): 1295~1299.
    [64]牛玉红,黎裕,石云素,等.谷子抗除草剂“拿捕净”基因的AFLP标记[J].作物学报, 2002, 28(3): 359~362.
    [65]郝晓芬,王节之,王潞英,等. SSR标记分析谷子遗传多样性[J].山西农业科学, 2005, 33(4): 29~31.
    [66] Xiaoping J, Zhongbao Z, Yinghui L, et al. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Theoretical and Applied Genetics, 2009, 118: 821~829.
    [67] Azhaguvel P, Hash C T, Rangasamy P, et al. Mapping the d1 and d2 Dwarfing Genes and the Purple Foliage Color Locus P in Pearl Millet[J]. Journal of Heredity, 2003, 94(2): 155~159.
    [68]杨延兵,管延安,张华文,等.谷子品种遗传差异的RAPD标记分析[J].华北农学报, 2007, 22(4): 134~136.
    [69]安鑫龙,董金皋,韩建民.玉米大斑病菌的RAPD分析Ⅰ.应用CTAB法提取玉米大斑病菌DNA[J].河北农业大学学报, 2001, 24(1): 38~41.
    [70]王宏,李春海,陈高明,等. mRNA差异显示技术中差异条带的回收与再扩增[J].中国肿瘤临床, 1999, 26(5): 350~351.
    [71] Bai G, Tefera H, Ayele M, et al. A genetic linkage map of tef [Eragrostis tef(Zucc.) Trotter] based on amplified fragment length polymorphism[J]. Theoretical and Applied Genetics, 1999, 99: 599 ~604.
    [72] Messmer M M, Keller M, Zanetti S, et al. Genetic linkage map of a wheat×spelt cross[J]. Theoretical and Applied Genetics, 1999, 98: 1163~1170.
    [73] Lander E S, Green P, Abrahamson J, et al. MAPMARKER:an interactive computer package for constructing primary genetics linkage maps of experimental and natural populations[J].Genetics, 1987, 1: 174~182.
    [74]翁跃进. AFLP一种DNA分子标记新技术[J].遗传, 1996, 18(6): 29~31.
    [75]郭军, Weide1 R,屈冬玉,等.与马铃薯晚疫病菌无毒基因Avr1连锁的AFLP标记[J].中国农业科学, 2005, 38(9): 1801~1804.
    [76] Manifesto M M, Schlatter A R, Hopp H E, et al. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers[J]. Crop Science, 2001, 41: 682~690.
    [77] Zhang L, Huang B B, Kai GY, et al. Analysis of intraspecific variation of Chinese Carthamus tinctorius L. using AFLP markers[J]. Acta Pharmaceutica Sinica, 2006, 41(1): 91~96.
    [78]孔秋生,李锡香,向长萍,等.栽培萝卜种质亲缘关系的AFLP分析[J].中国农业科学, 2005, 38(5): 1017~1023.
    [79] Agresti J J, Seki S, Cnaani A, et al. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci[J]. Aquaculture, 2000, 185: 43~56.
    [80]周淼平,张旭,任丽娟,等.用JoinMap3.0初步构建小麦遗传连锁图[J].江苏农业学报, 2003, 19(3): 133~138.
    [81]李星,杨文香,李亚宁,等.小麦抗叶锈病基因Lr19的AFLP标记[J].中国农业科学, 2005, 38(9): 1796~1800.
    [82]张娜,杨文香,闫红飞,等.小麦抗叶锈病基因Lr45的AFLP分子标记[J].中国农业科学,2005, 38(7): 1364~1368.
    [83] Prins R, Groene J Z, Marais G F, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat[J]. Theoretical and Applied Genetics, 2001, 103: 618~624.
    [84] William M, Singh R P, Huerta E, et al. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Sr39 in wheat[J]. Phytopathology, 2003, 93 (2): 153~159.
    [85]张立平,阎俊,夏先春,等.普通小麦籽粒黄色素含量的QTL分析[J].作物学报, 2006, 32(1): 41~ 45.
    [86]周淼平,任丽娟,张旭,等.小麦赤霉病抗性QTL分析[J].作物学报, 2004, 30(8): 739~744.
    [87]石红良,姜艳喜,王振华,等.玉米抗丝黑穗病QTL分析[J].作物学报, 2005, 31(11): 1449~1454.
    [88]吴晓雷,王永军,贺超英,等.大豆重要农艺性状的QTL分析[J].遗传学报, 2001, 28: 947~955.
    [89] Bradeen J M, Staub J E, Wye C, et al. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.)[J]. Genome, 2001, 44: 111~119.
    [90]邵映田,牛永春,朱立煌,等.小麦抗条锈病基因Yr10的AFLP标记[J].科学通报, 2001, 46(8): 669~672.
    [91] Sardesai N, Kumar A, Rajyashri K, et al. Identification and mapping of an AFLP marker linked to Gm7, a gall midge resistance gene and its conversion to a SCAR marker for its utility in marker aided selection in rice[J]. Theoretical and Applied Genetics, 2002, 105(5): 691~698.
    [92] Smith P, Koebner R, Boyd L. The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro[J]. Theoretical and Applied Genetics, 2002, 104(8): 1278~1282.
    [93] Parker G.D, Langridge P. Development of a STS marker linked to a major locus controlling flour colour in wheat(Triticum aestivum L.)[J]. Molecular Breeding, 2000, 6: 169~174.
    [94] Laroche A, Demeke T, Gandet DA, et a1. Development of PCR markers for rapid identification of the Bt-10 gene for common bunt resistance in wheat[J]. Genome, 2000, 43(2): 217~223.
    [95]钟鸣.小麦抗条锈病基因分子标记的建立[D].沈阳农业大学博士学位论文, 2000.
    [96]张丽英,陈儒钢,张俊红,等.辣椒抗病基因同源序列的克隆与分析[J].中国农业科学, 2008, 41: 169~175.
    [97]徐兵强,杜中军,黄俊生. RGA法克隆候选抗病基因的研究进展[J].分子植物育种, 2004, 2(3), 421~428.
    [98] Robert N M, David J B, Franc C B, et al. Analysis of non TIR-NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping[J]. BMC Plant Biology, 2008, 8(15): 1471~2229.
    [99]曹必好,雷建军,夏勇,等.结球甘蓝NBS-LRR类R基因同源序列的分离[J].中国农业科学, 2004, 37(7): 1081~1084.
    [100]黄代青,吕柳新.荔枝R基因同源序列的克隆与分析[J].福建师范大学学报, 2002, 18(4):86~90.
    [101]张增艳,徐景升,刘耀光,等.利用中间偃麦草抗病基因同源序列分离黄矮病抗性候选基因克隆[J].作物学报, 2004, 30(3): 189~195.
    [102]杨勤忠,杨佩文,王群,等.水稻抗病基因同源序列的克隆及测序分析[J].中国水稻科学, 2001, 15(4): 241~247.
    [103] Madsen L H, Collins N C, Rakwalska M, et al. Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping[J]. Molecular Genetics and Genomics, 2003, 269(1): 150~161.
    [104] Yi T, Yuan F H, Leister R T, et al. Mutational analysis of the Arabidopsis nucleotide binding site-leucine rich repeat resistance gene RPS2[J]. The Plant Cell, 2000, 12: 2541~2554.
    [105] Catherine F, Silvia T, Nils S, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 15253~15258.
    [106] Li H, Steven A B, Li W L, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat[J]. Genetics, 2003, 164: 655~664.
    [107] Craig A W, Todd E R, Nicholas C C, et al. Genetic and molecular characterization of the maize rp3 rust resistance locus[J]. Genetics, 2003, 162: 381~394.
    [108] Xu D Q, Zhang Y B, Xiong Y Z. Construction of forward and reverse subtracted cDNA libraries between muscle tissue of meishan and landracepigs[J]. Acta Genetica Sinica, 2003, 30(7): 668~672.
    [109] Dlatchenko L, Lau Y F, Campbell A P. Suppression subtractive hybridization: a method for generating differentially regulated or tissue~specific cDNA probes and libraries[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6025~6030.
    [110] Austin M J, Muskett P, Kahn K, et al. Regulatory role of SGT1 in early R gene-mediated plant defenses[J]. Science, 2002, 295:2077~2080.
    [111] Azevedo C, Sadanandom A, Kitagawa K, et al. The RAR1 interactor SGT1, an essential component of R gene triggered disease resistance[J]. Science, 2002, 295: 2073~2076.
    [112] T?r M, Gordon P, Cuzick A, et al. Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes[J]. The Plant Cell, 2002, 14: 993~1003.
    [113] Peart J R, Lu R, Sadanandom A, et al. Ubiquitin ligase-associated protein SGT1 is required for host and non-host disease resistance in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 10865~10869.
    [114] Hubert D A, Tornero P, Belkhadir Y, et al. HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein[J]. The EMBO Journal, 2003, 22: 5679~5689.
    [115] Muskett P, Parker J. Role of SGT1 in the regulation of plant R gene signaling[J]. Microbes and Infection, 2003, 5: 969~976.
    [116] Holt B F, BelkhadirY, Dangl J L. Antagonistic control of disease resistance protein stability in the plant immune system[J]. Science, 2005, 309: 929~932.
    [117] Azevedo C, Betsuyaku S. Role of SGT1 in resistance protein accumulation in plant immunity[J]. The EMBO Journal, 2006, 25: 2007~2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700