食酸菌属中三价砷氧化细菌As(Ⅲ)氧化酶基因和调控基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物在砷循环过程中起着重要的作用,三价砷氧化菌作为其中的一类微生物,通过将三价砷氧化为五价砷降低了环境中砷的毒性,并且在微生物环境治理方面也具有潜力,因此得到了人们的关注。目前已知aoxAB基因编码三价砷氧化过程中的关键酶,然而对于该过程中的调控机制研究的还不够深入。食酸菌属Acidovorax作为一类重要的三价砷氧化菌,对该属的三价砷氧化机制报道却很少。本文以该属的两株三价砷氧化菌为研究对象,对三价砷氧化菌的三价砷氧化酶及其调控方面进行了研究。
     本研究的两株菌Acidovorax sp. GW2和Acidovorax sp. NO1是分别分离于山西省山阴县古城村砷地下水污染区土样和湖北省黄石市大冶金矿土壤的三价砷氧化细菌。通过构建GW2的fosmid文库,分离得到了GW2菌的As(Ⅲ)氧化酶基因簇和砷抗性基因,包括aoxRSXABCD和arsBCR共10个基因,分别预测编码双组分信号传导系统转录调控子AoxR,周质感应组氨酸激酶AoxS,周质结合蛋白AoxX,三价砷氧化酶AoxAB,硝基还原酶AoxC,细胞色素c AoxD,三价砷转运蛋白ArsB,五价砷还原酶ArsC和砷抗性转录调控子ArsR。
     通过反向PCR和Tail-PCR分离得到了NO1菌的As(Ⅲ)氧化酶基因簇,该基因簇基因种类和GW2菌基本相同。和GW2菌不同的是NO1菌的aoxD和aoxC基因的排列顺序正好与GW2菌相反。
     GW2菌反转录PCR结果显示,构成双组分系统的aoxRS基因共转录,而与之转录方向相反的结构基因aoxABCD处于同一个操纵子中,aoxX基因和aoxRS基因不在同一操纵子之中。
     通过二亲本杂交的方法,分别对GW2菌的aoxS, aoxX, aoxD基因和NO1菌的aoxC基因进行敲除。GW2菌的aoxS和aoxX基因的敲除使其三价砷氧化性丧失。对于两个突变株分别进行aoxS和aoxX基因的互补实验,表型得到了回复,证实了并非发生极性效应使得其它基因表达受到影响而产生三价砷氧化表型丧失的现象。aoxS和aoxX基因为GW2菌三价砷氧化的必须基因。GW2菌的aoxD基因的功能丧失减慢了三价砷氧化速率,但不是影响三价砷氧化的关键基因。NO1菌的aoxC基因行敲除后仍然具有三价砷的氧化能力,并不是其三价砷氧化所必须的基因。
     本研究对三价砷的氧化调控机理进行了初步的研究,并且首次证明了aoxX基因的的作用。预示细菌的砷感应调控除了受到感应蛋白和调控蛋白双组分系统作用之外还可能有一个砷结合蛋白的参与。
Microorganisms play an important role in the process of arsenic cycle. Arsenite-oxidizing bacteria as one kind of microorganisms in this cycle have already been given more and more attention since transformation of arsenite to arsenate reduces the toxicity of arsenic in environments which showed the protential in environmental control. AoxAB has been known as the key enzyme in arsenite oxidition, however the mechanism in that process was not well identified. As one significant genus of arsenite-oxidizing bacteria, the mechanism of arsenite-oxidation of Acidovorax is rarely reported. This study focused on two Acidovorax strains to study the arsenite oxidase and its regulation.
     Strain Acidovorax sp. GW2 and Acidovorax sp. NO1 are the arsenite-oxidizing bacteria isolated from arsenic-contaminated sediment near groundwater in Gucheng, Shanyin, Shanxi province and gold mine soil in Daye, Huangshi, Hubei province, respectively. The arsenite oxidase gene cluster and arsenic resistant genes of strain GW2 were isolated by constructing a fosmid library. There are ten genes including aoxRSXABCD and arsBCR, and predictively encoding the transcriptional regulator AoxR of a two-component signal transduction system, a periplasmic sensor histidine kinase AoxS, a periplasmic binding protein AoxX, arsenite oxidase AoxAB, nitroreductase AoxC, cytochrome c AoxD, arsenite transporter ArsB, arsenate reductase ArsC and arsenic resistance regulatory protein ArsR, respectively.
     Using Reverse-PCR and Tail-PCR the arsenite oxidase gene cluster was isolated from strain NO1, which is similar to that of strain GW2. However, the order of aoxD and aoxC in strain NO1's gene cluster opposite to strain GW2.
     According to the reverse transcriptase PCR experiments of strain GW2, aoxR and aoxS encoding for a two-component system are co-transcribed and opposite to structural genes aoxABCD. aoxX and aoxRS are not in the same operon.
     By the method of biparental mating, we knocked out the aoxS, aoxX, aoxD of strain GW2 and aoxC of strain NO1, respectively. Deletions of aoxS and aoxX in strain GW2 caused the losses of arsenite oxidation ability. Both of the mutants'phenotypes were recovered through the complementary assaies of aoxS gene and aoxX gene respectively, which indicated that there is no polar effect to affect downstream genes generating the phenomenon of arsenite oxidation ability loss. aoxS and aoxX are the essential genes in arsenite oxidation of strain GW2. The loss of aoxD in strain GW2 did not show significant effects on arsenite oxidation and just slowed down the velocity of arsenite oxidation. By knocking out aoxC in strain NO1, the ability of arsenite oxidation still remained, which demonstrates that this gene is not essential for arsenite oxidizion of strain NO 1.
     In this research, the mechanism of arsenite oxidizing regulation was preliminarily studied, and for the first time, the function of aoxX gene was found to be related to bacterial arsenite oxidation. It indicated that there may be another arsenite-binding protein involved in bacterial sensing and regulating besides the two-component signaling system containing sensor proteins and regulated protein.
引文
1.丁爱中,杨双喜,张宏达.地下水砷污染分析.吉林大学学报(地球科学版),2007,37:319-325
    2.高松,谢丽.中国土壤砷污染现状及修复治理技术研究进展.安徽农业科学,2009,37:6587-6589
    3.康家琦.砷对健康危害的研究进展.卫生研究,2004,33:372-376
    4.肖细元,陈同斌,廖晓勇,武斌,阎秀兰,翟丽梅,谢华,王莉霞.中国主要含砷矿产资源的区域分布与砷污染问题.地理研究,2008,27:201-212
    5.于云江,王菲菲,房吉敦,孙朋.环境砷污染对人体健康影响的研究进展.环境与健康杂志,2007,24:181-183
    6. Afkar E, Lisak J, Saltikov C, Basu P, Oremland R S, Stolz J F. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS 10. FEMS Microbiol. Lett,2003,226:107-112
    7. Ahmann D, Roberts A L, Krumholz L R, Morel F M. Microbe grows by reducing arsenic. Nature,1994,371:750
    8. Anderson G L, Williams J, Hille R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenumcontaining hydroxylase. J Biol Chem,1992,267:23674-23682.
    9. Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P. An As(Ⅲ)-oxidizing bacterial population: selection, characterization, and performance in bioreactors. J Appl Microbiol,2002,93:656-667
    10. Branco R, Francisco R, Chung A P, et al. Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCⅡ24. Appl Environ Microbiol,2009,75:5141-7
    11. Caballero A, Lazaro J J, Ramos J L, Esteve-Nunez A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol,2005,7:1211-1219
    12. Cai L, Liu G H, Rensing C, Wang G J. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbio L,2009a,9:4
    13. Cai L, Rensing C, Li X Y, Wang G J. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers:Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol,2009b,83:715-725
    14. Campos V L, Escalante G, Yanez J, Zaror C A, Mondaca M A. Isolation of arsenite-oxidizing bacteria from a natural biofilm associated to volcanic rocks of Atacama Desert, Chile. J Basic Microbiol,2009,1:93-97
    15. Campos V L, Valenzuela C, Yarza P, Kampfer P, Vida L R, Zaror C, Mondaca M A, Lopez- Lopez A, Rosse L L6-Mora R. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizin g strain isolated from the Atacama desert. Syst Appl Microbiol, 2010,33:193-197
    16. Chen C M., Misra T K., Silver S, Rosen B P. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem,1986,261:15030-15038
    17. Clark R J H. Raman microscopy: sensitive probe of pigments on manuscripts, paintings and other artefacts. Journal of Molecular Structure,1999,480-481:15-20
    18. Clifford D, Ghurye G, Tripp A. Development of an anion exchange process for arsenic removal from water. In: Abermathy R, Calderon R eds., Arsenic exposure and health effect. The Netherlands:Elsevier,1999.379-387
    19. Cullen W R, Reimer K J. Arsenic speciation in the environment. Chemical Reviews, 1989,89:713-764
    20. Czarnecki G L, Baker D H. Roxarsone toxicity in the chick as influenced by dietary cysteine and copper and by experimental infection with Eimeria acervulina. Poultry Sci,1982,61:516-523
    21. Dennis J J, Zylstra G J. Plasposons:modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes. Appl Environ Microbiol,1998,64:2710-2715.
    22. Donahoe-Christiansen J, D'Imperio S, Jackson C R, Inskeep W P, McDermott T R. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol,2004, 70:1865-1868
    23. Ellis P J, Conrads T, Hille R, Kuhn P. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64A and 2.03 A. Structure, 2001,9:125-132
    24. Fan H X, Su C L, Wang Y, et al. Sedimentary arsenite oxidizing and arsenate-reducing bacteria associated with the geological arsenic groundwater contamination in Shanyin, Datong Basin, China. J Appl Microbiol,2008,105: 529-539.
    25. Francesconi K A, Kuehnelt D. Arsenic compounds in the environment. In: Frankenberger W T ed., Environmental Chemistry of Arsenic, New York:Marcel Dekker,2002.51-94
    26. Gihring T M, Druschel G K, Mccleskey R B, Hamers R J, Banfield J F. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol,2001,35:3857-3862
    27. Green H H. Description of a bacterium which oxidizes arsenite to arsenate, and of one which reduces arsenate to arsenite, isolated from a cattle-dipping tank. South African Journal of Science,1918,14:465-467
    28. Handley K M, Hery M, Lloyd J R. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Int J Syst Evol Microbiol,2009,59:886-892
    29. Harvey C F, Swartz C H, Badruzzaman A B M, Keon-Blute N, Yu W, Ali M A, Jay J, Beckie R, Niedan V, Brabander D, Oates P M, Ashfaque K.N, Islam S, Hemond H F, Ahmed M F. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 2002,298,1602
    30. Huang H C, He S Y, Bauer D W, Collmer A. The pseudomona syringae pv. syringae 61 hrpH product, an envelop protein required for elicitation of the hypersensitive Response in Plants. JBacteriol,1992,174:6878-6885.
    31. Ike M, Miyazaki T, Yamamoto N, Sei K, Soda S. Removal of arsenic from groundwater by arsenite-oxidizing bacteria. Water Sci Technol,2008,58:1095-1100
    32. Ilyaletdinov A N, Abdrashitova S A. Autotrophic oxidation of arsenic by a culture of Pseudomonas arsenitoxidans. Mikrobiologiya,1981,50:197-204
    33. Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D, and Lloyd J R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature,2004,430:68-71
    34. Jackson C R, Langner H W, Donahoe-Christiansen J, Inskeep W P, McDermott T R. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol,2001,3:532-42
    35. Jekel M R. Removal of arsenic in drinking water treatment. In Arsenic in Environment, part I:Cycling and Characterization. J O,1994,119-132
    36. Kashyap D R, Botero L M, Franck W L, Hassett D J, McDermott T R. Complex Regulation of Arsenite Oxidation in Agrobacterium tumefaciens. J Bacteriol,2006, 1081-1088
    37. Koechler S, Cleiss-Arnold J, Proux C, Sismeiro O, Dillies M A, Goulhen-Chollet F, Hommais F, Lievremont D, Arsene-Ploetze F, Coppee J Y, Bertin P N. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol,2010,10:53
    38. Kohler M, Hofmann K, Volsgen F. Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere,2001,42:425-429
    39. Kostal J, Yang R, Wu C H, Mulchandani A, Chen W. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol,2004,70: 4582-4587
    40. Krafft T, Macy J M. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem,1998,255:647-653
    41. Kwak Y H, Lee D S, Kim H B. Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol,2003,69:4390-4395
    42. Lievremont D, N'negue M A, Behra P, Lett M C. Biological. oxidation of arsenite:batch reactor experiments in presence of kutnahorite and chabazite. Chemosphere,2003,51:419-428
    43. Lin S, Shi Q, Nix F B, Styblo M, Beck M A, Herbin-Davis K M, Hall L L, Simeonsson J B, Thomas D J. A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. JBiol Chem,2002,277:10795-10803
    44. Lin Y F, Walmsley A R, Rosen B P. An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA,2006,103:15617-15622
    45. Liu Y G, Huang N. Efficient Amplification of Insert End Sequences from Bacterial Artificial Chromosome Clones by Thermal Asymmetric Interlaced PCR. Plant Molecular Biology Reporter,1998,16:175
    46. Lugtu R T, Choi S C, Oh Y S. Arsenite oxidation by a facultative chemolithotrophic bacterium SDB1 isolated from mine tailin g. J Microbiol,2009,47:686-692.
    47. Macur R E, Jackson C R, Botero L M, McDermott T R, Inskeep W P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol,2004,38:104-111
    48. Macy J M, Nunan K, Hagen K D, Dixon D R, Harbour P J, Cahill M, and Sly L I. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenaterespiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol,1996,46:1153-1157
    49. Macy J M, Santini J M. Unique modes of arsenate respirationby Chrysiogenes arsenatis and Desulfomicrobium sp. str. Ben-RB. In: Frankenberger W T ed., Environmental Chemistry of Arsenic, New York:Marcel Dekker,2002.297-312
    50. Mandal B K, Suzuki K T. Arsenic around the world: a review. Talanta,2002, 58:201-235.
    51. Martin P, DeMel S, Shi J, Rosen B P, Edwards B F P. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure,2001,9:1071-1108
    52. Marx C J, Lidstrom M E. Broad-Host-Range cre-lox System for Antibiotic Marker Recycling in Gram-Negative Bacteria. BioTechniques,2002,33:1062-1067
    53. Morrison D A. Transformation in Escherichia coli:cryogenic preservation of competent cells. JBacteriol,1977,132:349-351
    54. Mukhopadhyay R., Rosen B P, Phung L T, Silver S. Microbial arsenic:from geocycles to genes. FEMS Microbiol. Rev,2002,26:311-325.
    55. Muller D, Lievremont D, Simeonova D D, Hubert J C, Lett MC. Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol,2003, 185:135-141
    56. Muller D, Medigue C, Koechler S, Barbe V, Barakat M, Talla E, Bonnefoy V, Krin E, Arsene-Ploetze F, Carapito C, Chandler M, Cournoyer B, Cruveiller S, Dossat C, Duval S, Heymann M, Leize E, Lieutaud A, Lievremont D, Makita Y, Mangenot S, Nitschke W, Ortet P, Perdrial N, Schoepp B, Siguier P, Simeonova DD, Rouy Z, Segurens B, Turlin E, Vallenet D, Van Dorsselaer A, Weiss S, Weissenbach J, Lett MC, Danchin A, Bertin PN. A Tale of Two Oxidation States:Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics,2007,3:e53
    57. Nordstrom D K, Archer D G. Arsenic thermodynamic data and environmental geochemistry. In: Welch A H, Stollenwerk K G eds., Arsenic in Goundwater: Geochemistry and Occurrence, Boston:Kluwer Academic Publishers,2003.1-25
    58. Oremland R S, Hoeft S E, Santini J M, Bano N, Hollibaugh R A, Hollibaugh J T. Anaerobic oxidation of arsenite in Mono lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol,2002, 68:4795-4802
    59. Oremland R S, Newman D K, Kail B W, Stolz J F. Bacterial respiration of arsenate and its significance in the environment. In: Frankenberger W T ed., Environmental Chemistry of Arsenic, New York:Marcel Dekker,2002.273-296
    60. Oremland R S, Stolz J F. The ecology of arsenic. Science,2003,300:939-944
    61. Osborne F H, Ehrlich H L. Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol,1976,41:295-305
    62. Parales R E, Huang R, Yu C L, Parales JV, Lee F K, Lessner D J, Ivkovic-Jensen MM, Liu W, Friemann R, Ramaswamy S, Gibson DT. Purification, Characterization, and Crystallization of the Component of the Nitrobenzene and 2-nitrotoluene Dioxygenase Enzyme Systems. Appl Environ Microbiol,2005,71:3806-14
    63. Partik M, Lutz H D. Semiempirical band structure calculations on skutterudite-type compounds. Physics and Chemistry of Minerals,1999,27:41-46
    64. Phillips S E, Taylor M L. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol,1976,32:392-399
    65. Qin J, Rosen B P, Zhang Y, Wang G, Franke S, Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA,2006,103:2075-2080
    66. Ramirez-Solis A, Mukopadhyay R, Rosen B P, Stemmler T L. Experimental and theoretical characterization of arsenite in water: Insights into the coordination environment of As-O. Inorganic Chemistry,2004,43:2954-2959
    67. Salmassi T M, Venkateswaren K, Satomi M, Nealson K, Newman D K, Hering J G. Oxidation of arsenite by Agrobacterium albertimagni, AOL 15, sp nov., isolated from Hot Creek, California. Geomicrobiol J,2002,19:53-66
    68. Saltikov C W, Cifuentes A, Venkateswaran K, Newman D K. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ. Microbiol,2003, 69:2800-2809
    69. Santini J M, Kappler U, Ward S A, Honeychurch M J, vanden Hoven R N, Bernhardt PV. The NT-26 cytochrome c552 and its role in arsenite oxidation. Biochimica et Biophysica Acta,2007,1767:189-196
    70. Santini J M, Sly LI, R D. Schnagl R D, Macy J M. A new chemolithic arsenite-oxidizing bacterium from a gold mine:phylogenetic, physiological and preliminary biochemical studies. Appl Environ Microbiol,2000,66:92-97
    71. Santini, J M, vanden Hoven R N. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. JBacteriol,2004,186:1614-1619.
    72. Schoen A, Beck B, Sharma R, Dube E. Arsenic toxicity at low doses: epidemiological and mode of action considerations. Toxicology and Applied Pharmacology,2004,198:253-267
    73. Silver S, Phung L T, Rosen B P. Arsenic metabolism: resistance, reduction and oxidation. In: Frankenberger W T ed., Environmental Chemistry of Arsenic, New York:Marcel Dekker,2002.247-272
    74. Silver S, Phung L T. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol,1996,50:753-789
    75. Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol,2005,71:599-608.
    76. Smedley P 1, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem,2002,17:517-568.
    77. Stollenwerk K G. Geochemical processes controlling transport of arsenic in groundwater: A review of adsorption. In: Welch A H, Stollenwerk K G eds., Arsenic in Goundwater: Geochemistry and Occurrence, Boston:Kluwer Academic Publishers, 2003.67-100
    78. Sun G. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol, 2004,198:268-271
    79. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res,1997,25:4876-4882
    80. Turner AW. Bacterial oxidation of arsenite: I. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust. J. Biol. Sci.1954,7:452-478
    81. vanden Hoven, R. N, Santini J M. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14:the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Act,2004,1656:148-155
    82. Weeger W, Livremont D, Perret M, Lagarde F, Hubert J C, Leroy M, Lett M C. Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. BioMetals,1999,12:141-149
    83. Welch A H, Westjohn B D, Helsel D R, Wanty R B. Arsenic in ground water of the United States:occurrence and geochemistry. Ground Water,2000,38:589-604
    84. Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol,1990,28:1942-1946
    85. Wu J H, Rosen B P. Metalloregulated expression of the ars operon. J Biol Chem, 1993,268:52-58
    86. Zhang A, Feng H, Yang G, Pan X, Jiang X, Huang X, Dong X, Yang D, Xie Y, Peng L, Jun L, Hu C, Jian L, Wang X. Unventilated indoor coal-fired stoves in Guizhou province, China: cellular and genetic damage in villagers exposed to arsenic in food and air. Environ Health Perspect,2007,115:653-658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700