骨修复用形状记忆聚氨酯的细胞相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆聚氨酯(Shape memory polyurethane, SMPU)是一种能感知外界温度变化并发生形状改变的新型智能材料。因其良好的形状记忆功能而成为功能材料研究的热点之一,在生物医学领域尤其是微创手术中具有重要的应用价值。本文以丙交酯、对二氧环己酮、乙二醇、1,6-六亚甲基二异氰酸酯(HDI)、丁二胺为主要原料采用两步法合成了具有不同玻璃化转变温度的新型形状记忆聚氨酯。采用静态水接触角和吸水率测定综合评价了SMPU的亲/疏水性。采用体外细胞培养法,以SD大鼠颅骨成骨细胞为模型细胞,以聚(DL-乳酸)(PDLLA)为对照,将细胞与各SMPU膜复合培养,从细胞形态、细胞附着与铺展、细胞增殖与迁移、细胞分化与矿化能力等方面考查SMPU与成骨细胞的细胞相容性;同时,考查了SMPU拉伸-复形形变对细胞行为的影响,从而更综合地评价了SMPU与成骨细胞的细胞相容性,为动物体内实验和临床应用提供理论依据。主要工作和结论如下:
     (1)细胞培养及鉴定:采用组织块法培养了大鼠乳鼠颅骨成骨细胞,并利用差时贴壁法对其进行有效纯化。通过形态观察、ALP染色鉴定表明具有成骨细胞的典型生物学行为。细胞经过传代培养至第三代用于后续实验。
     (2)SMPU的合成及亲/疏水性测定:以丙交酯、对二氧环己酮和乙二醇为主要原料先合成大分子二醇(HO-P(LA-PDO)-OH),并以合成的大分子二醇作为软段,1,6-六亚甲基二异氰酸酯(HDI)和丁二胺作为硬段,通过调节软硬段比例,合成了“NCO/OH”比例分别为1.1、1.15和1.2的三种聚氨酯,即SMPU1、SMPU2和SMPU3。采用静态水接触角和吸水率综合评价了材料的亲/疏水性能。结果表明,随SMPU中硬段含量的增加,材料的亲水性增强;
     (3)SMPU膜对成骨细胞生长行为的影响:以SD大鼠颅骨成骨细胞为模型细胞,以PDLLA为对照,将成骨细胞与SMPU膜复合培养,考查了成骨细胞在不同SMPU膜上的形态、附着、铺展、增殖、迁移速率和净位移。结果表明,细胞在SMPU膜上的适应期长于PDLLA膜,其早期的细胞形态、黏附、铺展和增殖都略次于PDLLA膜。但随接种时间延长,细胞在SMPU上的增殖速率明显加快,且随硬段含量的增大,细胞的增殖速率和迁移速率也相应加快。
     (4)SMPU膜对成骨细胞分化、矿化的影响:采用BCA法、酶动力法、比色法分别测定了细胞与SMPU复合培养第7、10、13d的总蛋白质含量、碱性磷酸酶(ALP)活性和无机钙含量,RT-PCR法检测了成骨细胞I型胶原mRNA的表达情况。结果表明,细胞接种后10d内,SMPU膜上的细胞的总蛋白含量、ALP活性和无机钙的分泌量等功能指标均低于PDLLA组,但在接种后10-13d,SMPU膜上细胞的各指标增长速率均明显优于PDLLA组,且SMPU3>SMPU2>SMPU1。这表明SMPU材料比PDLLA具有更好的促进细胞分化和矿化的能力,但并未缩短细胞的生长分化周期。SMPU3膜上细胞的I型胶原表达量高于PDLLA和SMPU2、SMPU1,这进一步说明SMPU3具有优良的细胞相容性。
     (5)拉伸-复形形变对SMPU的细胞相容性的影响:以玻璃化转变温度在体温附近的SMPU1为研究对象,将SMPU1膜分别在Tg+15℃、Tg-15℃和Tg+15℃下拉伸,固定,复形,考察形状记忆形变对膜表面结构,继而对成骨细胞行为的影响。结果表明,SMPU1在形状记忆形变前后,其表面都存在明显的规则的相分离结构;形状记忆形变后的SMPU1表面形成了微沟槽结构,这种微沟槽结构促进了细胞的黏附与增殖,并使细胞形态表现出一定的取向性。
     综上所述,尽管SMPU上成骨细胞的早期黏附、铺展和增殖不及PDLLA,但长期接种后,SMPU具有更好的促进成骨细胞增殖、分化和矿化的能力。且随SMPU中硬段含量的增大,成骨细胞的增殖、分化和矿化的能力都逐渐增强。拉伸-复形过程可改变SMPU膜的表面形态,并在SMPU表面形成微沟槽结构。这种微沟槽结构有利于细胞的黏附和增殖,并使细胞表现出一定的取向性。这些结果都提示本研究所制备的形状记忆聚氨酯具有良好的成骨细胞相容性,为进一步的体内动物实验和SMPU在骨修复和再生中的应用提供了有用的信息。
Shape memory polyurethane (SMPU) is a novel intelligent material that is able to response to external temperature change and exhibit shape memory. It has received wide attentions in biomedical fields, especially in minimally invasive surgery because of its shape memory property. In this study, a series of novel SMPUs with different glass transition temperature (Tg) was synthesized through a two-step method with DL-lactide (LA), p-dioxanone (PDO), ethylene glycol (EG),hexamethylene diisocyanate (HDI) and ethylenediamine (BDA) as the main monomers. The hydrophilicity of SMPUs was characterized by water contact angle and water absorption. In addition, the cytocompatibility of SMPUs was studied by employing primary SD rat osteoblasts as the model cells and poly(DL-lactic acid) (PDLLA) as the control. The osteoblasts morphology, cell attachment and spreading, cell migration and proliferation, cell differentiation and mineralization ability were detected to indicate the cytocompatibility of SMPUs. Furthermore, the effects of stretching-shape recovering process of SMPU on ostoblasts behaviors were also examined. Thereby, a comprehensive investigation and understanding of the SMPUs cytocompatibility with osteoblasts were achieved. The main works and conclusions are included as follows:
     (1) Cells culture and identify: The primary SD rats osteoblasts were cultured from the calvaria of new-born rats by the tissue piece culture method. The osteoblasts were purified by the difference of the adhibition time with other type of cells and identified by the morphology, ALP staining. The third-generation osteoblasts were used in the subsequent experiments.
     (2) Synthesis and hydrophilicity determination of SMPUs: Two-step method was used to synthesize the SMPUs. In brief, LA, PDO and EG was firstly copolymerized to form a macrodiol HO-P(LA-PDO)-OH, then HO-P(LA-PDO)-OH as soft segments was extended by HDI and BDA as hard segments, resulting in the final SMPU copolymers. By adjusting the ratio of -NCO to–OH (NCO/OH=1.1, 1.15, 1.20), three SMPUs labeled as SMPU1, SMPU2 and SMPU3, respectively, were obtained. Water contact angle and water absorption showed the hydrophilicity of SMPUs increased with the increase of NCO/OH.
     (3) Effects of SMPUs on osteoblasts growth behaviors: The morphology, attachment, spreading, migration and proliferation of SD osteoblasts were examined on various SMPUs films with PDLLA as the control. The results indicated that the initial morphology, adhesion, spreading and proliferation of osteoblasts on all SMPUs films is no better than those on PDLLA film. Despite this, the cell doubling rate and migration rate on SMPUs elevated with the increasing culture time. Furthermore, with the increased amount of hard segments in SMPUs, both cell doubling rate and migration rate correspondingly increased, which is mostly possibly attributed to the improved hydrophilicity.
     (4) Effects of SMPUs on osteoblast differentiation and mineralization ability: Total protein content, alkaline phosphatase (ALP) activity, Ca secretion and collagen type I amount were measured by BCA method, enzyme dynamic method, chromometry and RT-PCR, repectively. The results showed that osteoblast on different SMPUs films all exhibited lower physiological functions compared to those on PDLLA films within the first 10 days after seeding. Thereafter, however, the osteoblasts on SMPUs demonstrated better differentiation and mineralization than those on PDLLA films, and SMPU3 > SMPU2 > SMPU1.
     (5) Effects of stretching-shape recovering process on cell adhesion and proliferation: SMPU1 exibited a Tg close to body temperature, thus it was suitable for bone repair biomaterials in term of its shape memory temperature and was chose as a model SMPU for studying the effects of stretching-shape recovering process on cell adhesion and proliferation. For this purpose, SMPU1 films were stretched by 200%, then fixed, and finally recovered to its original shape at Tg+15℃, Tg-15℃and Tg+15℃, respectively. The surface morphology and phase separation were probed by means of tapping mode AFM, and then the osteoblast adhesion and proliberation were examined before and after the stretching-shape recovering process. The AFM results showed that there were obvious and regular phase separation resulted from soft segments and hard segments in SMPU, and some groove-ridge architectures within a scale of micrometers were produced by the stretching-shape recovering process. These special micropatterned structures promoted osteoblasts adhesion and proliferation, and also resulted in partially oriented cell growth along the grooves.
     In sum, SMPUs stimulated osteoblast migration, proliferation, differentiation and mineralization after a longer period of seeding, although they exhibited reduced initial osteoblasts attachment, spreading and proliferation compared to PDLLA film. Furthermore, the increased amount of hard segments in SMPUs is beneficial to osteoblast growth, differentiation and mineralization. In addition, stretching-shape recovering process could change the surface morphology of SMPU films and contribute to enhanced cell adhesion and proliferation, and even produce oriented arrangement of osteoblasts. All above suggest the sound cytocompatibility of SMPUs with osteoblasts, providing valuable information for further in vivo experiments and applications of SMPUs in bone repair and regeneration.
引文
[1] Langer R, Vcanti JP. Tissue engineering [J]. Science, 1993, 260: 920-926.
    [2] Yang XF. Progress in the studies on the evaluation of biocompatibility of biomaterials [J]. Biomed Eng, 2001, 18 (1): 123.
    [3]文学军,王小祥.金属生物材料的微粗糙表面及其生物学效应(I)-金属生物材料的微粗糙表面[J].生物医学工程学杂志,1997,14(1):77-80.
    [4]高春华,黄新友.组织工程与生物材料[J].上海生物医学工程,2003,24(4):46-49.
    [5] Crane GM, Ishaug SL, Mikos AG, et al. Bone tissue engineeting [J]. Nature Medicine, 1995, 1(12): 1322-1324.
    [6] Chen BL,Wang DA, Feng LX.Application of polymer biomaterials in the tissue engineering [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(5): 1189-1191.
    [7]马春.世界生物医学材料2005年研究进展及趋势[Z].透视,2006:40-42.
    [8]黄鹏,张聪.骨组织工程用陶瓷材料[J].西南国防医药,2008,18(1):143-145.
    [9]段江洁,汪维伟.天然生物材料支架的应用[J].解剖科学进展,2009,15(2):246-249.
    [10]杨春蓉.高分子复合生物材料的研究进展[J].胶体与聚合物,2009,27(2):41-43.
    [11] Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering [J]. Biomed Mater Res A, 2006, 7: 196–205.
    [12] Chen QZ, Thompson ID, Boccaccini AR. Bioglass-derived glass–ceramic scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 26: 2121-2126.
    [13] Wu C, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties[J]. Biomaterials,2007,28:3171–3181.
    [14] Vitale BC, Miola M, Balagna C. 3D-glass–ceramic scaffolds with antibacterial properties for bone grafting [J]. Chem Eng J, 2008, 137: 129-136.
    [15] Wen L, Mohamed N, Rahaman. Bioactive borate glass scaffold for bone tissue engineering [J]. Non-Ctyst Solids, 2008, 354: 1690-1696.
    [16] Xiao YM, Li DX, Fan HS. Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Materials Letters, 2007, 61(1): 59-62.
    [17] Tang CY, Chen DZ, Yue TM. Water absorption and solubility of PHBHV/HA nanocomposites [J]. Comopos Sci Technol, 2008, 68: 1927-1934.
    [18] Aleksey N, Vasiliev, Eugene Z. Chemisorption of silane compounds on hydroxyapatites of various morphologies [J]. SCtipta Mater, 2008, 58: 1039-1042.
    [19] Gelinsky M, Welzel PB, Simon P. Porous three-dimensional scaffolds made of mineralisedcollagen:Preparation and proper-ties of a biomimetic nanocomposite material for tissue engineering of bone [J]. Chem Eng J, 2008, 137: 84-96.
    [20] Wu C, Chang J, Zhai W, et al. Porous akermanite scaffolds for bone tissue engineering:preparation,characterization,and in vitro studies [J]. Biomed Mater Res B Appl Biomater, 2006, 1: 47–55.
    [21]陈寰贝,李娜娜等.骨组织工程用生物材料的研究进展[J].化工与材料,2009,(3):23-25.
    [22]李彦生.一种钛合金颅骨修复体制备方法[P].CN200410074339,2007.9.10.
    [23]周崇林.适用于医用矫形的吸收性膜垫固定板[P].CN200420032618.8.
    [24]纪正春.内置式记忆合金加压髓内针[P].CN96241814.5,1996.11.06.
    [25]董寅生.骨修复用多孔材料[P].CN03113339.8,2005.3.23.
    [26] Claes L, Eckert-Hubner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing [J]. J Orthop Res, 2002, 20(5): 1099-1105.
    [27] Nomura S, Takano-Yamamoto T. Molecular events caused by mechanical stress in bone [J]. Matrix Biol, 2000, 19: 91-96.
    [28] Zhou C, Liu H. Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model [P]. CN101057979-A, 2008-E02887.
    [29] Khairoun I, Weiss P. Cement powder useful as bone cement for treating bony defect or fracture, comprises organic component consisting of biocompatible and bioresorbable polymers, and inorganic component consisting of calcium phosphate compounds [P]. EP1891984-A1, 2008-E99848.
    [30] Bagga CS, Clineff TD. Flowable material for repairing bone defects and restoring bone in trauma and orthopedic applications, comprises biocompatible polymer and inorganic composition comprising calcium phosphate having specified size [P]. US2005288795-A1, 2006-065910.
    [31]吕浩,郑启新.可注射性生物降解材料PPF修复骨缺损的研究进展[J].国际生物医学工程杂志,2007,20 (2):101-104.
    [32] Geert V, Lieven V. Evaluation of an injectable, photopolymerizable threedimensional scaffold based on D, L-lactide and e-caprolactone in a tibial goat model [J]. J Mater Sci: Mater Med, 2008, 19: 2761-2769.
    [33] Wei AL, Ye XF. Acomparative study on repairing bone defect with autograft and the composite of beta-tricalcium phosphate-hyaluronic acid-typeⅠcollagen-bone marrow strom alcells [J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(9):1779-1782.
    [34] Christopher SM. Implanted bone stimulator and prosthesis system and method of enhancing bone growth [P]. US6143035, 2000.11.7.
    [35] J. Jenny Yuan. Fabrication of biocompatible polymeric composites [P]. US6303697 B1, 2001. 10.16.
    [36] Chu TG, Wsrden SJ. Segmental Bone Regeneration Using a Load Bearing Biodegradable Carrier of Bone Morphogenetic Protein-2 [J]. Biomaterials, 2007, 28 (3): 459-467.
    [37] Waldren. Systems for pecutaneous bone and spinal stabilization, fixation and repair [P]. EP1011464, 2008.03.06.
    [38] Thopson. Repair of bone defects [P]. WO2007/029998, 2007.03.15.
    [39]连远步.一种形状记忆轴向加压环抱接骨板[P].CN03142154.7,2003.08.08.
    [40]张春才.镍钛形状记忆接骨器[P].CN99113873.2,1999.07.13.
    [41]马超.形状记忆材料的应用与发展[J].辽宁化工,2006,35(1):30-33.
    [42]黎兵,张海龙等.聚氨酯材料在生物领域上的研究进展及应用[J].PU技术,2008,(71):96-99.
    [43]李保强,胡巧玲等.组织工程用聚氨酯的研究进展[J].高分子通报,2003,(2):1-6.
    [44] Hayashi S, Shirai Y. Development of polymer elasticity memory material [J]. Mitsubishi Technical Bulletin, 1988, 184:213-219.
    [45]刘晓建,薛燕等.形状记忆聚氨酯与可降解生物材料的研究和应用[J].材料导报,2006,20(10):56-59.
    [46] Liu CH, Lu W.B.,J.S. Chang.Optimizing lipase production of Burkholderia sp. by response surface methodology [J].Process Biochem,2006,41:1940–1944.
    [47]李玉宝.生物医学材料[M].北京:化学工业出版社,2003:265-269.
    [48]愈耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000:12-24.
    [49]杨晓芳,奚廷裴.生物材料生物相容性评价研究进展[J].生物医学工程学杂志,2001,18(1):123-128.
    [50] Lefebvre CA. Biocompatibility of visible light-cured resin systems in prosthodontics [J]. Prosthet Dent, 2004, 71: 178-184.
    [51] Joo HS, Chang CS. Production of an oxidant and SDS-stable alkaline protease from an alkalophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive [J]. Enzyme Microb Technol, 2006, 38: 176–183.
    [52]罗奇志,陈建海,戴开金.生物可降解材料聚己内酯微球的细胞相容性体外研究[J].生物医学工程学杂志,2003,20(1):14-16.
    [53] Orchardson R, Gillam DG. Managing dentin hypersensitivity [J]. JADA, 2006, 137: 990-998.
    [54]王兆红,齐新生.骨组织工程中种子细胞的选择[J].中国骨伤,2003,16(5):318-320.
    [55]司徒镇强,吴军正.细胞培养[M].西安:世界图书出版西安公司,2007,67.
    [56]夏露,梁星等.改良植块法培养原代成骨细胞[J].南京医科大学学报,2008,28(9):1132-1134.
    [57]李先安,雷光华等.大鼠成骨细胞的体外培养和鉴定[J].湘南学院学报(医学版),2007,9(1):23-28.
    [58] Collignon H, Davicco MJ, Barlet JP. Isolation of cells from ovine fetal long bone and characterization of their osteoblastic activities during in vitro mineralization [J] . Arch Physiol Biochem, 1997, 105(2) : 158-166.
    [59] Marc Behl, Andreas Lendlein. Shape-Memory Polymers [J]. Materialstody, 2007, 10(4): 20-28.
    [60] Andreas Lendlein, Steffen Kelch. Shape-Memory Polymers [J]. Angew Chem Int Ed, 2002, 41: 2034-2057.
    [61] Mer Umut Ozkaynak, Cigdem Atalay-Oral, S.Birgül Tantekin-Ersolmaz, et al. Polyurethane films for wound dressing applications [J]. Macromol Symp, 2005, 228: 177-184.
    [62]王素军.新型药物控释材料——端羟基聚(丙交酯-co-对二氧环己酮)及其微球制备研究[D].重庆大学硕士学位论文,2008:48-56.
    [63] Kuo SM, Tsai SW, Huang LH, et al . Plasma modifiednylon meshes as supports for cell culturing [J]. Art Cell Blood Subs Immo Biotech, 1997, 25: 551.
    [64] Tziampazis E, Kohn J, et al. PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration [J]. Biomaterials, 2000, 21(5): 511-520.
    [65] Cai KY, Yao KD, Lin SB, et al. Poly (D, L-lactic acid)surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro [J]. Biomaterials, 2002, 23 (4): 1153.
    [66] Ingber D E. How cells(might)sense microgravity [J]. FASEB J, 1999, 13: S3-S15.
    [67] Heitmann V, Wegener J. Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes [J]. Anal Chem, 2007, 9: 3392–3400.
    [68]周红星,杨柳.骨组织工程中种子细胞和材料的黏附[J].第三军医大学学报,2003,25(2):173-175.
    [69] Ciapetti G, Cenni E, Pratelli L, et al. In vitro evaluation of cell/biomaterial interaction by MTT assay [J]. Biomaterials, 1993, 14: 359-364.
    [70] Iijima M, Huang YE, Devreotes P. Emporal and spatial regulation of chemotaxis [J]. Dev Cell, 2002, 3(4): 469-473.
    [71] András Czirók, Katalin Schlett, Emília Madarász. Exponential Distribution of LocomotionActivity in Cell Cultures [J]. Phys. Rev. Lett, 1998, 81: 3038-3041.
    [72] Moamman T. Rapid colorimetric assay for celluar growth and survial:appication to proliferation cytotoxicity assays [J]. J Immu Meth, 1983, 65(1): 55-63.
    [73] Cai K, Yao K, Cui Y, et al. Influence of different surface modification treatments on poly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro [J]. Biomaterials, 2002, 23(7): 1603-1611.
    [74] Bruining MJ, Blaauwgeers HG, Kuijer R, et al. Tailoring of new polymeric biomaterials for the repair of medium-sized corneal perforations [J]. Biomacromolecules, 2006, 1(3): 418-423.
    [75] Pablo A, Iglesias A, Andre L. Modeling the cell's guidance system [J]. Sci. STKE, 2002, 148: 1-12.
    [76] Small JV, Stradal T, Vignal E, et al. The lamellipodium:where motility begins [J]. Trends Cell Biol, 2002, 12: 112.
    [77] Critchley DR, Holt MR, Barry ST, et al. Integrin-mediated cell adhesion:The cytoskeletal connection [J]. Biochem Soc Symp, 1999, 65: 7.
    [78]牛旭锋,罗彦凤,潘君.成骨细胞在生物活性材料中黏附性能研究进展[J].生物医学工程杂志,2005,22(4):848-852.
    [79]邓霞.新型骨组织工程类细胞外基质复合生物材料的研究[D].四川大学博士学位论文,2006.
    [80] Atarashiya.Aluminum nitride/metal composites using ultra-fine aluminum particles and their application for joining [J]. J Mater Proc Technol, 1995,(54): 54.
    [81] Anselme K, Bigerelle M, Noel B, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses [J]. J Biomed Mater Res, 2000, 49: 155-166.
    [82] Langer R, Lüthen F, Beck U, et al. Cell-extracellular matrix interaction and physicochemical characteristics of titanium surfaces depend on the roughness of the material [J]. Biomolecular Engineering, 2002, 19: 255.
    [83] Kuo SM, Tsai SW, Huang LH, et al. PDLLA smamodifiednylon meshes as supports for cell culturing [J]. Art Cell Blood Subs Immo Biotech, 1997, 25: 551.
    [84]葛泉波,何淑兰等.生物材料与细胞相互作用及表面修饰[J].化学通报,2005,(1):43-48.
    [85] Griesser HJ, Chatelier RC, Gengenbach JR, et al. Biomaterials Science [J]. Polymer Edn, 1994, 5(6): 531-54.
    [86] Christophe LC, Dominique P, Marie-France C. ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays [J]. PNAS, 2003, 100: 6337.
    [87] Holmes KC. A molecular model for muscle contraction [J]. Acta Crystallogr A, 1998, 54: 789.
    [88] Palecek SP, Loftus JC, Ginsberg MH, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness [J]. Nature, 1997, 385: 537-540.
    [89] Ng CSH, Wan S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury [J]. Surg Today, 2006, 36: 205-214.
    [90] Pasupathy S, Homer-Vanniasinkam S. Ischaemic preconditioning protects against ischaemia/ reperfusion injury: emerging concepts [J]. Eur J Vasc Endovasc Surg, 2007, 26: 106-115.
    [91] Cohen MV, Yang XM, Downey JM. Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies [J]. Cardiovasc Res, 2007, 21: 231-239.
    [92] Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of osteoset, a calcium sulfate bone void filler [J]. Biomaterials, 2000, 21: 2413-2425.
    [93] Oxlund H, Mosekilde L, Ouoft G, et al. Reduced concentration of collagen reducible cross links in human trabecullar bone with respect to age and osteoporosis [J]. Bone, 1996, 19: 479- 484.
    [94] Garnero P, Sornay-rendu E, Hapuy MC, et al. Increased bone turnover in late post-menopausal women is a major determinant of osteoporosis [J]. J Bone Miner Res, 2006, 11: 337-349.
    [95] Bellows CG, Aubin JEM, Antosa ME. Mineralized bonenodules formed in vitro from enzymatically released ratcalvaria populations [J]. Calcif T issue Int, 1996, 38: 143-146.
    [96] Lind M, Deleuran B, Thestrup-Pedersen K, et al. Chemotaxis of human osteoblasts effects of osteotropic growth factors [J]. APMS, 2005, 103(2): 140-146.
    [97] Cook SD, Salkeld SL, Brinker MR, et al. Use of an osteoinductive biomaterial ( rhOP- 1) in heal large segmental long bone defects [J]. J Orauma, 2006, 12(6): 407- 412.
    [98]朱光明.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志,2005,22(5):1082-1084.
    [99]胡金莲,范浩军.智能热敏形状记忆聚合物及其应用[J].纺织学报,2005,26(6):123.
    [100] Binning G, Quate CF, Gerber C, et al. Atomic Force Microscope [J]. Physics Review Letter, 1986, (4): 930-933.
    [101] Karbach A, Drechsler D. Atomic Force Microscopy - Powerful Tool for Industrial Applications [J]. Surface and interface analysis, 1999, 27: 401-409.
    [102]马荣骏.原子力显微镜及其应用[J].矿冶工程,2005,25(4):62-65.
    [103]鲍俊杰,高明志,周海峰等.原子力显微镜在聚氨酯材料性能分析中的应用[J].弹性体,2006,16(3):53-57.
    [104]李立民,黄象安.应用原子力显微镜研究热塑性聚氨酯的微相分离[J].东华大学学报(自然科学版),2004,3(2):9-13.
    [105]李慧琴,金承钰,范文春.PC-b-PDMS-b-PCL复合环氧树脂的表面结构[J].物理化学学报,2009,25(6):1070-1074.
    [106]董炎明,毕丹霞,陈江溪.原子力显微镜在高分子领域的应用进展[J].商丘师范学院学报,2005,21(2):6-11.
    [107] Reifer D, Windeit R, Kumpf RJ, et al. AFM and TEM investigations of polypropylene/ polyur- ethane blends [J]. Thin Solid Films, 1995, 26 (4): 148-152.
    [108] Mclean S,Scott S, Bryan B. Tapping mode AFM studies using phase detection for resolution of nanophase in segmented polyurethane and other block copolymer [J]. Macromolecules, 1997, 30: 8314-8317.
    [109]杨宇润,陈永林,王得宁等.丁苯-丁腈基聚氨酯的形态与性能[J].高分子学报,2002,12 (6):795-800.
    [110]文庆珍,朱金华,王源升等.高阻尼性能聚氨酯的结构设计与研究[J].武汉理工大学学报,2005,27(3):9-11.
    [111] Chen BL, Wang DA, Feng LX. Topology of tissue engineering material surface for cell compatibility [J]. Journal of Clinical Rehabilitative Tissue Eng. Res, 2007, 11(8): 3653-3656.
    [112] Jennifer BR, Justin CR, et al. Oriented astroglial cell growth on micropatterned polystyrene substrates [J]. Biomaterials, 2004, 25: 2753-2767.
    [113]丁金勇.兔间充质干细胞诱导分化成骨细胞复合BG支架的组织相容性研究[D].第一军医大学硕士学位论文,2006.
    [114] Walboomers XF, Monaghan W, Curtis ASG. Attachment of fibroblasts on smooth and microgrooved polystyrene [J]. Biomed Mater Res, 1999, 46: 212-220.
    [115] Ying PQ, Jin G, Tao ZL. MC3T3-E1 Osteoblasts adhesion to micropatterned surfaces [J]. Biomed Eng, 2002, 19 (3): 370.
    [116] Dunn GA, Brown AF. Alignment of fibroblasts on grooved surfaces described by a simple geomet rict ransformation [J]. Cell Sci, 1986, 83: 313.
    [117]陈曦,秦廷武.表面改性及微沟槽技术对肌腱细胞生长与取向的影响[J].生物医学工程学杂志,2008,25(2):382-387.
    [118] Recknor JB, Recknor JC, Sakaguchi DS, et al. Oriented astroglial cell growth on micropatterned polystyrene subst rates [J]. Biomaterials, 2004, 25: 2754-2767.朱邦尚,录庆华,王宗光.不同的基质表面形貌对细胞生长行为的影响[J].细胞生物学杂志,2003,25(4):228-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700