用户名: 密码: 验证码:
农杆菌介导gagal基因转入大豆和大豆体细胞胚培养的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究用南方地区的大豆作为受体材料,进行子叶节培养再生植株的研究,探讨了本地区大豆子叶节器官发生以及农杆菌介导遗传转化的主要影响因素。选出3个南方大豆材料,以子叶节为受体材料,初步建立适合的大豆遗传转化体系,获得3株gaga1基因PCR检测阳性的转基因大豆植株。对大豆体细胞胚发生途径也进行了初步研究,筛选到几个较易诱导体细胞胚的基因型。
     本研究的主要结论如下:
     1、子叶节器官发生途径的再生频率在不同大豆基因型之间差异较大。筛选出10个再生性较好的基因型,其中M02的再生率最高,为80%;其次是常熟散子黄豆,为73%。
     2、不同大豆基因型对农杆菌菌株的易感性差异较大,筛选出南农18-6、南农88-1和常熟散子黄豆这3个易感性较好的基因型。
     3、通过试验农杆菌介导的转化获得5株转gaga1基因烟草植株,测试gaga1基因对烟草花器官发育的影响,发现烟草花器官产生变异,并且其T_1代遗传稳定。
     4、获得3株转gaga1基因PCR检测阳性的大豆植株,其中南农18-6有1株,转化率为0.20%;常熟散子黄豆有2株,转化率为0.24%。
     5、通过体细胞胚胎发生途径,筛选到肥西黑豆和云霄乌子豆2个体细胞胚诱导较好的基因型,体细胞胚胎发生率分别是19%和13%。初步建立适合南方大豆材料的体细胞胚诱导、增殖和成熟的组织培养体系。
Soybean is one of the recalcitrant crops for in vitro culture. In the present study, the cotyledonary node regeneration system was tested, and three genotypes planted in southern China with high regeneration frequency were found. The major factors influencing the regeneration and Agrobacterium-mediated transformation were investigated.
    A reliable transformation system through the cotyledonary node regeneration was set up for the tested genotypes after the studies. A gene, gagal, regulating flower development were introduced into soybean through getting three PCR-positive transformed plants.
    Soybean somatic embroygenesis has been studied, and two genotypes were found with high embryogenetic potential.
    The main results can be summarized as below:
    1. In the cotyledonary node regeneration approach, regeneration frequencies are very different among genotypes. We have found ten genotypes with high regeneration frequency. M02 is the highest among them whose frequency is up to 80% while Changshusanzihuangdou takes the second position with frequency 73%.
    2. The susceptibility to Agrobacterium is very different among the tested genotypes. In the experiment, three genotypes with good susceptibility to Agrobacterium were found.
    3. Checking the effect of the construct of gaga1, we gained five transgenic tobacco plants, and their tobacco floral structure changed slightly.
    4. Among the fifteen survival soybean plants after transfering to soil, three plants gave positive PCR reaction. The genotype of one of the plants is Nannong 18-6 and that of the other two is Changshusanzihuangdou.
    5. Somatic embroygenesis was induced successfully from immature cotyledon. Two genotypes, Feixiheidou and Yunxiaowuzidou, were found with high embryogenesis potential. The procedure to induce secondary somatic embryos, propogate somatic embyos, and regenerate plantlets from somatic embryos has been completed.
引文
1.陈乐玫.章力健.郭宝燕应用基因枪将外源基因导人小麦幼胚获可育的转基因植株.自然科学进展.1996,6:705~712
    2.邓向阳,卫志明,许智宏.大豆主栽品种体细胞胚胎发生的影响因素及再生植株.实验生物学报,2000,33(1):69~79.
    3.巩振辉.以PCR鉴定转基因植株的微量DNA提取方法.西北农业大学学报,1997,27(2):90~95
    4.谷安根,王立军.子叶节区理论研究进展,植物学通报,1997,14(3):30~39
    5.侯文胜,郭三堆,路明.利用转基因技术进行植物遗传改良,生物技术通报,2002.1
    6.侯学文,姜悦,郭勇.转基因植物中的标记基因.生物学通报,1997,32(1):19~21
    7.黄健秋,卫志明,许智宏.GUS基因在大豆未成熟子叶原生质体中的表达.植物学报,1992,34:26~30
    8.金危危,覃瑞,宋运淳.植物转基因位置依赖性沉默与位置效应.生物技术通讯,2001(3):9~13.
    9.贾士荣.转基因植物食品中标记基冈的安全性评价.中国农业科学,1997,30(2):1~15
    10.雷勃钧,李希臣,卢翠华,等.外源野生大豆DNA导入栽培大豆及RAPD分子验证.中国科学(B辑),1994,24:597~602
    11.雷勃钧,卢翠华,钱华.导入外源总DNA获得优质高蛋白和双高大豆新品系.大豆科学,1995,14:203~208
    12.李卫等.根癌农杆菌介导遗传转化研究的若干新进展,科学通报,2000,4(8):798~806
    13.刘北东,朱延明,李海燕等.大豆子叶节再生影响因素的研究.大豆科学,2002,21:88~92
    14.刘德璞,袁鹰等.导入外源DNA获得抗SMV大豆品系.大豆科学,1997,16(4):277~282
    15.刘广阳,杨兴勇,宋丽鹃等.外源DNA导入创造大豆高蛋白种质资源的研究.中国油料,1996,18(3):20~23
    16.刘金华,王丕武等,大豆子叶节丛生芽的诱导,吉林农业大学学报,2001,23(4):15~17
    17.刘莉,赵桂兰,大豆子叶节组织培养再生研究,吉林农业科学,1999,24(5):16~19
    18.陆文梁.太行花性器官发育的研究——两性花中雌性性器官发育对温度的不同要求.植物学报,1996,38(3):174~179
    19.罗希明,赵桂兰,简玉瑜.大豆原生质体的植株再生.植物学报,1990,32:616~621
    20.吕慧能,盖钧镒,马育华等.不同激素条件下大豆原生质体培养和植株再生.作物学报,1993,19(4):328~333
    21.吕慧能,盖钧镒,马育华等.农杆菌介导的大豆子叶节基因导入和再生植株,大豆科学,1993,12(4):330~334
    22.欧阳波,李汉霞,张俊红等.番茄下胚轴转化获得转基因植株.华中农业大学学
    
    报,2002;21(3):206~209
    23.彭玉华.以PCR为目的的大豆叶片DNA快速分离方法.中国油料,1996,18(4):34~36
    24.曲桂芹,张贤泽,霍俊伟.影响大豆体细胞胚诱导因素的研究.植物研究,2001,21:210~215
    25.邵莉,李毅,杨美珠等.查尔酮合成酶基因对转基因植物花色和育性的影响.植物学报,1996,38(7):517~524
    26.孙乃恩,孙东旭,朱德煦.分子遗传学.南京:南京大学出版社,1999
    27.孙英.转gagal基因大豆的培育及初步鉴定.南京农业大学硕士论文,2003
    28.田长恩,王正询,陈韬.抗菌肽基因导入番茄及转基因植株的鉴定.遗传,2000,22(2):86~89.
    29.王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998.
    30.王连铮,尹光初,罗教芬,等.大豆致瘤及基因转移研究,中国科学(B辑),1984,2:137~141
    31.王萍,吴颖等,抗生素对大豆愈伤组织的诱导和生长的影响,遗传,2001,23(4):321~324
    32.王萍等,影响大豆子叶节丛生芽形成的诱导因子研究,吉林农业科学,2001,26(6):20~23
    33.王升吉.基因转化技术在大豆育种上的应用现状.山东农业科学,2002,2
    34.王自章等,T-DNA转移研究进展,生命科学研究,第3期(专辑),2001.11
    35.魏国兰.非洲菊花器官发育调节基因gagal转化大豆的初步研究.南京农业大学硕士论文,2001
    36.吴乃虎.基因工程原理(上册).北京:科学出版社,1998.
    37.吴乃虎.基因工程原理(下册).北京:科学出版社,2001.
    38.武东亮,崔洪志,郭三堆.融合杀虫基因植物表达载体的构建及转基因烟草的获得.中国农业科学,2001;34(5):491~495
    39.许守民,苗以农.花生DNA导入大豆后代蛋白组分及氨基酸的变异性.大豆科学,1995,4
    40.徐香玲,邹联沛等.向大豆导入几丁质酶基因初步研究.大豆科学,1999,18(2):101~107
    41.叶兴国,王连铮.大豆花药培养研究进展.大豆科学,1995,14:350~354
    42.于静鹃,国凤利,赵德刚等.矮牵牛花同源异型基因fbp2的克隆及其对烟草花形态的影响.植物学报,1999,41(1):45~50
    43.喻德跃,魏国兰,孙英,Teemu H Teeri.花器官发育调节基因gagal转化大豆的初步研究.大豆科学,2003,22(2):79~82
    44.岳绍先,翟文学.抗Atrazine基因导入黑龙江大豆品种及其表达和遗传.中国农业科学,1996,29(1):78~83.
    45.张国栋,赵长山.将外源DNA注入幼荚实现大豆遗传转化.大豆科学,1994,13(3):268~273.
    46.张劲松,陈受宜.烟草花器官实体基因的部分序列及其表达.科学通报,1998,43(7):748~754
    47.张贤泽,小松田隆夫.大豆原生质体经体细胞胚再生植株.中国科学(B辑),1993,23:154~158
    48.张毅等.根癌农杆菌介导β-1,4半乳糖苷转移酶基因转化大豆及其转基因植株再生,药物生物技术,2001,8(3):131~134
    
    
    49.章冰,卫志明.植物遗传转化中存在的问题及对策,植物生理学通讯,2000,6
    50.赵存友,袁正强等.转双抗虫基因烟草的研究.生物工程学报,2001,17(3):273~277.
    51.赵桂兰,刘艳芝,尹爱平等.大豆花药培养中胚状体萌发的研究.科学通报,1998,43:1512~1516
    52.赵桂兰,刘艳芝等.影响农杆菌介导的大豆基因转化因素的研究,大豆科学,2001,5
    53.周思君,李希臣,大豆农杆菌介导转化系统的优化研究,东北农业大学学报,2001.32(4):313~319,
    54.周思君,尹光初等.从大豆幼胚诱导胚胎发生再生植株.大豆科学,1998,8(1):39~45.
    55.朱玉贤,李毅.现代分子生物学.北京:高等教育出版社,1997
    56.朱徵.植物组织培养中的胚状体.遗传学报,1978,5(1):79~88.
    57. Bailey M A, Boerma H R, Parrott W A. Inheritance of tumor formation in response to Agrobacterium tumefaciens in soybean. Crop Sci, 1994,34:514~519.
    58. Barwale U B, Kerns H R. Plant regeneration form callus cultures of several soybean genotype via embryogenesis and organogenesis. Planta, 1986,167:473~481
    59. Bowman J L, Sakai H, Jack T, et al. SEPERMAN, a regulator of floral homeotie genes in Arabidopsis. Development, 1992,114:599~615
    60. Byrne, MC. Strain and cultivar specificity in the Agrobacterium soybean interaction. Plant Cell Tissue Organ Cult, 1987,8(1):3~15
    61. Carpenter R, Coen E S. Floral homeotie mutation is produced by transpose-mutagenesis in Autrirrhinum majus. Genes and Dev, 1990, 4: 1483~1493
    62. Cheng, T-Y,H.Saka and T.H.Voqiu-Dinh. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci.Lett, 1980,19:91~99
    63. Chen, L. Y. Dan, J.M. Tyler and N.A. Reichert. Transgenic soybean generated from hypoeotyl explants. In Vitro Cell Dev Bioi.1999, 35:61
    64. Christianson.M.L,D.A.Warnick.and P.S. Carlson. A morphogenetically competent soybean suspension culture. Science, 1983,222:632~634
    65. Christou P, W F Swain, N S Yang, et al. Inheritance and expression of foreign genes in transgenic soybean plants. Proe Nati Acad Sci, USA,1989,86:7500~7504.
    66. Clemente T.E., LaVallee B.J., Howe A.R., et al. Progeny analysis of glyphosate-selected transgenie soybeans derived from Agrobacterium-mediated transformation. Crop Sci, 2000, 40:797~803
    67. Coen E S. Carpenter R. The metamorphosis of flowers. Plant Cell, 1993, 5:1175~1181
    68. D H Simmonds, P A Donaldson. Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Reports, 2000, 19:485~490
    69. Dan.Y. and N.A.Reichert, Organogenic regeneration of soybean from hypocotyl explants. In Vitro
    
    Cell. Dev. Biol. Plant, 1998,34:12~21
    70. Delzer B W, Somers D A. Agrobacterium tumefaciens susceptibility and plant regeneration of 10 soybean genotypes in maturity groups 00 to Ⅱ. Crop Science,1990,30:320~322
    71. Dinkins R D, Reddy M, S S Meurer, et al. Increased sulfur amino acids in soybean plants overexpressing the maize 15kDa zein protein. In Vitro Cellular Developmental Biology Plant, 2001, 37:742~747.
    72. Dhir SK. Cotransformation freguencies of foreign genes in soybean and cell cultures. Plant Cell Rep,1991,10:97~101
    73. Donaldson P H, Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Rep, 2000,19:478~484.
    74. Finer J J, Nagasawa A. Development of an embryogenic suspension culture of soybean[Glycine max (L.) Merrill]. Plant Cell Tissue Organ Culture, 1988,15: 125~136
    75. Finer J J. Use of Agrobacterium expressing green flu-orescent protein to evaluate colonization of sonication-assisted Agrobacteriwn-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol, 2000, 30:406~410.
    76. Gaiser J C, Robinson, Berrs K, Gasser C S. The Arabidopsis SUPERMAN gene mediates asymmetric growth of the outer integument of ovules. Plant Cell, 1995,7:333~345
    77. Giddings, G. et al. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol, 2000, 18:1151~1155.
    78. Hansen G. and Chilton M.D. "Agrolistic" transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad. Sci. USA, 1996,93:14978~14983
    79. Hazel C B, Anis M,et al. Growth characteristic and transformability of soybean embrygenic cultures. Plant Cell Rep,1998,17:765~772
    80. Herrera S L, Estrella L, et al. A light-induced and chloroplast-associated expression ofa chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature, 1984, 310:115~120
    81. Hiei Y, Ohta S, Komari T. Effectienct transformation of rice (oryzasativa L.) mediated by Agrobacteriwn and sequence analysis of the boundaries of the T-DNA. Plant Journal, 1994;6:271~281
    82. Hincbee M A, Newell C A,et al. Production of transgenic soybean plants using Agrobactrium-mediated gene transfer. Bio/Technology, 1988,6:915~922
    83. Horsch R B, Fraley R T, et al. Inheritance of functional foreign genes in plants. Science, 1984, 223:496~498
    84. Horsh R B, Fry J E, Hoffman N J, et al. A simple and general method for transferrimg genes into
    
    plants. Science, 1985, 227:1229~1231
    85. Ishida Y.,Saito H. and Ohta S. High efficient transformation of maize mediated by Agrobacterium tumefaciens. Nature Biotech, 1996,14(7):745~751
    86. Kang S.G, Hannapel D.J. Nucleotide sequences of novel potato (Solanwn tuberosum L.)MADS-box cDNAs and their expression in vegetative organs. Gene, 1995, 166:329~330
    87. Kim J.C.E. LaMotte and E Hack. Plant regeneration in vitro from primary leaf nodes of soybean Glycine max seedlings. Plant Physiol, 1990,136:664~669
    88. Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNA for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J, 1996,10: 165~174.
    89. Kotilainen M,et al. GRCD1,an AGL2—like MADS box gene,participates in the C function during stamen development in Gerbera hybrida. Plant Cell,2000,12:1893~1902
    90. Lazzeri P A,Hildebrand D F, Collins G B.A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol Bio Rep,1985,3:160~167.
    91. Lippmann B. Induction of somatic embryos in cotyledonary tissue of soybean. Plant Cell Rep,1984,3:215~218
    92. Ma H,Yanofsky M F, Meyerowitz E M. AGL1-AGL6,an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev, 1991,5:484~195
    93. Mandel, M .A,Gustafson-Brown,Savidge, B.and Yanofsky, M.F.Molecular characterization of the Arabidopsis floral homeotic gene apetalal. Nature, 1992(360):273~277
    94. Mauro A O, Pfeiffer T W, et al. Inheritance of soybean susceptibility to Agrobacterium tumefaciens and its relationship to transformation. Crop Science, 1995,35:1152~1156
    95. McCabe, D E, W F Swain, et al. Stable transformation of soybean [Glycine max (L.) Merrill] by particle acceleration. Bio/technology. 1988:923~926.
    96. Meurer P A, Dinkins R D. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep,1998,18:180~186
    97. Owens, Cress D E .Genotpic variability of soybean response to Agrobacterium tumefaciens strains harboring Ti or Ri plasmids. Plant Physiol, 1985,77:87~94.
    98. P M Oihoft ,D A Somers. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep, 2001, 20:706~711
    99. P M Olhoft, K Lin,et al.The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep, 2001,20:731~737
    100. Parrott W A, Hoffman L M, et al. Recovery of primary transformants of soybean. Plant Cell
    
    Rep,1989,7:615~617
    101. Parrott W A, Willams,et al. Effect of genotype on somatic embryogenesis form immature cotyledons of soybean. Plant Cell Tissue Organ Culture, 1989,16:15~21
    102. Paula M Olhoft, Lex E Flagel, Christopher M. Donovan, David A Somers. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Pianta ,2003, 216: 723~735
    103. Phillips.G.C, G.B.Collins, Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell Tiss Organ Cult. 1981, 1:123~129
    104. Ponappa T, Finer J J. Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep, 1999,19:6~12
    105. Santarém E R, J J Finer. Transformation of soybean[Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol Plant, 1999,35:451~455.
    106. Sato S, Newell C, Kolacz K. Stable transfomation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep,1993,12:408~413
    107. Stewart C N, W A Parrott. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol. 1996,112:121~129.
    108. Trick H N and J J Finer. Sonication-assisted Agrobacterium-mediated transformation of soybean (Glycine max [L.] Merrill) embryogenic suspension culture tissue.. Plant Cell Rep,1998,17: 482~488
    109. Trick H N,et al. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons:optimization of transient expression. Plant Cell Rep, 1998, 17:752~759
    110. Wright.M.S, D.V.Ward, M.A.Hinchee, et al. Regeneration of soybean (Glycine max [L.] Merrill) from cultured primary leaf tissue. Plant Cell Rep, 1988,7:348~351
    111. Wei Zhiming, Xu Zhihong. Plant regeneration form protoplast ofsoybean(Glycine max [L.] Merrill). Plant Cell Rep, 1987,6:83~89
    112. Weigel D, Meyerowitz E M. The ABCs of floral hometic genes. Cell, 1994,78:203~209
    113. Y Kaneda, Y Tabei, S Nishimura, et al. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans(Glycine max [L.] Merrill). Plant Cell Rep ,1997, 17:8~12
    114. Yang N, Christou P. Cell types specific expression ofa CaMV35S-GUS gene in transgenic soybean plants. Devel Genet, 1990,11:289~293.
    
    
    115. Yin.G.C, Z.Y.Zhu, Z Xu, et al. Studies on induction of pollen plant and their androgenesis in Glycine max [L.] Merrill. Soybean Sci, 1982,1:69~76
    116. Yu DY, Kotilainen M, Pollanen E,Mehto M,Elomma P, Helariutta Y, Albert VA & Teed TH.. Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant Journal, 1999,17(1): 51~62
    117. Zhang.Z, A.Xing, P.Staswick. and T.E.Clemente. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Organ Cult. 1999,56:37~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700