基于活动轮廓模型的人脑MRI结构像多层次分割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脑MRI结构像(anatomical MRI, aMRI)能够以较高的空间分辩力反映脑部组织的解剖结构。在放射学与神经影像学研究领域,人脑aMRI数据分析的关键问题是如何精确地检测与测量各部分脑组织,可以归结为医学影像的多目标分割问题。该问题的解决对于计算机辅助诊断、组织容积定量分析、异常组织定位、解剖结构分析、外科手术规划与手术导航等具有重要的学术意义和临床应用价值。本文主要内容是:基于活动轮廓模型,提出了五种具有创新意义的塔式结构的多层次分割方法,解决了人脑二维aMRI、多信道融合的矢量量化aMRI以及三维aMRI数据的多目标分割问题。
     第一,针对二维aMRI数据,给出了构成塔式结构多目标分割的关键技术——背景填充技术,将该技术与活动轮廓模型中的Chan-Vese(C-V)模型相结合,提出了塔式多相水平集分割算法(简称:塔式多相C-V模型),解决了C-V模型在多目标分割以及复杂连接情况表示上的局限,适合分割目标中含有子目标的多目标图像。
     第二,为了减少塔式多相C-V模型得到的边缘与手工分割真值间的误差问题,提高aMRI分割的准确度,据可调填充色提出了背景填充技术的广义形式,并将该技术与C-V模型相结合,进一步提出了基于广义背景填充技术的塔式多相C-V模型,实现子目标边缘在一定范围内可调,即在少量人工干预实现人机交互式aMRI的多目标分割。
     第三,为解决aMRI中一些组织因驰豫时间较为接近而难以分离的问题,针对矢量量化图像提出了矢量量化塔式多相C-V模型。能够利用MRI不同的扫描序列以及不同影像仪器对于组织的不同敏感性,实现aMRI中驰豫时间较为接近的组织的有效分离。
     第四,利用水平集函数能够隐含表示轮廓曲面的特点,提出了基于体素的三维塔式多相C-V模型,实现三维体数据的多层次分割。
     第五,基于并行多相C-V模型和塔式多相C-V模型,提出了具有复杂分割树形结构的塔式并行多相C-V模型,能够结合两种多相分割模型的优点,实现复杂塔式多层次分割。
     实验结果表明,本文算法可以实现二维aMRI、矢量量化结构像以及三维aMRI的较精确的多目标分割,并且可以通过调节填充色实现少量人工干预下的交互式分割来进一步减小客观分割结果与主观分割结果间的误差,适合目标中含有子目标的医学影像的多目标分割要求。
The anatomical MRI (aMRI) is able to represent the structure of brain with high accuracy and has become the main medical image for the analysis of human brain. In radiology and neurology, a key problem of aMRI of the brain is how to detect and to measure tissues to represent the anatomy structures of the brain which can be seen as a basic problem of multi-object segmentation for medical images. It is most important for computer-aided diagnosis, quantitative measurement of tissue volumes, localizing foci, anatomy analysis, surgical planning and for surgical navigation. In this thesis, five pyramidal multi-layer frameworks for two-dimensional (2-D) aMRI, vector-valued aMRI and for three-dimensional (3-D) aMRI segmentation were proposed based on the active contour model to deal with the multi-object segmentation of the aMRI.
     Firstly, a pyramidal multiphase level set framework (or named as pyramidal multiphase C-V model) was developed for multi-object segmentation of 2-D anatomical MRI by combining a key technique, named as the technique of painting background with the Chan-Vese model which was able to deal with the limitation of the C-V model in multi-object segmentation and in multiple junction representation and was especially suitable for images with multiple sub-objects.
     Secondly, to reduce the difference between the results obtain by the proposed pyramidal model and manual segmentation results, a generalized technique of painting background was proposed by using a variable painting color. An improved pyramidal model using the generalized technique of painting background and the C-V model was proposed which was able to adjust the boundaries of sub-objects and can be used for interactive segmentation of the aMRI.
     Thirdly, to partition the tissues with close relaxation time, a vector-valued pyramidal multiphase C-V model using the different sensitivities of different kinds of medical images or different MR images obtained by different serials was developed.
     Fourthly, a voxel-based pyramidal model was developed for 3-D aMRI segmentation by extending the level set function to three dimensional.
     Fifthly, by combining the simultaneous multiphase C-V model and the pyramidal model, a pyramidal simultaneous multiphase C-V model was proposed which was able to partition a given image according to a complex segmentation tree.
     Experimental results show that the proposed algorithms are able to detect multi-objects with high accuracy in 2-D aMRI, vector-valued aMRI and 3-D aMRI. Also, they can reduce the difference between the obtained segmentation results and the mammul segmentation results by using interactive segmentation and are suitable for multi-object segmentation of medical images whose object regions contain sub-objects.
引文
[1]Osher S, Sethian J. A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi Formulation. Journal of Computation Physics, 1988, 79(1): 12~49
    [2]梅向明,黄敬之,微分几何,高等教育出版社,2003
    [3]Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(1): 577~685
    [4]Chan T, Vese L. Active Contours Without Edges. IEEE Trans on Image Processing, 2001, 10(2):266-277
    [5]M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 1994, 119: 146–159
    [6] Heinemann E G. Sim ultaneous brightness induc tion as a function of inducing and test-field luminances. Journal of Experimental Psychology, 1955, 50 (2) : 89 - 96.
    [7]L. Rudin, S. Osher, and E. Fatemi,“Nonlinear total variation based noise removal algorithms,”Phys. D, 1992, 60: 259–268
    [8]Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag New York, Inc, New York, U.S.A., 2003
    [9]O. Faugeras, Mathematical problems in image processing, Springer-Verlag New York, Inc, New York, U.S.A., 2004
    [10]J. M. Morel and S. Solimini. Variational methods in image segmentation. Birkhauser Boston Inc., Boston, MA, 1995
    [11]G. Congedo and I. Tamanini. On the existence of solution to a problem in multidimensional segmentation. Ann. Inst. Henri Poincar′e Anal. Non Lin′eaire, 1991, 8(2):175–195
    [12]A. Brook, R. Kimmel, N. A. Sochen, Variational restoration and edge detection for color images, Journal of Mathematical Imaging and Vision 2003, 18:247-268
    [13]G. Dal Maso. An introduction toΓ-convergence. Birkh¨auser Boston Inc., Boston, MA, 1993
    [14]Kass M, et al. Snake: active contour model. International Journal Of Computer Vision, 1987, 1(1): 321-31
    [15]戴嘉尊,偏微分方程差分解法,航空专业教材编审组,1986
    [16]S. Osher, N. Paragios, Geometric level set methods in imaging, vision,and graphics, Springer-Verlag New York, Inc, New York, U.S.A., 2003
    [17]C. Xu, J. L. Prince, Snakes, shapes, and gradient vector fow, IEEE Trans. on Image Process. 1998, 359-369
    [18]Cohen, I, Cohen LD, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Trans. Pattern Anal. Machine Intell, 1993, 15: 1131-1147
    [19]Purcell Em, Torrey HC and Pound RV. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev. 1946, 69:37-38
    [20]Bloch F, Hassen WW and Packard M. Nuclear induction, Phys. Rev. 1946, 69:12
    [21]Lauterbur PC. Image Formation by Induction Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature, 1973, 242:190-191
    [22]高元桂,蔡幼铨,蔡祖龙,磁共振成像诊断学,人民军医出版社,2005年
    [23]田捷,包尚联,周全明,医学影像处理与分析,电子工业出版社,2003年
    [24]Damadian R. Tumro detection by nuclear magnetic resonance. Science 1971, 171: 1151-1153
    [25]Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin oxyhemoglobin and carbon monoxyhemoglobin. Proc. Nat1. Acad. Sci. USA, 1936, 22:210-216
    [26]Friston K. J. Mechelli A. Turner R., Nonlinear responses in fMRI: The balloon model, volterra kernels, and other hemodynamics, NeuroImage. 2000, 12: 466-477.
    [27]Friston K. J. Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage. 2002, 16: 513-530
    [28]Udupa J., LeBlanc V., Schmidt H., et al., A methodology for evaluating image segmentation algorithm, SPIE Conference on Medical Imaging, San Diego CA, USA, pp. 266-277, 2002
    [29]The 20 normal MR brain data sets and their manual segmentations were provided by the Center for Morphometric Analysis at Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.
    [30]J. Talairach, and P. Tournoux, Co-planar stereotaxic atlas of the human brain, New York: Thieme, 1988
    [31]D. Marr and E. Hildreth. Theory of Edge Detection. Proceedings of the Royal Society London, 207:187-217, 1980
    [32]邱树华,韩玉清,严振国,正常人体解剖学,上海科学技术出版社,1986年
    [33]王世杰,功能磁共振数据处理和分析方法研究,东南大学博士论文,2003年
    [34]Fasquel JB, Agnus V, Moreau J et al, An interactive medical image segmentation system based on the optimal management of regions of interest using topological medical knowledge, Compt. Methods and Programs in Biomedicne, 2006, 82: 216-230
    [35]Bruin PW, Dercksen VJ, Post FH, et al, Interactive 3D segmentation using connected orthogonal contours, Compt. In Biology and Medicine, 2005, 35: 329-345
    [36]Yoo SS, Lee CU, Choi BG, et al, Interactive 3-dimensional segmentation of MRI data in personal computer environment, J. Neuroscience methods, 2001, 112: 75-82
    [37]Barrett WA, Mortensen EN, Interactive live-wire boundary extraction, Med. Image Analysis, 1996, 1(4): 311-341
    [38]Armstrong CJ, Price BL, Barrett WA, Interactive segmentation of image volumes with live surface, 2007, 31: 212-229
    [39]Mortensen EN, Barrett WA, Interactive segmentation with intelligent scissors, Graphical models and image processing, 1998, 60: 349-384
    [40]Neumann A, Lorenz C, Statistical shape model based segmentation of medical images, Compt. Medical imaging graphics, 1998, 22: 133-143
    [41]Paragios N and Deriche R, Geodesic active regions for motion estimation and tracking, IEEE international conference in Compt. Vision, 1999, 668-674
    [42]Leventon M, Grimson E, Faugeras O, Level set based segmentation with intensity and curvature priors, IEEE Math. Methods in Biomedical Image Analysis, 2000, 4-11
    [43]Han X, Pham DL, Tosun D, et al, Cortical reconstruction using implicit surface evolution, Neuroimage, 2004, 23(3): 977-1012
    [44]MacDonald D, Kabani N, Avis D, et al, Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI, NeuroImage, 2000, 12: 340-356
    [45]Zeng X, Staib L, Schultz R, et al, Segmentation and measurement of the cortex from 3D MR images using coupled sufaces propagation, IEEE Trans. on Medical Imaging, 1999, 18: 100-111
    [46]Xu C, Pham D, Rettmann D, et al, Reconstruction of the hunman cerebral cortex from Magnetic Resonance Images, IEEE Trans. on Medical Imaging, 1999, 18: 467-480
    [47]Cohen I, Cohen LD, Ayache N, Using deformable surfaces to segment 3D images and infer differential structures, CVGIP: Image Understanding, 1992, 56(2): 242-263
    [48]Cohen I, Ayache N, Sulger P, Tracking points on deformable objects using curvature information. Lectures Notes in Compt. Sic., 1992, 458-466
    [49]Montagnat J, Delingette H, Ayache N, A review of deformable surfaces: topology, geometry and deformation, Image and Vision Compt. 2001, 19: 1023-1040
    [50]Xu C, Prince J, Generalized gradient vector ?ow external forces for active contours, Signal Processing, 1998, 71:131-139,
    [51]Caselles V, Catte F, Coll T, et al, Ageometric model for active contours in image processing. Numerische Mathematik; 1993, 1-31
    [52]R Malladi, J A Sethian, and B C Vemuri. Evolutionary fronts for topology-independent shape modeling and recovery. In European Conference on Computer Vision (Eccv), 1994, 3-13
    [53]V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. International Journal of Computer Vision; Pages 61-79, February 1997.
    [54]D. Mumford. Bayesian rationale for the variational formulation. In Geometry-Driven Diffusion in Computer Vision, B.M.ter Haar Bomeny (Ed.), Kluwer Academic Publishers, 1994, 135-146.
    [55]L. Vese, T. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Mode. International Journal of Computer Vision, 2002, 50(3), 271–293
    [56]T. Chan and X.-C. Tai. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. UCLA, Math. Depart., CAM-report 03-15, 2003
    [57]M. Rousson and R. Deriche. A variational framework for active and adaptive segmentation of vector valued images. In Proc. IEEE Workshop on Motion and Video Computing, Orlando, Florida, Dec. 2002
    [58]A. Yezzi, A. Tsai, and A. Willsky,“A statistical approach to snakes for bimodal and trimodal imagery,”in Proc. Int. Conf. Computer Vision, 1999
    [59]T. Chan, B. Sandberg, L. Vese. Active Contours without Edges for Vector-Valued Images. Journal of Visual Communication and Image Representation 2002, 11: 130–141
    [60]P. Comon, Independent component analysis, A new concept? Signal Processing, 1994, 36:287-314.
    [61]Chan T, Vese L, Active contour and segmentation models using geometric PDE’s for medical imaging, in“Geometric Methods in Biomedical”, R. Malladi (editor), Mathematics and Visualization, Springer March 2002.
    [62]Hounsfield GN. Computerized transverse axial scanning (tomography). Description of system [J]. Br J Radiol, 1973, 46:1016-1022.
    [63]Wink, A. M., Wavelet-based Methods for the Analysis of fMRI Time Series, Thesis Rijksuniversiteit Groningen. -With index, ref., Printpartners Ipskamp.
    [64]P. Blomgren and T.F. Chan,“Color TV: Total variation methods for restoration of vector-valued images,”IEEE Trans. Image Processing, 1998. 7(3) 304–309
    [65]G. Sapiro and D.L. Ringach,“Anisotropic diffusion of multivalued images with application to color filtering,”IEEE Trans. Image Processing, 1996, 5(11): 1582–1586
    [66]. C. Schnorr,“A study of a convex variational diffusion approach for image segmentation and feature extraction,”J. Math. Imaging Vision, 1998, 8(3): 271–292
    [67]L. Alvarez, P. L. Lions, and J. M. Morel,“Image selective smoothing and edge detection by nonlinear diffusion. II,”SIAM J. Numer. Anal., 1992, 29: 845–866
    [68]L. Alvarez and L. Mazorra,“Signal and image restoration using shock filters and anisotropic diffusion,”SIAM J. Numer. Anal., 1994, 31: 590–605
    [69]F. Catt′e, P. L. Lions, J. M. Morel, and T. Coll,“Image selective smoothing and edge detection by nonlinear diffusion,”SIAM J. Numer. Anal., 1992, 29: 182–193
    [70]P. Perona and J. Malik,“Scale-space and edge detection using anisotropic diffusion,”IEEE Trans. Pattern Anal. Machine Intell,. 1990, 12: 629–639
    [71]R. Whitaker and G. Gerig,“Vector-valued diffusion,”in Computational Imaging and Vision: Geometry Driven Diffusion in Computer Vision, B. M. ter Haar Romeny, Ed. Boston, MA: Kluwer, 1994.
    [72]Chan T, Vese L.“A level set algorithm for minimizing the Mumford-Shah functional in image processing”. IEEE VLSM 01, 2001, 161-168
    [73]E. Hodneland,Segmentation of Digital Images, Cand. Scient. Thesis in Applied MathematicsDepartment of Physiology, University of Bergen, 22nd July 2003.
    [74]Guo WH, Medical image segmentation and diffusion weighted magnetic resonance image analysis, University of Florida, 2007.
    [75]S. Gao and T.D. Bui, A new image segmentation and smoothing model, Proc. of Int. Sym. on Biomed. Img., 2004, 137-140
    [76]Osher S and Fedkiw R, Level set method: an overview and some recent results, Journal of Computational Physics, 2001, 169: 463-502
    [77]R. Malladi, J. Sethian, and B. Vemuri, \Shape modeling with front propagation: A level set approach," IEEE Trans. Pattern Anal. Machine Intell., 1995 17: 158-175
    [78]Deng JW, Tsui HT, A fast level set method for segmentation of low contrast noisy biomedical images, Pattern recognition letters 2002, 23: 161-169
    [79]T. Chan, B. Sandberg, and M. Moelich, Some recent developments in variational image segmentation, UCLA CAM Reports, No. 06-52, Sep. 2006.
    [80]D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces, Journal of Computational Physics, 1995, 118: 269
    [81]D. Adalsteinsson and J. A. Sethian, The Fast Construction of Extension Velocities in Level Set Methods, Journal of Computational Physics, 1999, 148: 2–22
    [82]Peng D, Merriman B, Osher S, et al, A PDE-based fast local level set method, Journal of computational physics, 1999, 155: 410-438
    [83]Niemann H,周冠雄,李梅译,模式分类,科学出版社, 1988
    [84]高上凯,医学成像系统, 2000
    [85] Kokbtake H., Future CAD in multi-dimensional medical images-Project on multi-organ, mulit-disease CAD system, Computerized Medical Imaging and Graphics 2007, 31: 258-266.
    [86] Jorge RR, Eduardo BC, Medical image segmentation , volume representation and registration using spheres in the geometric algebra framework, Pattern recognition 2007, 40:171-188.
    [87] Xie K, Yang J., Zhang ZG, et al., Semi-automated brain tumor and edema segmentation using MRI. European Journal of Radiology 2005, 56:12-19.
    [88] Zijdenbos AP, Dawant BM, Margolin RA, Automatic detection of intracranial contours in MR images, 1994, Vol.18(1): 11-23.
    [89] Rey D., Subsol G., Delingette H., et al., Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis, Medical image analysis, 2002, Vol 6(2):163-179.
    [90] Gerig, G., Martin J., Kikinis R., et al., Unsupervised tissue type sgementation of 3D dual-echo MR head data, Image and vision computing 1992, 10(6): 349-360.
    [91]陈健,田捷,薛健等,多速度函数水平集算法及在医学分割中的应用,软件学报, 2007, 18(4):842-849.
    [92] Pardo XM, Radeva P., Cabello D., Discriminant snakes for 3D reconstruction of anatomical organs, Medical image analysis, 2003, 7(3): 293-310.
    [93] Suetens P., Bellon E., Vandermeulen D., Image segmentation: methods and applications in diagnostic radiology and nuclear medicine, European Journal of Radiology, 1993, 17(1): 14-21.
    [94] Kapur T., Grimson W., Wells WM, et al., Segmentation of brain tissue from magnetic resonance images, Medical image analysis, 1996, 1(2): 109-127.
    [95]王成,张剑戈,江旭峰等,基于知识的三维核医学图像左心室心肌区的提取,中国生物医学工程学报, 2007, 26(1):19-23.
    [96]徐海祥,喻莉,朱光喜等,基于支持向量机的磁共振脑组织图像分割,中国图象图形学报, 2005, 10(10):1275-1280.
    [97]聂生东,陈瑛,顾顺德等,磁共振颅脑图像快速模糊聚类分割算法的研究,中国生物医学工程学报, 2001, 20(2):104-109.
    [98]蒋晓悦,赵荣椿,一种改进的活动轮廓图像分割技术,中国图象图形学报, 2004, 9(9):1019-1024.
    [99]段先华,周则明,王平安等,基于距离均衡化的自适应性动态轮廓模型,中国图象图形学报, 2004, 9(9):1032-1036.
    [100]徐旦华,鲍旭东,舒华忠等,基于简化Mumford-Shah模型的活动轮廓边缘检测模型,应用科学学报, 2006, 24(4):363-367.
    [101]陈强,王平安,夏德深,形状统计Mumford-Shah模型MR图像左心室外轮廓分割,计算机学报, 2006, 29(11):2044-2051.
    [102]李旭超,朱善安,朱胜利,基于小波域层次Markov模型的图像分割,中国图象图形学报, 2007, 12(2):308-314.
    [103] Zhou ZY, Ruan ZC, Mulitcontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images, Magnetic Resonance Imaging, 2007, 25(3):381-385
    [104] Kang Y. Engelke K, Kalender WA, Interactive 3D editing tools for image segmentation, Med. Image Anal., 2004, 8: 35-46.
    [105] Olabarriage SD, Smeulders A, Interaction in the segmentation of medical images: a survery, Med. Image Anal., 2001, 5: 127-142.
    [106] McInerney T, Terzopoulos D, Deformable models in medical image analysis: a survey, Med. Image Anal., 1996, 1: 91-108.
    [107] McInerney T, Terzopoulos D, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis,Compt. Medical Imaging and Graphics, 1995, 19(1): 69-83.
    [108]赵大哲,杨金柱,徐心和,一种基于多层CT影像的肺部结节分割方法,电子学报,2006,34(12):2478-2480.
    [109]刁现芬,陈思平,梁长虹等,基于阈值区间的水平集算法在耳蜗分割中的应用,浙江大学学报,2006,40(2):262-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700