人工关节硅酸二钙涂层离子液对成骨细胞生物活性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分硅酸二钙涂层离子液对体外培养成骨细胞早期增殖、细胞周期以及凋亡的影响
     目的:探讨硅酸二钙涂层离子液对成骨细胞早期增殖及细胞周期、凋亡的影响及其机制。方法:将等离子喷涂的硅酸二钙涂层钛片于37℃浸泡在DMeM培养基中24小时,ICP测定培养基中Ca、P、Si离子浓度变化。含有硅酸二钙涂层离子液的DMEM培养基作为实验组,正常DMEM培养基作为对照组,分别接种MG63细胞培养。MTT法及细胞计数测定两组MG63细胞6、12、24、48、72小时细胞增殖情况;流式细胞仪测定MG63细胞12、24、48、72小时G0/G1、S、G2/M期细胞数量变化、增殖活性指标(PI)和细胞凋亡率;结果:在硅酸二钙涂层浸泡24小时后,培养基中Si离子浓度显著增加约17倍,有统计学意义(P<0.001),而Ca、P离子浓度略有降低,但没有统计学意义(P>0.05)。与正常培养基中比较,在硅酸二钙涂层条件培养基中,MG63细胞增殖在各时间点明显增强,在24和72小时有统计学差异(P<0.05)。流式细胞仪结果显示,在12、24小时,两组中处在各期细胞数量没有明显差别,在48、72小时,实验组G0/G1期MG63细胞明显降低;在72小时,实验组S期细胞较对照组增多2倍(P<0.05);实验组G2/M期细胞在48小时显著增多(P<0.05)。在12、24小时,两组细胞的凋亡率都较低,未见明显差别,在48小时和72小时,实验组MG63细胞凋亡率显著高于对照组,有统计学差异(P<0.05)。结论:硅酸二钙涂层离子液能够促进MG63细胞早期增殖,而这种作用是通过加速成骨细胞周期达到的。
     第二部分硅酸二钙涂层离子液对体外培养成骨细胞早期分化及成骨细胞特异性基因表达的影响
     目的:通过测定成骨细胞分化及成骨细胞分化相关基因的表达,探讨硅酸二钙涂层离子液对体外培养成骨细胞分化及成骨特异性基因表达的影响及其可能机制。方法:含有硅酸二钙离子溶出液的DMEM培养基作为实验组,正常DMEM培养基作为对照组,分别接种人MG63成骨细胞进行培养。分别于6、12、24、48、72小时采用生化法测定培养液中碱性磷酸酶(ALP)活性,实时定量PCR(Real time PCR)检测碱性磷酸酶(ALP)、骨钙素(OC)、Ⅰ型胶原(COL-Ⅰ)、成骨细胞特异性转录因子(Cbfal)基因表达变化,并进行比较。结果:实验组MG63细胞ALP活性在各时间点都增强,与对照组相比在6h,48h和72h有显著性差异(P<0.05)。Real time PCR检测显示,MG63细胞Cbfal转录水平在所有时间点均较对照组上调,在6h,12h和24h有显著性差异(P<0.05);ALP转录水平在12h和24h较对照组显著上调(P<0.05),然后在48h和72h降低到对照组水平以下,但没有统计学差异(P>0.05);Ⅰ型胶原转录水平在各时间点均较对照组高,在24h有显著性差异(P<0.05);OC转录在两组早期均未检测到。结论:硅酸二钙涂层离子液能够在早期上调成骨细胞特异性基因的表达,进而促进成骨细胞的分化,加速骨的形成;硅酸二钙涂层离子液在早期增强成骨细胞的凋亡,这与成骨细胞分化增强有关。
     第三部分硅酸二钙涂层离子液对体外培养成骨细胞破骨细胞分化相关基因表达及其蛋白分泌的影响
     目的:通过测定破骨细胞分化相关基因的表达及其蛋白分泌,探讨硅酸二钙涂层离子液对破骨细胞分化的影响及可能机制。方法:含有硅酸二钙离子溶出液的DMEM培养基作为实验组,正常DMEM培养基作为对照组,分别接种人MG63成骨细胞进行培养。分别于6、12、24、48、72小时采用实时定量PCR(Real time PCR)检测OPG、RANKL、TNF-α基因表达变化,ELISA方法检测OPG、RANKL、TNF-α蛋白分泌量,并进行比较。结果:Real time PCR检测显示,实验组MG63细胞OPG转录水平在各时间点都增强并在72小时达到高峰,与对照组相比在6h,12,24和48h有显著性差异(P<0.05)。MG63细胞RANKL转录水平在6,12h和24h非常低,在48h和72h显著增高,但实验组RANKL转录水平明显低于对照组,有显著性差异(P<0.05);TNF-α的转录在两组中均未检测到;实验组培养基中OPG蛋白分泌量在各时间点均高于对照组,在48h和72h有统计学意义(P<0.05);实验组RANKL蛋白分泌量在各时间点都低于对照组,但没有统计学差异(P>0.05)。TNF-α蛋白分泌在各时间点均低于对照组,并在72小时有统计学差异。结论:硅酸二钙涂层离子液能够在早期上调OPG基因的表达,下调RANKL基因表达,同时促进OPG蛋白分泌,抑制TNF-α分泌,通过调节OPG/RANKL比率抑制破骨细胞的分化和活性,减少骨吸收,加速骨的形成。
     第四部分硅酸二钙涂层离子液对体外培养高龄来源人成骨细胞增殖、分化及对TGF-β1分泌的影响
     目的:探讨硅酸二钙涂层离子液对高龄来源的成骨细胞增殖、分化及TGF-β1分泌的影响及其机制。方法:采用原代培养技术从高龄患者(大于60岁)废弃骨组织分离培养出成骨细胞并鉴定。将等离子喷涂的硅酸二钙涂层钛片于37℃浸泡在DMEM培养基中72小时,ICP测定培养基中Ca、P、Si离子浓度变化。含有硅酸二钙涂层离子液的DMEM培养基作为实验组,正常DMEM培养基作为对照组,分别接种高龄来源成骨细胞培养。分别于1、3、7、14天采用MTT法测定两组成骨细胞细胞增殖情况;采用生化法检测ALP活性;ELISA方法检测TGF-β1蛋白分泌量;并进行比较。结果:与正常培养基中比较,条件培养基中硅离子浓度增加了19倍,有统计学差异(P<0.05),而钙和磷离子的浓度降低,但没有统计学差异(P>0.05)。在硅酸二钙涂层条件培养基中,高龄来源成骨细胞增殖在各时间点明显增强,在第3天有统计学差异(P<0.05)。实验组成骨细胞ALP活性始终高于对照组,并在第7天有统计学差异(P<0.05);ELISA结果显示在第1天和第3天,试验组中TGF-β1含量较对照组显著增高,有统计学意义(P<0.05),而在第7天,试验组TGF-β1含量显著下降并低于对照组,但没有统计学差异(P>0.05),在第14天,两组中TGF-β1含量没有明显差异(P>0.05);结论:硅酸二钙涂层的离子溶出液能够促进高龄来源成骨细胞增殖和分化,而这种作用是通过促进TGF-β1分泌达到的。
     第五部分硅酸二钙涂层离子液对体外培养成骨细胞TGF-β1分泌及其受体基因表达的影响及其机制
     目的:探讨硅酸二钙涂层离子液对成骨细胞增殖、分化及TGF-β1分泌及其受体基因表达的影响及其机制。方法:含有硅酸二钙涂层离子液的DMEM培养基作为实验组,正常DMEM培养基作为对照组,分别接种MG63成骨细胞培养1、3、7、14天,成骨细胞分化通过ALP活性及骨钙素(OC)及其基因的表达检测;ELISA方法检测OC,TGF-β1蛋白分泌量;采用实时定量PCR(Real time PCR)检测TGF-β1Ⅰ型受体和Ⅱ型受体基因表达变化,并进行比较。结果:在硅酸二钙条件培养基中,硅酸二钙离子溶出液能够促进MG63细胞ALP活性及OC的分泌而促进细胞的分化,ELISA结果显示在条件培养基中TGF-β1分泌较正常培养基中有所增强,同时TGF-β受体基因表达也同样增高,与正常培养基中比较,在硅酸二钙涂层条件培养基中,MG63细胞ALP活性从第3天开始增强并高于对照组,并在第7天和14天有统计学差异(P<0.05)。骨钙素OC的分泌在14天明显高于在正常培养基中,并有统计学差异(P<0.05),二者的基因表达也表现为相同的趋势;ELISA结果显示在第1天和第3天,试验组中TGF-β1含量较对照组显著增高,有统计学意义(P<0.05),而在第7天,试验组TGF-β1含量显著下降并低于对照组,有统计学差异(P<0.05),在第14天,两组中TGF-β1含量没有明显差异(P>0.05);Real time PCR结果显示试验组中TGF-βⅠ型受体表达在第3天开始增强,在第7天达到最高峰,并与对照组有统计学差异(P<0.05);TGF-βⅡ型受体基因表达在各时间点均较对照组增强,但没有统计学差异(P>0.05)。结论:硅酸二钙涂层的离子溶出液能够促进成骨细胞分化,而这种作用是通过影响TGF-β1通路达到的。
PartⅠThe effects of ionic products of dicalcium silicate coating dissolution on proliferation and cell cycle as well as cell apoptosis of osteoblasts
     Objective:To discuss the influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on proliferation,cell cycle and cell apoptosis of osteoblasts. Methods:The Ca_2SiO_4 conditioned DMEM was achieved by immersing plasma sprayed Ca_2SiO_4 coating in DMEM for 24h at 37℃.The ion concentration in DMEM was measured by ICP.MG63 cells cultured with the DMEM containing ionic products of dicalcium silicate coating dissolution was prepared to be experimental group,which cultured in normal DMEM was control groups.Cell proliferation was measure with MTT and cell counting at 6,12,24h,48h and 72h.Cell cycle distribution and cell apoptosis were investigated by flow cytometry at 12,24h,48h and 72h.Result: The results obtained from this work showed that Si ion concentration increased significantly about 17 folds in Ca_2SiO_4 conditioned DMEM(P<0.05),and Ca and P ion concentration decrease slightly and no significantly(P>0.05).MG63 cell proliferated more significantly in the group containing ionic products of Ca_2SiO_4 coatings than in the control group,and significantly at 24h and 72h.The cell cycle distribution indicated that the number of MG63 cell in each cycle phase showed no significantly difference at 12h and 24h.And the decreased osteoblast number in G_0/G_1 phase were detected in the cells cultured in the DMEM containing ionic products of Ca_2SiO_4 coatings compared with the control group at 48 and 72h.At 72h,the osteoblast number of S phase in experimental group increased about 2 folds when compared to control(P<0.05).G2/M phase osteoblast number increased significantly in experimental group at 48h(P<0.05).Cell apoptosis in experimental groups were significantly higher than control at 48 and 72h(P<0.05).Conclusion:The results suggest that the ionic products of Ca_2SiO_4 coating dissolution can promote MG63 cell proliferation which contributes to accelerating cell cycle.
     PartⅡThe influence and possible mechanisms of ionic products of dicaicium silicate coating dissolution on differentiation and osteogenic gene expression of osteoblasts
     Objective:To discuss the influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on differentiation and osteogenic gene expression of osteoblasts. Methods:MG63 cells cultured with the DMEM containing ionic products of dicalcium silicate coating dissolution was prepared to be experimental group,which cultured in normal DMEM was control groups for 6,12,24h,48h and 72h.Cell differentiation was detected by measuring ALP activity in culture media.Osteogenic gene expression(ALP,COL-Ⅰ,OC,Cbfal) was evaluated using Real time PCR technology.Result:The results obtained from this work showed that ALP activity increased in Ca_2SiO_4 conditioned DMEM when compared to control and significantly at 6h,48h and 72h(P<0.05).Results from Real-time PCR showed that Cbfal transcriptional levels in experimental groups were up-regulated at all time points when compared with the control groups and significantly at 6h,12h and 24h(P<0.05).When compared with control,ALP transcription in experimental groups were significantly up-regulated at 12h and 24h,and then decreased lower than control but no significantly at 48h and 72h(P>0.05).COL-Ⅰtranscription were higher than control at all experimental periods and significantly at 24h(P<0.05).OC transcription was not detected in both groups in early stage. Conclusion:The ionic products of Ca_2SiO_4 coating dissolution can up-regulate osteogenic-related gene expression and enhance differentiation of osteoblasts as well as new bone formation.Increased apoptosis of MG63 cells results from enhanced differentiation.
     PartⅢThe influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on osteoclastogenie gene expression and their protein synthesis of osteoblasts
     Objective:To discuss the influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on osteoclastogenic gene expression and their protein synthesis of osteoblasts.Methods:MG63 cells cultured with the DMEM containing ionic products of dicalcium silicate coating dissolution was prepared to be experimental group,which cultured in normal DMEM was control groups for 6,12,24h,48h and 72h.Osteoclastogenic gene expression(OPG,RANKL, TNF-α) was evaluated using Real time PCR technology.OPG,RANKL and TNF-αprotein synthesis in culture media were measured by ELISA assay at 12,24h,48h and 72h.Result:Results from Real-time PCR showed that OPG transcriptional levels in Ca_2SiO_4 conditioned DMEM were promoted when compared to control and significantly at 6h,12h,24h and 48h(P<0.05).RANKL transcriptional levels in both groups were low at 6h,12h and 24h.and then up-regulated at 48h and 72h,but in experimental groups,RANKL transcription were significantly lower when compared with control at 48h and 72h(P<0.05).No TNF-αtranscription was detected in both groups.OPG protein synthesis in experimental groups were higher than the control groups at all time points and significantly at 48h and 72h(P<0.05).RANKL protein synthesis in both groups showed no significantly difference but lower in experimental groups(P>0.05).TNF-αsynthesis of MG63 cells in experimental groups was lower than control and significantly at 72h(P<0.05).Conclusion:The ionic products of Ca_2SiO_4 coating dissolution can up-regulate OPG gene expression and down-regulate RANKL gene expression,more importantly increase OPG protein synthesis and inhibit TNF-αsynthesis,which influence the ratio of OPG/RANKL that inhibiting osteoclast differentiation and activity,finally lead to diminishing bone resorption and increasing bone formation.
     PartⅣThe influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on proliferation and differentiation as well as TGF-β1 synthesis of osteoblasts derived from old patients
     Objective:To discuss the influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on proliferation and differentiation as well as TGF-β1 synthesis of osteoblasts derived from old patients.Methods:The primary cultured osteoblasts were obtained from bone slice which were discarded from old patients suffered from total hip arthroplasty(older than 60 years).The Ca_2SiO_4 conditioned DMEM was achieved by immersing plasma sprayed Ca_2SiO_4 coating in DMEM for 72h at 37℃.The ion concentration in DMEM was measured by ICP.Osteoblasts cultured with the DMEM containing ionic products of dicalcium silicate coating dissolution was prepared to be experimental group,which cultured in normal DMEM was control groups for 1,3,7 and 14 days.Cell proliferation was measure with MTT assay.Osteoblast differentiation was detected by ALP activity.ELISA was used to measure TGF-β1 synthesis in culture media.Result:The results obtained from this work showed that Si ion concentration increased significantly about 19 folds in Ca_2SiO_4 conditioned DMEM(P<0.05),and Ca and P ion concentration decrease slightly and no significantly(P>0.05).Primary cultured osteoblast proliferated more significantly in the group containing ionic products of Ca_2SiO_4 coatings than in the control group,and significantly at 3 days. ALP activity in experimental groups were enhanced when compared to that in control groups at all time points,and significantly at 7 days(P<0.05).ELISA results showed that TGF-β1 synthesis in experimental groups was promoted significantly when compared to control(P<0.05) at 1 and 3 days, and decreased which lower than control but no significantly at 7 days,and no difference was found in 14 days.Conclusion:The results suggest that the ionic products of Ca_2SiO_4 coating dissolution can promote primary culture human osteoblast derived from old patient proliferation and differentiation which contributes to increasing TGF-β1 synthesis.
     PartⅤThe influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on differentiation and TGF-β1 synthesis as well as its receptors(TGF-βRⅠand TGF-βRⅡ) gene expression of MG63 cells
     Objective:To discuss the influence and possible mechanisms of ionic products of dicalcium silicate coating dissolution on differentiation and TGF-β1 synthesis as well as its receptors(TGF-βRⅠ and TGF-βRⅡ) gene expression of MG63 cells.Methods:The medium containing ionic products of dicaicium silicate(Ca_2SiO_4) for culturing MG63 cells was prepared by immersing the plasma sprayed Ca_2SiO_4 coatings in DMEM solution.The effect of the ionic products on cellular differentiation and local growth factor(TGF-β1) of osteoblast-like MG63 cell were investigated.The normal DMEM was also used to culture MG63 cells as the control group.Differentiation of cell was evaluated by detecting alkaline phosphatase(ALP) activity and osteocalcin(OC) synthesis as well as their gene expression. The levels of TGF-β1 in culture medium were measured using Enzyme-linked immunosorbent assay (ELISA).The gene expressions of TGF-β1 receptors(TGF-βRⅠand TGF-βRⅡ) were also measured by Real time PCR technology.Result:MG63 cells cultured in DMEM containing ionic products of Ca_2SiO_4 coating showed enhanced differentiation.The results obtained from ELISA showed that the levels of TGF-β1 in experimental group were higher than that in control.Compared with cultured in normal DMEM medium,ALP activity of MG63 cells in Ca_2SiO_4-DMEM was promoted from day 3 and significantly in day 7 and 14(P<0.05);OC synthesis was significantly enhanced at day 14.Their gene expression was shown as identical pattern.ELISA results showed that TGF-β1 synthesis in experimental groups was promoted significantly when compared to control(P<0.05) at 1 and 3 days, and decreased significantly which lower than control at 7 days,and no difference was found in 14 days. TGF-βRⅠgene expression in experimental groups was enhanced at day 3 and reached its tip at day 7 which significantly higher than control(P<0.05).TGF-βRⅡgene expression was higher than control but no significantly(P>0.05).Conclusion:It is concluded that ionic products of Ca_2SiO_4 coating may enhance cellular differentiation and collagen production by influencing TGF-β1 pathway.
引文
[1]Hench LL.Biomaterials:a forecast for the future.Biomaterials.2003;19:1419-1423
    [2]Xuanyong Liu,Paul K.Chu,Chuanxian Ding.Surface modification of titanium,titanium alloys,and related materials for biomedical applications Materials Science and Engineering 2004;47:49-121
    [3]Martin JY,Schwartz Z,Hummert TW,Schraub DM,Simpson JrJ,Lankfond J,Dean DD,Cochran DL,Boyan BD.Effect of titanium surface roughness on proliferation,differentiation and protein synthesis of human osteoblast-like cells(MG63).J Biomed Mater Res 1995;29:389-401
    [4]Wang K.The use of titanium for medical application in the USA[J].Mater Sci Eng,1996;A213:134-137
    [5]黄伟九,李兆峰.医用钛合金表面改性研究进展,材料导报[J],2006,11(20)369-372
    [6]D W Howie,Implant-Bone Interface,Springer,london,1990
    [7]Malchau H,Herberts P,Ahnfelt L.Prognosis of total hip replacement in Sweden.Acta Orthop Scand 1993;64:497-506.
    [8]Wright TM,Goodman SB,editors.Implant wear in total joint replacement.Rosemount,Ill.American Academy of Orthopaedic Surgeons;2001.
    [9]Mohammadi S,Wietorin L,Ericsonetal LE.Cast titanium as implant material[J].J Mater Sci:Mater Med,1995;6:435-444
    [10]Hench LL,Wilson J.Surface-Active Biomaterials.Science,1984;226:630-636
    [11]Hench LL,Anderson O.Bioactive glass coatings.In:Hench LL,Wilson J,editors.An introduction to bioceramies.USA:World Scientific,1993.p.239-59
    [12]Lacefield WR.Hydroxyapatite coatings.In:Hench LL,Wilson J,editors.An introduce to bioceramics.USA:World Scientific,1993.p.223-38
    [13]姜红江,王玉林.医用钛合金的表面改性.生物骨科材料与临床研究[J],2005;2(4):28-33
    [14]Hench LL.Bioceramics from concept to clinic[J].Am Ceram Soc,1991;8(1):1487-1510
    [15]张亚平,高家诚,谈继福,等。激光融覆生物陶瓷复合涂层[J].材料研究学报,1994;8(1):57-62
    [16]刘敬肖,杨大智,王伟强,等。表面改性在生物医用材料研究中的应用[J].材料研究学报,2000;16(4):225-233
    [17]Maitz MF,Poon RWY,Liu XY,Pham MT,Chu PK.Bioactivity of titanium following sodium plasma immersion ion implantation and deposition.Biomaterials 2005;26:5465-5473
    [18]Suchanek W,Yoshimura M.Processing and properties of hydroxyapatite-base biomaterials for use as hard tissue replacement implants.J Mater Res.1998;13:94-97
    [19]Kotsis I,Enisz M,Korim T.Characterization of plasma sprayed coatings.J Ind Chem,1998;26(1):37-39
    [20]Tsui YC,Doyle C,Clyne TW.Plasma sprayed hydroxyapatite coatings on titanium substrates:optimization of coating properties.Biomaterials,1998;19:2031-43
    [21]De Groot K,Geesink RGT,Klein CPAT,Serekian P.Plasma sprayed coatings of hydroxyapatite.J Biomed Mater Res 1987;21:1375-87
    [22]Kaili Lin,Jiang Chang,Rongming Chen.In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers Acta Biomaterialia 2007;3:271-276
    [23]Bouler JM,LeGeros RZ,Daculsi G.Biphasi~ calcium phosphates:influence of three synthesis parameters on the HA/β-TCP ratio.J Mater Sci Mater Med 1999;10:475-9
    [24]Chaki TK,Wang PE.Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering.J Mater Sci 1994;5:533-42
    [25]Yang YC,Chang E,Lee SY.Mechanical properties and Young's modulus of plasma-sprayed hydroxyapafite coating on Ti substrate in simulated body fluid.J Biomed Mater Res 2003;67A:886-889
    [26]Chang E,Chang WJ,Wang BC.Plasma spraying of zirconia-reinforced hydroxyapatite composite coatings on titanium:Part Ⅱ dissolution behavior in simulated body fluid and bodying degradation [J].J Mater Sci:Mater Med,1997;8:201-211
    [27]Chernlin JH,Liu ML,Ju CP.Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V[J].J Mater Sci:Mater Med,1994;5:279-283
    [28]刘宣勇,丁传贤。等离子喷涂硅灰石涂层结构和性能的研究.硅酸盐学报[J]2007;8:30-38
    [29]Xuanyong Liu,Chuanxian Ding,Zhenyao Wang.Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid.Biomaterials 2001;22:2007-2012
    [30]Nonarni T,Tsutaumi S.Study of diopside ceramics for biomaterials.J Mater Sci:Mater Med 1999;10:475-9
    [31]Ohtsuki C,Kokubo T,Yamamuro T.Mechanism of apatite formation on CaO-SiO_2-P_2O_5 glasses in a simulated body fluid.J Non-Cryst Solids 1992;143:84-92
    [32]Xuanyong Liu,Shunyan Tao,Chuanxian Ding.Bioactivity of plasma sprayed dicalcium silicate coatings.Biomaterials 2002;23:963-968
    [33]Liu XY,Mona M,Carpi A,Li BE.Bioactive calcium silicate ceramics and coatings.Biomed.Pharmacother.,doi:10.1016/j.biopha.2008.07.051
    [34]Gou Z,Chang J,Zhai W.Preparation and characterization of novel bioactive dicalcium silicate ceramics.J Euro Ceram Soc 2005;25:1507-14
    [35]Youtao Xie,Xuanyong Liu,Paul K.Chu,Xuebin Zheng,Chuanxian Ding.Bioactive titanium-particle-containing dicalcium silicate coating.Surface & Coatings Technology 2005;200:1950-3
    [36]Youtao Xie,Xuanyong Liu,Xuebin Zheng,Chuanxian Ding,Paul K.Chu.Improved stability of plasma-sprayed dicalcium silicate/zairconia composite coating.Thin Solid Film 2006;515:1214-18
    [37]Youtao Xie,Xuanyong Liu,Xuebin Zheng,Chuanxian Ding.Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6Al-4V alloy.Surface & Coatings Technology 2005;199:105-111
    [38]Youtao Xie,Xuanyong Liu,Chuanxian Ding,Paul K.Chu.Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating.Materials Science and Engineering C 2005;25:509-515
    [39]Lamy D,Pierrc AC,Heimarm RB.Hydroxyapatite coatings with a bond coat of biomedical implants by plasma projection.J Mater Res 1996;11:680-6
    [40]Ducheyne P,Qiu Q.Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function.Biomaterials 1999;20(23-24):2287-303.
    [41]Clark AE,Pantano CG,Hench LL,Bioglass form a double layer composed of apatite and a silica-rich layer when placed in a simulated physiological solution as well as in living tissue.J Am Ceram Soc 1976;59(1-2):37-9
    [42]Ducheyne P,Bianco P,Radin S,Schepers E.Bioactive materials:mechanisms and bioengineering considerations.In:Ducheyne P,Kokubo T,van Blitterswijk CA,editors.Bone-bioactive biomaterials.Leiderdorp,The Netherlands:Reed Healthcare Communications,1993.p.1-12.
    [43]Amaral M,Costa MA,Lopes MA,Silva RF,Santos JD,Fernandes MH.Si3N4-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells Biomaterials 2002;23:4897-4906
    [44]Hyakuna K,Yamamuro T,Kotoura Y,Kakutani Y,Kitsugi T,Takagi H,Oka M,Kokubo T.The influence of calcium-phosphate ceramics and glass-ceramics on cultured cells and their surrounding media.J Biomed Mater Res 1989;23:1049-66
    [45]Keeting PE,Oursler MJ,Weigand KE,Bonde SK,Spelsberg TC,Riggs BL.Zeolite A increases proliferation,differentiation,and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro.J Bone Miner Res 1992;7:1281-9
    [46]Matsuda T,Davies JE.The in vitro response of osteoblasts to bioactive glass.Biomaterials 1987;8:275-84
    [47]El-Ghannam A,Ducheyne P,Shapiro IM.Bioactive material template for in vitro synthesis of bone.J Biomed Mater Res 1995;29:359-70
    [48]Radin S,Reilly G,Bhargave G,Leboy P,Ducheyne P.Osteogenic effects of bioactive glass on bone marrow stromal cells.J Biomed Mater Res 2005;73A(1):21-9
    [49]Radin S,Reilly G,Leboy P,Ducheyne P.Solution-mediated effect of bioactive glass in poly(lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells.J Biomed Mater Res 2005;75A(4):794-801
    [50]Xynos ID,Edgar AJ,Buttery LDK,Hench LL,Polak JM.Gene expression profiling of human osteoblasts following treatment with the ionic products of Bioglasss 45S5 dissolution.J Biomed Mater Res 2001;55(2):151-7.
    [51]Jell G,Stevens MM.Gene activation by bioactive glasses.J Mater Sci:Mater Med 2006;17(11):997-1002
    [52] Junying Sun, Jianyou Li, Xuanyong Liu, Li Wei, Guocheng Wang, Fanhao Meng. Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomedicine & Pharmacotherapy doi:10.1016/j.biopha.2009.01.007
    [53] Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res 2004;15:683-92
    [54] Hattar S, Berdal A, Asselin A, Loty S, Greenspan DC, Sautier JM. Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses. European Cells & Materials 2002;4:61-69
    [55] Hee HT, Wong HP, Low YP, Myers L. Predictors of outcome of floating knee injuries in adults: 89 patients followed for 2-12 years. Acta Orthop Scand 2001 ;72: 385-394
    [56] Van Damme PA. The vistas and horizons of bony reconstruction commentary. J Craniomaxillofac Surg 2005;33:75-78
    [57] Ettinger M. Aging bone and osteoporosis Strategies for preventing fractures in the elderly. Arch. Int. Med. 2003;163: 2237-2246
    [58] Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, Schmid G, Reske N, Bismar H, Seck T, Krempien B, Zieqler R. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res. 1998;13: 716-730.
    [59] Meyer RA, Meyer MH, Phieffer LS, Banks DM. Gene expression in older rats with delayed union of femoral fractures. J. Bone Joint Surg. Am. 2003;85: 1243-1254.
    [1]Ducheyne P,Qiu Q.Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function.Biomaterials 1999;20(23-24):2287-303.
    [2]Clark AE,Pantano CG,Hench LL,Bioglass form a double layer composed of apatite and a silica-rich layer when placed in a simulated physiological solution as well as in living tissue.J Am Ceram Soc 1976;59(1-2):37-9
    [3] Sun J, Yang Y, Zhong J, Greenspan DC. The effect of the ionic products of Bioglass(?) dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med 2007; 1:281-286
    [4] Patricia V, Marivalda MP, Alfredo MG, Fatima L. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 2004;25:2941-8
    [5] Hongli Sun, Chentie Wu, Kerong Dai, Jiang Chang, Tingting Tang. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal dells on akermanite-bioactive ceramics. Biomaterials 2006;27: 5651-7
    [6] Xynos ID, Alasdair JE, Buttery LDK. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophy Res Commun 2000; 276:461-465
    [7] Xuanyong Liu, shunyan Tao, Chuanxian Ding. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 2002;23:963-968
    [8] Youtao Xie, Xuanyong Liu, Paul K. Chu, Xuebin Zheng, Chuanxian Ding. Bioactive titanium-particle-containing dicalcium silicate coating. Surface & Coatings Technology 2005;200:1950-3
    [9] Youtao Xie, Xuanyong Liu, Xuebin Zheng, Chuanxian Ding, Paul K. Chu. Improved stability of plasma-sprayed dicalcium silicate/zairconia composite coating. Thin Solid Film 2006;515:1214-18
    [10] Youtao Xie, Xuanyong Liu, Xuebin Zheng, Chuanxian Ding. Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6A1-4V alloy. Surface & Coatings Technology 2005;199:105-lll
    [11] Youtao Xie, Xuanyong Liu, Chuanxian Ding, Paul K. Chu. Bioconductivity and mechanical properties of plasma-sprayed dicalcium silicate/zirconia composite coating. Materials Science and Engineering C 2005;25:509-515
    [12] Morgan DM. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol Biol 1998;79:179-183
    [13] Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 2002;61:301-311
    [14]De Groot K,Geesink RGT,Klein CPAT,Serekian P.Plasma sprayed coatings of hydroxyapatite.J Biomed Mater Res 1987;21:1375-87
    [15]Kaili Lin,Jiang Chang,Rongming Chen.In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers Acta Biomaterialia 2007;3:271-276
    [16]Bouler JM,LeGeros RZ,Daculsi G.Biphasic calcium phosphates:influence of three synthesis parameters on the HA/β-TCP ratio.J Mater Sci Mater Med 1999;10:475-9
    [17]Ohtsuki C,Kokubo T,Yamamuro T.Mechanism of apatite formation on CaO-SiO_2-P_2O_5 glasses in a simulated body fluid.J Non-Cryst Solids 1992;143:84-92
    [18]Boanini E,Torricelli P,Gazzano M,Giardino R,Bigi A.Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells.Biomaterials 2006;27:4428-4433
    [19]薛庆善.体外培养的原理和技术.科学出版社[M].2001.
    [20]左伋.医学分子细胞生物学.复旦大学出版社[M],2005.
    [21]Hench LL,Xynos I,Edgar A,Buttery L,Polak J,钟吉品,刘宣勇,常江.激活基因的玻璃.无机材料学报[J],2002,17(5):897-909
    [22]Krishan A,Cabana R.Flow cytometric analysis of electronic nuclear volume and DNA content in normal mouse tissues.Cell Cycle,2004;3(3):380-383
    [23]El-Naggar AK.Concurrent flow cytomedc analysis of DNA and RNA.Meth Mole Biol,2004;263:371-384
    [24]Wilailak S,Rochanawutanon M,Sdsupundit S,Aumkhyan A,Pattanapanyasat K.Flow cytometric analysis of DNA ploidy and S-phase fraction of Stage ⅢB cervical carcinoma.Euro J Gynaeco Ontology,2004;25(4):428-430
    [25]Norbury C,Nurse P.Animal cell cycles and their control.Annu Rev Biochem 1992;61:441-470
    [26]Hattar S,Berdal A,Asselin A,Loty S,Greenspan DC,Sautier JM.Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses.Eur Cell Mater 2002;4:61-69
    [27]Xynos ID,Hukkanen MVJ,Batten JJ,Buttery LD,Hench LL,Polak JM.Bioglass~@ 45S5stimulates osteoblast turnover and enhances bone formation in vitro:implication and applications for bone tissue engineering. Calcif Tissue Int 2000;67:321-329
    [28] Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermantite-bioactive ceramics. Biomaterials, 2006;27: 5651-5657
    [29] Lynch MP, Capparelli C, Stein GS, Lian JB. Apoptosis during bone-like tissue development in vitro. J Cell Biochem, 1998;68(1):31-49
    
    [30] Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell, 1991;65:1097-1098
    [31] Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. J bone Miner Res, 1998;13:793-802
    [32] Carinci F, Pezzetti F, Spina AM, Palmieri A, Carls F, Laino G, de Rosa A, Farina E, Llliano F, Stabellini G, LoMuzio L, Perrotti V, Piattelli A. An in vitro model for dissecting distraction osteogenesis. J Craniofac Surg, 2005;16(1):71-78
    [33] Inbe A, Baumann G, Heinzmann U,Atkinson MJ.Loss of the differentiated phenotype precedes apoptosis of ROS 17/2.8 osteoblast-like cells.Calcif Tissue Int,1998;63:208-213
    [34] Rana MW, Pothisiri V, Killiany DM,Xu XM.Detection of apoptosis during orthodontic tooth movement in rats.Am J Orthod Dentofacial Orthop,2001;119:516-521
    [1]Karsenty G.The gentic transformation of bone biology.Gene Dev 1999;13:3037-3051
    [2]OwenTA,Aronow M,Shalhoub V,Barone LM,Wilming L,Tassinafi MS,Kennedy MB,Pockwinse S,Lian JB,Stein GS.Progressive development of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix.J Cell Physiol,1990;143(3):420-430
    [3]Hench LL,Xynos I,Edgar A,Buttery L,Polak J,钟吉品,刘宣勇,常江.激活基因的玻璃.无机材料学报[J],2002,17(5):897-909
    [4]郭敏锋,刘强,孙海飚.成骨细胞分化调控机制研究新进展.国际骨科杂志[J],2006;27(2):112-114
    [5]Aronow MA,Gerstenfeld LC,Owen TA,Tassinari MS,Stein GS,Lian JB.Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells.J Cell Physiol,1990;143(2):213-221
    [6]Stucki U,Schmid J,Hammerle CF,Lang NP.Temporal and local appearance of alkaline Phosphatase activity in early stages of guided bone regeneration.A descriptive histochemical study in humans.Clin Oral Implant Res 2001;12:121-127.
    [7]Nefussi JR,Boy-Lefevre ML,Boulekbache H,Forest N.Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion.Diffemetiation,1985;29(2):160-168
    [8]Lynch MP,Stein JL,Stein Gs,Lian JB.The influence of type Ⅰ collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvariai osteoblasts:modification of expression of genes supporting cell growth,adhesion,and extracellular matrix mineralization.Exp Cell Res,1995;216(1):35-45
    [9]Stein GS,Lian JB,Owen TA.Bone cell differentiation:a functionally coupled relationship between expression of cell-growth- and tissue-specific genes.Curr Opin Cell Biol,1990;2(6):1018-1027
    [10]孟昭亨.骨钙素及其临床意义.中华内分泌代谢杂志[J],1992;8(1):41-44
    [11]Stein GS,Lian JB.Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype.Endocr Rev 1993;14:424-442
    [12]Boanini E,Torricelli P,Gazzano M,Giardino R,Bigi A.Nanocomposites of hydroxyapatite with aspartie acid and glutamic acid and their interaction with osteoblast-like cells.Biomaterials 2006;27:4428-4433
    [13]罗湘杭,廖二元,周后德,等.人成骨肉瘤MG63细胞分化特征及分化过程中的基因表达 湖南医科大学学报[J],2001,26(2):107-109
    [14]Owen TA,Holthuis J,Markose E,van Wijnen AJ,Wolfe SA,Grimes SR,et al.Modifications of protein-DNA interactions in the proximal promoter of a cell-growth-regulated histone gene during onset and progression of osteoblast differentiation.Proc Natl Acad Sci USA 1990;87:5129-33
    [15]Boskey AL,Gadaleta S,Gundberg C,Dory SB,Ducy P,Karsenty G,Fouurier transform infrared microspeetroseopie analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin.Bone 1998;23:187-96
    [16]Bachle M,Kohal RJ.A systematic review of the influence of different titanium surfaces on proliferation,differentiation and protein synthesis of osteoblast-like MG63 cells,Clin Oral Implants Res,2004;15(6):683-692
    [17]Hattar S,Berdal A,Asselin A,Loty S,Greenspan DC,Sautier JM.Behaviour of moderately differentiated osteoblast-like cells cultured in contact with bioactive glasses.European Cells &Materials 2002;4:61-69
    [18]Duty P,Zhang R,Geoffroy V,et al.Osf2/Cbfa1:a transcriptional activator of osteoblast differentiation.Cell,1997;89(5):747-754
    [19]Otto F,Thomell AP,Crompton T,Denzel A,Gilmour KC,Rosewell IR,Stamp GW,Beddington RS,Mundlos S,Olsen BR,Selby PB,Owen MJ,Cbfa1,a candidate gene for cleidocranial dysplasia syndrome,is essential for osteoblast differentiation and bone development.Cell 1997;89:765-771.
    [20] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89(5):755-64.
    [21] M.R.Urist, Bone: formation by autoinduction. Science 1965; 150:893-899
    [22] Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polmer Edn 2004;4(15): 543-562
    [23] Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass(?) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implication and applications for bone tissue engineering. Calcif Tissue Int 2000;67:321-329
    [24] Lynch MP, Capparelli C, Stein GS, Lian JB. Apoptosis during bone-like tissue development in vitro. J Cell Biochem, 1998;68(1):31-49
    [25]Xynos ID, Alasdair JE, Buttery LDK. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophy Res Commun. 2000; 276: 461-465
    [26] Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop 1997;334:316-25
    
    [27] Carlisle EM. Silicon: a possible factor in bone calcification. Science 1970; 167(916):279-80.
    [28] Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature 1972;239(5371):333-4
    [29] Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci USA 1973;70(5):1608-12
    [30] Hench LL, Paschall H. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 1973;7(3):25-42
    [31] Gao T, Aro HT, Ylanen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 2001;22(12):1475-83
    [32] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001;55(2):151-7
    [33]Gough JE,Jones JR,Hench LL.Nodule formation and mineralization of human primary osteoblasts cultured on a porous bioactive glass scaffold.Biomaterials 2004;25(11):2039-46
    [34]Hing KA,Revell PA,Smith N,Buckland T.Effect of silicon level on rate,quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds Biomaterials 2006;27:5014-5026
    [35]Reffitt DM,Ogston N,Jugdaohsingh R,Cheung HF,Evans BA,Thompson RP,et al.Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro.Bone 2003;32(2):127-35
    [36]Patricia V,Marivalda MP,Alfredo MG,Fatima L.The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production.Biomaterials 2004;25:2941-8
    [37]Seaborn CD,Nielsen FH.Silicon deprivation decreases collagen formation in wounds and bone,and ornithine transaminase enzyme activity in liver.Biol Trace Elem Res 2002;89(3):251-61
    [38]Bosetti M,Zanardi L,Hench LL,Cannas M.Type Ⅰ collagen production by osteoblast like cells cultured in contact with different bioactive glasses.J Biomater Res 2003;1:89-95
    [39]Lossd(o|¨)rfer S,Schwartz Z,Lohmann CH,Greenspan DC,Ranly DM,Boyan BD.Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content.Biomaterials 2004;25:2547-2555
    [40]Hongli Sun,Chentie Wu,Kerong Dai,Jiang Chang,Tingting Tang.Proliferation and osteoblastic differentiation of human bone marrow-derived stromal dells on akermanite-bioactive ceramics.Biomaterials 2006;27:5651-7
    [1]Karsenty G.The gentic transformation of bone biology.Gene Dev 1999;13:3037-3051
    [2]Martin TJ,Ng KW.Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.J Cell Biochem 1994;56:357-66 Lacey DL,Timms E,Tan H-L,Kelley MJ,Dunstan CR,Burggess T,et al.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.Cell 1998;93:165-76.
    [3]Teitelbaum SL.Bone reorption by osteoclasts.Science,2000;289:1504-1508 Karsenty G,Wagner E.Reaching a genetic and molecular understanding of skeletal development.Dev Cell,2002;2:389-406
    [4]Dougall WC,Glaccum M,Charrier K.RANKL is essential for osteoclast and lymph node development.Genes Dev,1999;13:2412-2424
    [5]Yasuda H,Shima N,Nakagawa N,Mochizuki SI,Yano K,Fujise N,et al.Identity of osteoclastogenesis inhibitory factor(OCIF) and osteoprotegerin(OPG):a mechanism by which OPG/OCIF inhibits osteoclastogensis in vitro.Endocrinology 1998;39:1329-37
    [6]Lacey DL,Timms E,Tan HL,Kelley MJ,Dunstan CR,Burggess T,Elliot R,Colombero A,Elliot G,Scully S.Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.Cell 1998;93:165-176
    [7]Suda T,Udagawa N,Nakamura I,Miyaura C,Takahashi N.Modulation of osteoclast differentiation by local factors.Bone 1995;17:87S-91S
    [8]Simonet WS,Lacey DL,Dunstan CR,Kelley M,Chang MS,Luthy R,Nguyen HQ,Wooden S,Bennett L,Boone T,Shimamoto G,DeRosr M,Elliott R,Colombero A,Tan HL,Trail G,Sullivan J,Davy E,Bucay N,Renshaw-Gegg L,Hughes TM,Hill D,Pattison W,Campbell P,Boyle WJ.Osteoprotegerin:a novel secreted protein involved in the regulation of bone density.Cell 1997;89:309-319
    [9]Yasuda H,Shima N,Nakagawa N,Yamaguchi K,Kinosaki M,Goto M,Mochizuki S,Tsuda E,Morinaga T,Udagawa N.A novel molecular mechanism modulating osteoclast differentiation and function.Bone 1999;25:109-113
    [10]张海龙,黄朝梁,骨保护素的研究进展.中华医学杂志[J].2006;31(86):2227-2229
    [11] Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 1994;56:357-66
    [12] Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S, Kostenuik PJ. Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 2003;18:852-858
    [13] Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T. Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Path 2000;157:435-448
    [14] Hofbauer LC, Heofelder AE. Osteoprotegerin and its cognate ligand: a new paradigm of osteoclastogenesis. Eur J Endo 1998;139(2): 152-154
    [15] O'Brine EA, Williams J, Marshall MJ. Osteoprotegerin ligand regulates osteoclast adhere to the bone surface in mouse calvaria. Biochem Biophys Res Commun 2000;274:281-290
    [16] Bucay N, Sarosi I, Dunstan C,Morony S.Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12(9): 1260-1268
    [17] Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597-602
    [18] Haynes DR, Crotti TN, Zreiqat H. Regulation of osteoclast activity in peri-impant tissues. Biomaterials 2004;25:4877-4885
    [19] Wong BR, Josien R, Choi Y. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol.Cell 1999; 4:1041-1049
    [20] Aubin JE, Bonnelye E, 2000. Osteoprotegerin and its ligand: a new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health 5 (2), 5
    [21] Hofbauer LC, Heufelder AE. The role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J Clin Endocrinol Metab 2000;85:2355-2363
    [22]Fuller K,Wong B,Fox S,Choi Y.TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts.J Experimental Medicine 1998;188:997-1001
    [23]Jimi E,Akiyama S,Tsurukai T,Okahashi N,Kobayashi K,Udagawa N,et al.Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.J Immunol 1999;163:434-42
    [24]Li J,Sarosi I,Yan XQ,et al.RANK is the intrinsic hematopobtic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.Proc Natl Acad Sci USA 1999;96(7):3540-3545
    [25]Hakeda Y.Osteoclastogenesis inhibitory factor(OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts.Biochemical and Biophysical Research Communications.1998;251:796-801
    [26]Akatsu T,Murakami T,Nishikawa M,Ono K,Shinomiya N,Tsuda E,et al.Osteoclastogenesis inhibitory factor suppresses osteoclast survival by interfering in the interaction of stromal cells with osteoclast.Biochem Biophys Res Commun 1998;250:229-34
    [27]Theoleyre S,Wittrant Y,Tat S,Fortun Y,Redini F,Heymarm D.The molecular triad OPG/RANK/RANKL:involvement in the orchestration of pathophysiological bone remodeling.Cytokine & Growth Factor Reviews 2004;15:457-475
    [28]God F,Hofbauer LC,Dunstan CR,Spelsberg TC,Khosla S,Riggs BL.The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated.Endocrinology 2000;141:4768-4776
    [29]Lam J,Takeshita S,Barker JE.TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand.J Clin Invest,2000;106:1481-1488
    [30]刑联平,张倩,姚振强.破骨细胞介导炎症性骨丢失的研究进展。中华创伤骨科杂志[J],2006;8(7):671-674
    [31]Boyle WJ,Simonet WS,Lacey DL.Osteoblast differentiation and activation.Nature,2003,423:337-342
    [32]Kobayashi K,Takashi N,Jimi E,Udagawa N,Takami M,Kotake S,Nobuki N,Kinosaki M,Yamaguchi K,Shima N,Yasuda H,Morinaga T,Higashio K,Martin TJ,Suda T.Tumor necrosis factor alpha stimulate osteoclast differentiation by a mechanism independent of the ODF/RANK-RANKL interaction.J Exp Med.2000,191:275-286
    [33]Azuma Y,Kaji K,Katogi R,Takeshita S,Kudo A.Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts.J Biol Chem.2000,275:4858-4864
    [34]Fuller K,Murphy C,Kirstein B,Fox SW,Chambers TJ.TNF alpha potently activates osteoclasts,through a direct action independent of and strongly synergistic with RANKL.Endocrinology 2002;143:1108-1118
    [35]Hughes DE,Dai A,Tiffee JC,et al.Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta.Nat Med,1996;2:1132-1136
    [36]Lee SE,Chung WJ,Kwak HB,Chung CH,Kwack K,Lee ZH,Kim HH.Tumor necrosis factor-alpha supports the survival of osteoclasts through the aactivation of Akt and ERK.J Biol Chem,2001,276:49343-49349
    [37]Xing L,Venegas AM,Chen A,Garrett-beal L,Boyce BF,Varmus HE,Schwartzberg PL.Genetic evidence for a role for Src family kinase in TNF family receptor signaling and cell survival.Genes Dev,2001,15:241-253
    [38]Taichman RS,Hauschka PV.Effects of interleukin-lbeta and tumor necrosis factor-alpha on osteoblastic expression of osteocalcin and mineralized extracellular matrix in vitro.Inflammation.1992;16:587-601
    [39]Li JJ,Sodek J.TNF-α suppresses bone sialoprotein(BSP) expression in ROS17/2.8 cell.J Cell Biochem 2005;13:123-145
    [40]Kimble RB,Bain S,Pacific R.The functional block of TNF but not of IL-6 prevents bone loss in ovareictomized mice.J Bone Miner Res,1997;12:935-941
    [41]Maddi A,Hai H,Ong ST,Sharp L,Harris M,Meghji S.Long wave ultrasound may enhance bone regeneration by altering OPG/RANKL ratio in haman osteoblast-like cells
    [1]Gosain AK,Santoro TD,Song LS,Capel CC,Sudhakar PV,Matloub HS:Osteogenesis in calvarial defects:contribution of the dura,the pericranium,and the surrounding bone in adult versus infant animals.Plast Reconstr Surg 2003;112:515-527
    [2]Lu C,Miclau T,Hu D,Hansen E,Tsui K,Puttlitz C,Marcucio RS:Cellular basis for age-related changes in fracture repair.J Orthop Res 2005;23:1300-1307
    [3]Aalami OO,Nacamuli RP,Lenton KA,Cowan CM,Fang TD,Fong KD,Shi YY,Song HM,Sahar DE,Longaker MT:Applications of a mouse model of calvarial healing:differences in regenerative abilities of juveniles and adults.Plast Reconstr Surg 2004;114:713-720
    [4]Hee HT,Wong HP,Low YP,Myers L:Predictors of outcome of floating knee injuries in adults:89patients followed for 2-12 years.Acta Orthop Scand 2001;72:385-394
    [5] Skak SV, Jensen TT: Femoral shaft fracture in 265 children. Lognormal correlation with age of speed of healing. Acta Orthop Scand 1988;59: 704-707
    [6] Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM: Age-dependent impairment of angiogenesis. Circulation 1999;99:111-120
    [7] Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, Schmid G, Reske N, Bismar H, Seck T, Krempien B, Zieqler R. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res. 1998;13: 716-730.
    [8] Meyer RA, Meyer MH, Phieffer LS, Banks DM. Gene expression in older rats with delayed union of femoral fractures. J. Bone Joint Surg. Am. 2003;85:1243-1254.
    [9] Xynos ID, Alasdair JE, Buttery LDK. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophy Res Commun. 2000; 276:461-465
    [10] Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 2004; 25:2547-2555
    [11] Xuanyong Liu, Shunyan Tao, Chuanxian Ding. Bioactivity of plasma sprayed dicalcium silicate coatings. Biomaterials 2002;23:963-968
    [12] Youtao Xie, Xuanyong Liu, Xuebin Zheng, Chuanxian Ding. Bioconductivity of plasma sprayed dicalcium silicate/titanium composite coatings on Ti-6A1-4V alloy. Surface & Coatings Technology 2005;199:105-111
    [13] Keeting PE, Oursler MJ, Weigand KE, Bonde SK, Spelsberg TC, Riggs BL. Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 1992;7:1281-9
    [14] El-Ghannam A, Ducheyne P, Shapiro IM. Bioactive material template for in vitro synthesis of bone. J Biomed Mater Res 1995;29:359-70
    [15] Van Damme PA: The vistas and horizons of bony reconstruction commentary. J Craniomaxillofac Surg 2005;33:75-78
    [16]Meyer Jr,Tsahakis RA,Martin PJ,Banks DF,Harrow DM,Kiebzak GM,Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats.J.Orthop.Res.2001;19:428-435.
    [17]Ettinger M.Aging bone and osteoporosis Strategies for preventing fractures in the elderly.Arch.Int.Med.2003;163:2237-2246.
    [18]Heersche JN,Bellows CG,Ishida Y.The decrease in bone massassociated with aging and menopause.J.Prosthet.Dent.1998;79:14-16.
    [19]D'Ippolito G,Schiller PC,Ricordi C,Roos BA,Howard GA.Age-related osteogenic potential of mesenchymal stromal cells from human vertebral bone marrow.J.Bone Miner.Res.1999;14:1115-1122.
    [20]Mueller SM,Glowacki J.Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges.J Cell Biochem 2001;82:583-590
    [21]Muschler GF,Nitto H,Bohem CA,Easley KA.Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors.J.Orthop.Res.2001;19:117-125.
    [22]Reinhard Gruber,Hannj(o|¨)rg Koch,Bruce A.Doll,Florian Tegtmeier,Thomas A.Einhorn,Jeffrey O.Hollinger,Fracture healing in the elderly patient Experimental Gerontology 2006;41:1080-1093
    [23]Peck WA,Birge ST.Bone cells:biochemical and biological studies after enzymatic isolation.Science.1964;146:1476-1479
    [24]黄杰,程云英.大鼠成骨细胞的体外培养和生物学特性的研究.南京铁道医学院学报[J].2000;19(2):88-90
    [25]Shigeno Y,Ashton BA.Human bone cell proliferation in vitro decreases with human donor age.J Bone Joint Surg Br,1995;77:139-142
    [26]于明香,金慰芳,顾淑珠,王洪复,体外培养人成骨细胞随供体的增龄而改变,中华内分泌代谢杂志[J].2002;2(18):116-119
    [27]王洪复,于明香,老年人成骨细胞骨形成功能的衰退与治疗.国外医学内分泌学分册[J].2003;3(2):79-81
    [28] Cei S, Mair B, Kandler B, Gabriele M, Watzek G, Gruber R. Age-related changes of cell outgrowth from rat calvarial and mandibular bone in vitro. J Cranio-Maxillofacial Surgery 2006;34:387-394
    [29] Boneward LF, in: Bilezikian JP, Raisz LG, Rodan GA (Eds), Principles of Bone Biology, second ed. Academic Press, San Diego, 2002, pp. 903-918
    [30] Aubin JE. Regulation of osteoblast formation and function. Rev Endocr Metabol Disorders 2001;2:81-94 Sakai R, Eto Y. Involvement of activin in the regulation of bone metabolism. Mol Cell Endocrinol 2001; 180:183-8
    [31] Kassem M, Kveiborg M, Eriksen EF. Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Invest 2000;30(5):429-37
    [32] Lilli C, Marinucci L, Stabellini G, Belcastro S, Becchetti E, Balducci C, Staffolani N, Locci P. Biomembranes enriched with TGF-β1 favor bone matrix protein expression by human osteoblasts in vitro. J Biomed Mater Res 2002;63:577-582
    [33] Centrella M, Horowitz MC, Wozney JM, McCarthy TL. Transforming growth factor-beta gene family members and bone. Endocr Rev 1994; 15:27-39
    [34] Centrella M, McCarthy TL, Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 1987;262:2869-2874
    [35] Heine UI, Munoz EF, Flanders KC, Roberts AB, Sporn MB. Colocalization of TGF-betal and collagen I and III, fibronectin, and glycosaminoglycans during lung branching morphogenesis. Development 1990;109:29-36
    [36] Kato H, Matsuo R, Komiyama O, Tanaka T, Inazu M, Kitagawa H, Yoneda T. Decreased mitogenic and osteogenic responsiveness of calvarial osteoblasts isolated from aged rats to basic fibroblast growth factor. Gerontology 1995;l:20-27
    [37] Gazit D, Zilberman Y, Ebner R, Kahn A. Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-beta. J Cell Biochem 1998;70:478-88
    [38] Lind M, Growth factor stimulation of bone healing. Acta Orthop Scand Suppl 1998;283:2-5
    [39] Erdmann J, Kogler C, Diel I, Ziegler R, Pfeilschifter J. Age-associated changes in the stimulatory effect of transforming growth factor beta on human osteogenic colony formation. Mechanisms of Ageing and Development 1999; 110:73-85
    [40] Shiels MJ, Mastro AM,V. Gay CV. The effect of donor age on the sensitivity of osteoblasts to the proliferative effects of TGFβ and 1,25(OH_2) vitamin D_3. Life Sciences 2002;70:2967-2975
    [41] Boanini E, Torricelli P, Gazzano M, Giardino R, Bigi A. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials 2006;27:4428-33
    [42] Patricia V, Marivalda MP, Alfredo MG, Fatima L. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 2004;25:2941-8
    [1]Robert AB,Anzano MA,Lamb LC,Smith JM,Sporn MB.New class of transforming growth factor potentiated by epidermal growth factor:isolation from nonneoplastic tissues.Proc Natl Acad Sci USA,1981;78(9):5339-5343
    [2]Aubin JE.Regulation of osteoblast formation and function.Rev Endocr Metabol Disorders 2001;2:81-94
    [3]Boneward LF,in:Bilezikian JP,Raisz LG,Rodan GA(Eds),Principles of Bone Biology,second ed.Academic Press,San Diego,2002,pp.903-918
    [4]Kassem M,Kveiborg M,Eriksen EF.Production and action of transforming growth factor-beta in human osteoblast cultures:dependence on cell differentiation and modulation by calcitriol.Eur J Clin Invest 2000;30(5):429-37
    [4]毕长华,袁锋杰.转化因子β与骨.国外医学内分泌学分册[J].1997;3(17):43-46
    [5]Heberden C,Denis I,Pointillart A,Mercier T.TGF-β and calcitriol.Gen Pharmacol 1998;30:145-151
    [6]Centrella M,McCarthy TL,Canalis E.Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone.J Biol Chem 1987;262:2869-2874
    [7]Lilli C,Marinucci L,Stabellini G,Belcastro S,Becchetti E,Balducci C,Staffolani N,Locci P.Biomembranes enriched with TGF-β1 favor bone matrix protein expression by human osteoblasts in vitro.J Biomed Mater Res 2002;63:577-582
    [8]Centrella M,Ji C,Casinghino S,McCarthy TL.Rapid flux in transforming growth factor-β receptors on bone cells.J Biol Chem 1996;271:18616-18622
    [9]Hyytiainen M,Penttinen C,Keski-Oja J.Latent TGF-beta binding proteins:extracellular matrix association and roles in TGF-beta activation.Crit Rev Clin Lab Sci 2004;41:233-264
    [10]卢卫忠,喜康来.TGF-β对成骨细胞的作用.第三军医大学学报[J],2000;22(1):94-96
    [11]Strong DD,Wengedal JE,Beachler,et al.Transforming growth factor beta increases type Ⅰ collagen message in cultured normal human bone cells.FASEB J,1998;(2):A842
    [12]刘忠厚.骨质疏松学.北京:北京科学出版社[M],1998,121-139
    [13]Yamada Y,Miyauchi A,Goto J,et al.Association of apolymorphism of the transforming growth factor-beta gene with gnetic susceptibility to osteoporosis in postmenopausal Japanese women.J Bone Miner Res,1998;13(10):1569-1576
    [13]Janssens K,Dijke P,Janssens S,Van Hul W.Transforming growth factor-β1 to the bone.Endocr. Rev.2005;26:743-774
    [14]Mehrara BJ,Saadeh PB,Steinbrech DS,et al.A denovirus-mediated gene therapy of osteoblasts in vitro and in vivo.J Bone Miner Res.1999;14:1290-1301
    [15]Grainger DJ,Percival J,Chiano M,et al.The role of serum TGF-beta isoforms as potential markers of osteoporosis.Osteoporosis Int,1999;9:398-404
    [16]Ibbotson KJ,Orcutt CM,Anlin AM,et al.Effects of transforming growth factors beta and mouse clonal.Osteoblast-like cells line MC3T3E.J Bone Miner Res,1996;4(1):37
    [17]饶燕刚,田卫东。组织工程骨培养的分子机制.国际口腔医学杂志[J].2007;34(1):53-55
    [18]Pikington MF,Sims SM,Dixon SJ.Transforming growth factor-beta induces osteoclast ruffling and chemotaxis:potential role in soteoclast recruitment.J Bone Miner Res.2001;16:1237-1247
    [19]Heldin CH,Miyazono K,ten Dijke P.TGF-β signaling from cell membrane to nucleus through SMAD proteins.Nature 1997;390:465-471
    [20]Chang W,Parra M,Ji C,Liu Y,Eickelberg O,McCarthy TL,Centrella M.Transcriptional and post-transcriptional regulation of transforming growth factor β type Ⅱ receptor expression on osteoblasts.Gene 2002;299:65-77
    [21]Bian Y,Kaklamani VG,Reich J,Pasehe B:TGF-beta signaling alterations in cancer;in Frank DA (eds):Signal Transduetion in cancer.Boston,Kluwer Academic,2002,pp 73-94
    [22]Del Re E,Babitt I,Piraini A,et al.In the abscdencde of type Ⅲ receptor,the transforming growth factor(TGF)-beta type Ⅱ-B receptor requires the type Ⅰ receptor to bind TGF-beta2.J Biol Chem.2004;279(21):22765-22772
    [23]Wrana JL,Attisano L,Carcamo J,Zentella A,Doody J,Laiho M,Wang XF,Massague J.TGF beta signals through a heteromeric protein kinase receptor complex.Cell 1992;71:1003-1014
    [24]Massague J.How cells read TGF-beta signals.EMBO J,2000;1(3):169-178
    [25]Ramirez-Yanez GO,Hamlet S,Jonarta A,Seymour GJ,Symons AL.Prostaglansin E2 enhances transforming growth factor-beta 1 and TGF-beta receptors synthesis:An in vivo and in vitro study Prostaglandins Leukot Essen Fatty Acids 2006;74:183-192
    [26]Schwartz Z,Lohmann CH,Sisk M,Cochran DL,Sylvia VL,Simpson J,Dean DD,Boyan BD.Local factor production by MG63 osteoblast-like cells in response to surface roughness and 1,25-(OH)_2D_3 is mediated via protein kinase C- and protein kinase A-dependent pathways.Biomaterials 2001;22:731-41
    [27]Jorgensen NR,Henriksen Z,Sorensen OH,Civitelli R.Dexamethasone,BMP-2,and 125-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype:validation of an in vitro model for human bone marrow-derived primary osteoblasts.Steroids 2004;69:219-226
    [28]Subramaniam M,Colvard D,Keeting PE,Rasmussen K,Riggs BL,Spelsberg TC.Glucocorticoid regulation of alkaline phosphatase,osteocalcin,and proto-oncogenes in normal human osteoblast-like cells.J Cell Biochem 1992;50:411-24
    [29]Sun Junying,Wei Li,Liu Xuanyong,Li Jianyou,Li Baoe,Wang Guocheng,Meng Fanhao.Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation,differentiation and gene expression.Acta Biomaterialia,doi:10.1016/j.actbio.2008.10.011
    1.Friedenstein,A.J.P.-S.I.,Petrakova,K.V.1966.Osteogenesis in transplants of bone marrow cells.The Journal of Embryological Experimental Morphology,16,381-390.
    2.Jaiswal,N.,Haynesworth,S.E.,Caplan,A.I.,Bruder,S.P.,1997.Osteogenic differentiation of purified,culture expanded human mesenchymal stem cells in vitro.J.Cell.Biochem.64,295-312.
    3.Purpura,K.A.,Aubin,J.E.,Zandstra,P.W.,2004.Sustained in vitro expansion of bone progenitors is cell density dependent.Stem Cells 22,39-50.
    4.Johnstone,B.,Hering,T.M.,Caplan,A.I.,Goldberg,V.M.,Yoo,J.U.,1998.In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp.Cell Res.238,265-272.
    5.Wakitani,S.,Saito,T.,Caplan,A.I.,1995.Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine.Muscle Nerve 18,1417-1426
    6.Deng,W.,Obrocka,M.,Fischer,I.,Prockop,D.J.,2001.In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP.Biochem.Biophys.Res.Commun.282,148-152.
    7.Lee,O.K.,Kuo,T.K.,Chen,W.M.,Lee,K.D.,Hsieh,S.L.,Chen,T.H.,2004.Isolation of multipotent mesenchymal stem cells from umbilical cord blood.Blood 103,1669-1675
    8.Hou,L.,Cao,H.,Wang,D.,Wei,G.,Bai,C.,Zhang,Y.,Pei,X.,2003.Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro.Int.J.Hematol.78,256-261.
    9.Young,H.E.,ASteele,T.,Bray,R.,Hudson,J.,Floyd,J.A.,Hawkins,K.,Thomas,K.,Austin,T.,Edwards,C.,Cuzzourt,J.,et al.,2001.Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal,adult,and geriatric donors.Anat.Rec.264,51-62.
    10.Shih,D.T.,Lee,D.C.,Chen,S.C.,Tsai,R.Y.,Huang,C.T.,Tsai,C.C.,Shen,E.Y.,Chiu,W.T.,2005.Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue.Stem Cells 23,1012-1020.
    11.Jones,E.A.,English,A.,Henshaw,K.,Kinsey,S.E.,Markham,A.F.,Emery,P.,MeGonagle,D.,2004.Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis.Arthritis Rheum.50,817-827.
    12.De Ugarte,D.A.,Alfonso,Z.,Zuk,P.A.,Elbarbary,A.,Zhu,M.,Ashjian,P.,Benhaim,P.,Hedrick,M.H.,Fraser,J.K.,2003.Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow.Immunol.Lett.89,267-270.
    13.Waller,E.,Olweus,J.,Lund-Johansen,F.,Huang,S.,Nguyen,M.,Guo,G.,Terstappen,L.,1995.The "common stem cell" hypothesis reevaluated:human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors.Blood 85,2422-2435.
    14.Nakashima,K.,de Crombrugghe,B.,2003.Transcriptional mechanisms in osteoblast differentiation and bone formation.Trends Genet.19,458-466.
    15.Pittenger,M.F.,Mackay,A.M.,Beck,S.C.,Jaiswal,R.K.,Douglas,R.,Mosca,J.D.,Moorman,M.A.,Simonetti,D.W.,Craig,S.,Marshak,D.R.(1999).Multilineage potential of adult human mesenchymal stem cells.Science,284,143-147.
    16.Verfaillie,C.M.,2005.Multipotent adult progenitor cells:an update.Novartis Found.Symp.265,55-61 Discussion 61-65,92-97.
    17.Aggarwal,S.,Pittenger,M.F.,2005.Human mesenehymal stem cells modulate allogeneic immune cell responses.Blood 105,1815-1822
    18.Digirolamo,C.M.,Stokes,D.,Colter,D.,Phinney,D.G.,Class,R.,Prockop,D.J.1999.Propagation and senescence of human marrow stromal cells in culture:a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate.British Journal of Haematology,107,275-281
    19.Murphy,J.M.,Dixon,K.,Beck,S.,Fabian,D.,Feldman,A.,Barry,F.2002.Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis.Arthritis Rheumatism,46,704-713.
    20.D'Ippolito,G.,Schiller,P.C.,Ricordi,C.,Roos,B.A.,Howard,G.A.1999.Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow.Journal of Bone and Mineral Research,14,1115-1122.
    21. Murphy, M., Fink, D.J., Hunziker, E.B., Barry, F.P. 2003.Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheumatism, 48,3464-3474.
    
    22. Ringe, J., Kaps, C., Schmitt, B., Buscher, K., Bartel, J., Smolian, H., Schultz, O., Burmester, G. R., Haupl, T., Sittinger, M. 2002. Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell and Tissue Research, 307,321-327
    
    23. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G.,Meyers, J., Redmond, J. M., Pittenger, M. F., Martin, B. J. 2002. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects.The Annals of Thoracic Surgery, 73,1919-1925.
    
    24. Bosch, P., Musgrave, D.S., Lee, J.Y., Cummins, J., Shuler, T., Ghivizzani, T.C., Evans, T., Robbins, T.D., Huard, J., 2000. Osteoprogenitor cells within skeletal muscle. J. Orthop. Res. 18, 933-944.
    
    25. Collett, G.D., Canfield, A.E., 2005. Angiogenesis and pericytes in the initiation of ectopic calcification. Circ. Res. 96,930-938.;
    
    26. Doherty, M.J., Ashton, B.A., Walsh, S., Beresford, J.N., Grant, M.E., Canfield, A.E., 1998. Vascular pericytes express osteogenic potential in vitro and in vivo. J. Bone Miner. Res. 13, 828-838.
    
    27. Eghbali-Fatourechi, G.Z., Lamsam, J., Fraser, D., Nagel, D., Riggs, B.L., Khosla, S., 2005. Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 352,1959-1966.
    
    28. Lodie, T. A., Blickarz, C. E., Devarakonda, T. J., He, C.,Dash, A. B., Clarke, J., Gleneck, K., Shihabuddin, L., Tubo, R.2002. Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering, 8, 739-751.;
    
    29. McBride, C., Gaupp, D., Phinney, D. G. 2003. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy, 5, 7-18.
    
    30. Martin, I., Muraglia, A., Campanile, G., Cancedda, R., Quarto,R. 1997. Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology, 138,4456-4462.
    
    31. Phinney, D. G., Kopen, G., Isaacson, R. L., Prockop, D. J.1999. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield,growth, and differentiation.Journal of Cellular Biochemistry,72,570-585.
    32.Bianchi,G.,Banfi,A.,Mastrogiacomo,M.,Notaro,R.,Luzzatto,L.,Cancedda,R.,Quarto,R.2003.Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2.Experimental Cell Research,287,98-105.
    33.Ortiz,L.A.,Gambelli,F.,McBride,C.,Gaupp,D.,Baddoo,M.,Kaminski,N.,Phinney,D.G.2003.Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects.Proceedings of the National Academy of Sciences of the United States of America,100,8407-8411.
    34.Jiang,Y.,Jahagirdar,B.N.,Reinhardt,R.L.,Schwartz,R.E.,Keene,C.D.,Ortiz-Gonzalez,X.R.,Reyes,M.,Lenvik,T.,Lund,T.,Blackstad,M.,Du,J.,Aldrich,S.,Lisberg,A.,Low,W.C.,Largaespada,D.A.,Verfaillie,C.M.(2002).Pluripotency of mesenchymal stem cells derived from adult marrow.Nature,418,41-49.
    35.Lodie,T.A.,Blickarz,C.E.,Devarakonda,T.J.,He,C.,Dash,A.B.,Clarke,J.,Gleneck,K.,Shihabuddin,L.,Tubo,R.(2002).Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction.Tissue Engineering,8,739-751.
    36.Aalami OO,Nacamuli RP,Lenton KA,Cowan CM,Fang TD,Fong KD,Shi YY,Song HM,Sahar DE,Longaker MT:Applications of a mouse model of calvarial healing:differences in regenerative abilities of juveniles and adults.Plast Reconstr Surg 2004 114:713-720,
    37.Bergman RJ,Gazit D,Kahn AJ,Gruber H,McDougali S,Hahn TJ.Age-related changes in osteogenic stem cells in mice.J Bone Miner Res 1996;11:568-77.
    38.Quarto R,Thomas D,Liang CT.Bone progenitor cell deficits and the age-associated decline in bone repair capacity.Calcif Tissue Int 1995;56:123-9.
    39.Gosain AK,Santoro TD,Song LS,Capel CC,Sudhakar PV,Matloub HS:Osteogenesis in calvarial defects:contribution of the dura,the pericranium,and the surrounding bone in adult versus infant animals.Plast Reconstr Surg 2003 112:515-527,
    40.Lu C,Miclau T,Hu D,Hansen E,Tsui K,Puttlitz C,Marcucio RS:Cellular basis for age-related changes in fracture repair.J Orthop Res 2005 23:1300-1307,
    41. Kahn A, Gibbons R, Perkins S, Gazit D.Age-related bone loss. A hypothesis and initial assessment in mice.Clin Orthop 1995:69-75.
    
    42. Hee HT, Wong HP, Low YP, Myers L: Predictors of outcome of floating knee injuries in adults: 89 patients followed for 2-12 years. Acta Orthop Scand 72: 385-394,2001.
    
    43. Moerman, E.J., Teng, K., Lipschitz, D.A., Lecka-Czernik, B., 2004. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3, 379-389
    
    44. Baxter, M.A., Wynn, R.F., Jowitt, S.N., Wraith, J.E., Fairbairn, L.J., Bellantuono, I., 2004. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22,675-682.
    
    45. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem 2001;82:583-90.
    
    46. Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001; 19: 117-25.
    
    47. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM: 1999 Age-dependent impairment of angiogenesis. Circulation 99:111-120,
    
    48. Haynesworth SE, Goldberg VM, Caplan AI. Diminution of the number of mesenchymal stem cells as a cause for skeletal aging. In: Woo, SL-Y, editor. Musculoskeletal soft-tissue aging: impact on mobility, AAOS Workshop, 1994. p. 79-87.
    
    49. Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamai S, Dohi Y: The effect of aging on bone formation in porous hydroxyapatite: biochemical and histological analysis. J Bone Miner Res 12:989-994,1997
    
    50. Negishi, Y., Kudo, A., Obinata, A., Kawashima, K., Hirano, H., Yanai, N., Obinata, M., Endo, H., 2000. Multipotency of a bone marrow stromal cell line, TBR31-2, established from ts-SV40 T antigen gene transgenic mice. Biochem. Biophys. Res. Commun. 268,450-455.
    
    51. Mauney, J.R., Kaplan, D.L., Volloch, V., 2004. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.Biomaterials 25,3233-3243.
    52.Stenderup,K.,Justesen,J.,Clausen,C.,Kassem,M.,2003.Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells.Bone 33,919-926
    53.Kobune,M.,Kawano,Y.,Ito,Y.,Chiba,H.,Nakamura,K.,Tsuda,H.,Sasaki,K.,Dehari,H.,Uchida,H.,Honmou,O.,et al.,2003.Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobblestone area-supporting cells.Exp.Hematol.31,715-722.
    54.Meirelles Lda,S.,Nardi,N.B.,2003.Murine marrow-derived mesenchymal stem cell:isolation,in vitro expansion,and characterization.Br.J.Haematol.123,702-711.
    55.Muraglia,A.,Cancedda,R.,Quarto,R.,2000.Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.J.Cell Sci.113,1161-1166.
    56.Rubin,H.,2002.The disparity between human cell senescence in vitro and lifelong replication in vivo.Nat.Biotechnol.20,675-681.
    57.于明香,金慰芳,顾淑珠,王洪复,体外培养人成骨细胞随供体的增龄而改变,中华内分泌代谢杂志[J].2002;2(18):116-119
    58.Cao,J.J.,Wronski,T.J.,Iwaniec,U.,Phleger,L.,Kurimoto,P.,Boudignon,B.,Halloran,B.P.,2005.Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.J.Bone Miner.Res.20,1659-1668.
    59.Silvia,C.,Birgit,M.,Barbara,K.,Mario,G.,Georg,W.,2006 Age-related changes of cell outgrowth from rat calvarial and mandibular bonein vitro.Journal of Cranio-Maxillofacial Surgery (2006) 34,387-394
    60.Roholl,P.,Blauw,E.,Zurche,C.,Dormans,J.A.,Theuns,H.M.,Evidence for a diminished maturation of preosteoblasts into osteoblasts during aging in rats:an ultrastructural analysis.J Bone Miner Res 1994;9:355-66.
    61.Bodnar,A.G.,Ouellette,M.,Frolkis,M.,Holt,S.E.,Chiu,C.P.,Morin,G.B.,Harley,C.B.,Shay,J.W.,Lichtsteiner,S.,Wright,W.E.,1998.Extension of life-span by introduction of telomerase into normal human cells.Science 279,349-352.
    62.Vaziri,H.,Benchimol,S.,1998.Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8,279-282.
    
    63. Campbell, L.J., Fidler, C., Eagleton, H., Peniket, A., Kusec, R., Gal, S., Littlewood, T.J.,Wainscoat, J.S., Boultwood, J., 2006. hTERT, the catalytic component of telomerase, is downregulated in the hematopoietic stem cells of patients with chronic myeloid leukaemia. Leukemia 20,671-679.
    
    64. Nugent, C.I., Bosco, G., Ross, L.O., Evans, S.K., Salinger, A.P., Moore, J.K., Haber, J.E., Lundblad, V., 1998. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8,657-860.
    
    65. Blackburn, E.H., 2000. The end of the (DNA) line. Nat. Struct. Biol. 7, 847-850
    
    66. Nakayama, J., Tahara, H., Tahara, E., Saito, M., Ito, K., Nakamura, H., Nakanishi, T., Tahara, E., Ide, T., Ishikawa, F., 1998. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat. Genet. 18,65-68.
    
    67. Forsyth, N.R., Wright, W.E., Shay, J.W., 2002. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69, 188-197.
    
    68. Gronthos, S., Chen, S., Wang, C.Y., Robey, P.G., Shi, S., 2003.Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J. Bone Miner. Res. 18,716-722.
    
    69. Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C.M., Robey, P.G., Wang, C.Y., 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol. 20,587-591.
    
    70. Liu, L., DiGirolamo, C.M., Navarro, P.A., Blasco, M.A., Keefe, D.L., 2004. Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp. Cell Res. 294,1-8.
    
    71. Torella, D., Rota, M., Nurzynska, D., Musso, E., Monsen, A., Shiraishi, I., Zias, E., Walsh, K., Rosenzweig, A., Sussman, M.A., et al., 2004. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growthfactor-1 overexpression. Circ. Res. 94, 514-524.
    
    72. Parsch, D., Brummendorf, T.H., Richter, W., Fellenberg, J., 2002. Replicative aging of human articular chondrocytes during ex vivo expansion. Arthritis Rheum. 46,2911-2916.
    
    73. Parsch, D., Fellenberg, J., Brummendorf, T.H., Eschlbeck, A.M., Richter, W., 2004. Telomere length and telomerase activity during expansion and differentiation of human mesenchymal stem cells and chondrocytes. J. Mol. Med. 82,49-55.
    
    74. Darimont, C., Zbinden, I., Avanti, O., Leone-Vautravers, P., Giusti, V., Burckhardt, P., Pfeifer, A.M., Mace, K.,2003. Reconstitution of telomerase activity combined with HPV-E7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization. Cell. Death Differ. 10,1025-1031.
    
    75. Darimont, C., Avanti, O., Tromvoukis, Y., Vautravers-Leone, P., Kurihara, N., Roodman, G.D., Colgin, L.M., Tullberg-Reinert, H., Pfeifer, A.M., Offord, E.A., et al., 2002. SV40 T antigen and telomerase are required to obtain immortalized human adult bone cells without loss of the differentiated phenotype. Cell. Growth Differ. 13, 59-67.
    
    76. Montjovent, M.O., Burri, N., Mark, S., Federici, E., Scaletta, C., Zambelli, P.Y., Hohlfeld, P., Leyvraz, P.F.,Applegate, L.L., Pioletti, D.P., 2004. Fetal bone cells for tissue engineering. Bone 35, 1323-1333.
    
    77. Zimmermann, S., Voss, M., Kaiser, S., Kapp, U.,Waller, C.F., Martens, U.M., 2003. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 17, 1146-1149.
    
    78. Schieker, M., Pautke, C., Reitz, K., Hemraj, I., Neth, P., Mutschler, W., Milz, S., 2004. The use of four-colour immunofluorescence techniques to identify mesenchymal stem cells. J. Anat. 204, 133-139.
    
    79. Allsopp, R.C., Weissman, I.L., 2002. Replicative senescence of hematopoietic stem cells during serial transplantation:does telomere shortening play a role? Oncogene 21, 3270-3273
    
    80. Simonsen, J.L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S.I., Jensen, T.G., Kassem, M., 2002.Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592-596.
    
    81. Sharpless, N.E., DePinho, R.A., 2004. Telomeres, stem cells, senescence, and cancer,. J. Clin. Invest. 113, 160-816.
    
    82. Krtolica, A., & Campisi, J. 2002. Cancer and aging: A model for the cancer promoting effects of the aging stroma. International Journal of Biochemistry & Cell Biology, 34(11), 1401-1414.
    
    83. Ramirez, R. D., Wright, W. E., Shay, J. W., & Taylor, R. S. 1997.Telomerase activity concentrates in the mitotically active segments of human hair follicles. The Journal of Investigative Dermatology, 108(1), 113-117.
    
    84. Yui, J., Chiu, C. P., Lansdorp, P. M. 1998. Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood, 91(9), 3255-3262
    
    85. Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B., Weissman, I. L. 2003. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood, 102(2), 517-520.
    
    86. Yi, Y., Shepard, A., Kittrell, F., Mulac-Jericevic, B., Medina, D., Said, T. K. 2004. p19ARF determines the balance between normal cell proliferation rate and apoptosis during mammary gland development. Molecular Biology of the Cell, 15(5), 2302-2311.
    
    87. Beausejour, CM., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., et al. 2003. Reversal of human cellular senescence: Roles of the p53 and pl6 pathways. The EMBO Journal, 22(16), 4212-4222.
    
    88. Herbig, U., Jobling,W. A., Chen, B. P., Chen, D. J., Sedivy, J. M. 2004. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(ClPl), but not p16(INK4a). Molecular Cell, 14(4), 501-513.
    
    89. Dodson, S.A., Bernard, G.W., Kenney, E.B., Carranza, F.A. 1996, In vitro comparison of aged and young osteogenic and hemopoietic bone marrow stem cells and their derivative colonies. J Periodontol, 67:184-96.
    
    90. Quarto, R., Thomas, D., Liang, C.T. 1995. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int,56:123-9.
    
    91. Oreffo, R.O., Bennett, A., Carr, A.J., Triffitt, J.T., 1998. Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursors. Scand J Rheumatol, 27:415-24
    
    92. Campisi, J., 2000. Cancer, aging and cellular senescence. In Vivo 14, 183-188
    
    93. Krtolica, A., Campisi, J., 2003. Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol.11,109-116.
    
    94. Shiels, M.J., Mastro, A.M., Gay, C.V., 2002. The effect of donor age on the sensitivity of osteoblasts to the proliferative effects of TGF(beta) and 1,25(OH(2)) vitamin D(3). Life Sci. 70, 2967-2975.
    95.Martinez,M.E.,Medina,S.,Sanchez,M.,Del Campo,M.T.,Esbrit,P.,Rodrigo,A.,Martinez,P.,Sanchez-Cabezudo,M.J.,Moreno,I.,Garces,M.V.,Munuera,L.,1999.Influence of skeletal site of origin and donor age on 1,25(OH)2D3-induced response of various osteoblastic markers in human osteoblastic cells.Bone 24,203-209.
    96.Martinez,P.,Moreno,I.,De Miguel,F.,Vila,V.,Esbdt,P.,Martinez,M.E.,2001.Changes in osteocalcin response to 1,25-dihydroxyvitamin D(3) stimulation and basal vitamin D receptor expression in human osteoblastic cells according to donor age and skeletal origin.Bone 29,35-41.
    97.Batge,B.,Feydt,A.,Gebken,J.,Klein,H.,Notbohm,H.,Muller,P.K.,Brinckmann,J.,2000.Age-related differences in the expression of receptors for TGF-beta in human osteoblast-like cells in vitro.Exp.Clin.Endocrinol.Diabetes 108,311-315.
    98.Kato,H.,Matsuo,R.,Komiyama,O.,Tanaka,T.,Inazu,M.,Kitagawa,H.,Yoneda,T.,1995.Decreased mitogenic and osteogenic responsiveness of calvarial osteoblasts isolated from aged rats to basic fibroblast growth factor.Gerontology 41(Suppl.1),20-27.
    99.Alliston,T.,Choy,L.,Ducy,P.,Karsenty,G.,Derynck,R.,2001.TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfal and osteocalcin expression and inhibits osteoblast differentiation.Embo J.20,2254-2272.
    100.王洪复,于明香,老年人成骨细胞骨形成功能的衰退与治疗.国外医学内分泌学分册[J].2003;3(2):79-81
    101.Wei,X.,Messner,K.,1998.Age- and injury-dependent concentrations of transforming growth factor-beta 1 and proteoglycan fragments in rabbit knee joint fluid.Osteoarthr.Cartilage 6,10-18.
    102.Tsuboi,I.,Morimoto,K.,Hirabayashi,Y.,Li,G.X.,Aizawa,S.,Mori,K.J.,Kanno,J.,Inoue,T.,2004.Senescent B lymphopoiesis is balanced in suppressive homeostasis:decrease in interleukin-7and transforming growth factor-beta levels in stromal cells of senescence-accelerated mice.Exp.Biol.Med.(Maywood) 229,494-502.
    103.Canalis,E.,Economides,A.N.,Gazzerro,E.,2003.Bone morphogenetic proteins,their antagonists,and the skeleton.Endocr.Rev.24,218-235.
    104.Ebendal,T.,Bengtsson,H.,Soderstrom,S.,1998.Bone morphogenetic proteins and their receptors: potential functions in the brain. J. Neurosci. Res. 51,139-146
    
    105. Chen, C.S., 2002. Phorbol ester induces elevated oxidative activity and alkalization in a subset of lysosomes.BMC Cell. Biol. 3,21.
    
    106. Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Muller-Newen, G., Schaper, F., 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374,1-20.
    
    107. Ferrucci, L., Harris, T.B., Guralnik, J.M., Tracy, R.P., Corti, M.C., Cohen, H.J., Penninx, B., Pahor, M., Wallace, R., Havlik, R.J., 1999. Serum IL-6 level and the development of disability in older persons. J. Am. Geriatr. Soc. 47, 639-646.
    
    108. Harris, T.B., Ferrucci, L., Tracy, R.P., Corti, M.C., Wacholder, S., Ettinger Jr., W.H., Heimovitz, H., Cohen, H.J.,Wallace, R., 1999. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am. J. Med. 106, 506-512
    
    109. Cheleuitte, D., Mizuno, S., Glowacki, J., 1998. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J. Clin. Endocrinol. Metab. 83,2043-2051.
    
    110. Droge, W., 2003. Oxidative stress and aging. Adv. Exp. Med. Biol. 543,191-200.
    
    111. Meagher, R.C., Salvado, A.J., Wright, D.G., 1988. An analysis of the multilineage production of human hematopoietic progenitors in long-term bone marrow culture: evidence that reactive oxygen intermediates derived from mature phagocytic cells have a role in limiting progenitor cell self-renewal. Blood 72, 273-281.
    
    112. Carriere, A., Fernandez,Y., Rigoulet, M., Penicaud, L., Casteilla, L., 2003. Inhibition of preadipocyte proliferation by mitochondrial reactive oxygen species. FEBS Lett. 550,163-167.
    
    113. Reykdal, S., Abboud, C., Liesveld, J., 1999. Effect of nitric oxide production and oxygen tension on progenitor preservation in ex vivo culture. Exp. Hematol. 27, 441-450.
    
    114. Wang, F.S., Yang, K.D., Wang, C.J., Huang, H.C., Chio, C.C., Hsu, T.Y., Ou, C.Y., 2004. Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J. Bone Miner. Res. 19,973-982.
    
    115. Isomura, H., Fujie, K., Shibata, K., Inoue, N., lizuka, T., Takebe, G., Takahashi, K., Nishihira, J., lzumi, H., Sakamoto, W., 2004. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 197,93-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700