PAN基碳纳米纤维杂化复合材料及其生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米纤维(Carbon nanofiber)由于其优异的机械强度、化学稳定性、高的长径比以及易于表面官能化等性能逐渐成为研究的热点。通过静电纺丝-碳化法制备的碳纳米纤维材料还具有与细胞外基质的形态结构相似、无金属催化剂杂质、具有大的比表面积和高孔隙率等特点,被认为在生物医学领域有潜在的应用前景。然而,碳纳米纤维是生物惰性材料,在骨组织修复的过程中,为了使碳纳米纤维支架材料更好的与创伤部位结合,其与其他的生物材料的复合是一种有效的方法。本文利用静电纺丝、溶胶-凝胶以及原位烧结相结合的方法制备了PAN基碳纳米纤维杂化生物复合材料。通过对复合纳米纤维材料的组分、相结构、细胞毒性、细胞相容性以及生物活性等方面的研究,系统地评价这类新型生物材料用于引导骨再生膜/支架材料的可行性和优越性。
     本文首先优化了PAN平行纳米纤维的静电纺丝制备工艺,不仅使PAN纳米纤维的直径分布明显变窄,而且还改善了PAN静电纺丝过程的稳定性。经过热牵伸处理后,PAN平行纳米纤维膜的纤维直径减小,纤维间隙变小,平均拉伸强度达到了302 MPa。其次,β-磷酸三钙(β-TCP)是一种可降解的骨修复生物陶瓷材料,其在骨组织修复中能够提供骨再生所必需的钙离子和磷酸根离子。本文以溶胶-凝胶技术为基础,磷酸三乙酯(TEP)和硝酸钙(CN)为磷源和钙源,通过控制水解体系pH值、调整催化剂和溶胶烧结温度,获得了制备高纯度和高结晶度的β-TCP凝胶的工艺。第三,以掺杂了TEP和CN形成的溶胶(TEP-CN)的PAN溶液为纺丝液,用优化的PAN静电纺丝的工艺得到PAN/TEP-CN复合纳米纤维,结合高纯度β-TCP凝胶的制备条件,对该复合纳米纤维进行热牵伸、预氧化和高温碳化烧结,制备了一种由β-TCP提供生物功能和碳纳米纤维提供结构特性的复合纳米纤维。并讨论了负载不同溶胶量对复合纳米纤维微观形貌、生物特性的影响。
     研究发现:低溶胶量负载得到的β-TCP@碳纳米纤维,β-TCP纳米颗粒为20-30 nm,主要位于碳纳米纤维的表面;而高溶胶量负载得到的β-TCP@碳纳米纤维,纤维表面比较光滑,通过(透射电子显微镜)TEM分析得知β-TCP纳米颗粒主要位于碳纳米纤维的内部,且粒径较大,与碳纳米纤维共同形成了类似竹节状的结构。通过对高溶胶量负载的β-TCP@碳纳米纤维进行加速降解研究得知:这种类似竹节状的结构可以通过β-TCP纳米颗粒的溶解而使连续的碳纳米纤维的长径比大大缩短。
     对上述制备的复合纳米纤维材料进行了MTT细胞毒性试验和人牙周膜细胞(hPDLCs)的体外复合培养等生物相容性检测。MTT检测结果显示所制得的材料细胞相容性良好,没有明显毒性。用激光共聚焦显微镜观察hPDLCs在纳米纤维材料上的铺展和生长情况显示,hPDLCs在β-TCP@碳纳米纤维材料上完全铺展开来,并且细胞沿平行纤维方向生长。扫描电镜结果(SEM)显示,细胞与材料结合紧密,分泌大量的细胞外基质,生长状态良好。
     生物活性玻璃(Bioglass)是目前所知唯一可以同时与硬组织和软组织结合良好的骨修复材料。本文以正硅酸四乙酯(TEOS)为硅源、TEP和CN为磷源和钙源、PAN为基体,利用前述优化的制备工艺,将生物活性玻璃纳米颗粒原位掺杂进入碳纳米纤维制得Bioglass@碳纳米纤维。SEM结果显示该复合纤维的平均直径为360nm,其表面负载的Bioglass纳米颗粒的粒径约为20 nm。
     对所制备的Bioglass@碳纳米纤维进行了生物活性检测。通过XRD、FTIR、EDX等分析方法对复合纳米纤维在5倍模拟人体体液(5SBF)内生物矿化后的微观形貌和结构进行了表征。6小时矿化后,碳纳米纤维表面的Bioglass纳米颗粒表面有粒状产物隆起,并且随着矿化时间的延长逐渐长大,12-18 h后有些区域产物进一步聚合成球形晶簇。矿化24 h后,球形产物增多并连成片。矿化30 h后,矿化层增厚,厚度达600 nm以上,覆盖整个复合纳米纤维表面。测试结果表明得到的花状结晶为碳酸羟基磷灰石。
     综上所述,由静电纺丝-溶胶凝胶-后烧结相结合的方法所制得的PAN基碳纳米纤维复合材料支架具有良好的生物相容性和结构适用性,具有用于临床的引导组织/骨再生治疗的潜能,有望成为新一代纳米复合生物材料。
Carbon nanofibers (CNFs) show good mechanical properties, chemical stability, high aspect ratio and easy surface functionalized capability to be decorated with more biocompatible hydrophilic groups, which are concerned by more and more researchers. And the CNFs prepared by electrospinning-carbonization which mimic the structure of natural extracellular matrix have attracted considerable attention for both fundamental scientific understanding and their potential biomedical applications. In order to form sufficient bonding between CNFs and juxtaposed bone tissue and to minimize motion-induced damage to surrounding tissue in situ, combination of CNFs with biomaterials is a very effective approach. In this study, a new combination of electrospinning, sol-gel and in-situ sintering was used to prepare the PAN-based hybrid carbon nanofibers. To evaluate the feasibility and superiority of the new type of biomaterials for clinical use, the material composition, phase structure, cytotoxicity, biocompatibility and bioactivity were all studied systematically.
     Firstly, the electrospinning of PAN nanofibers were optimized by using mixture solutions. As a result, not only the fiber diameters were narrower obviously, but also the process stability was improved. After hot stretching treatment, the fiber diameters were reduced and the fiber gaps become smaller while the maximum tensile strength reached 302 MPa. Secondly,β-tricalcium phosphate (β-TCP) is a biodegradable bio-ceramic materials for bone repair, which can provide the necessary calcium and phosphate ions. By controlling the pH value of hydrolysis system, adjusting the catalyst and sol-sintering temperature, high purity and high crystallinity ofβ-TCP crystals with triethyl phosphate (TEP) and calcium nitrate (CN) as the phosphorus and calcium source were prepared. Thirdly, PAN/TEP-CN composite nanofibers were prepared by electrospinning. After the hot strenching treatment, stabilization and carbonization of the PAN/TEP-CN composite nanofibers, a type of nanofibers with biological properties provided byβ-TCP and the structural properties provided by CNFs was fabricated. And the morphology and biological characteristics of the composite nanofibers with different sol volumes were studied.
     The results show that theβ-TCP nanoparticles are mainly on the surface of the CNFs when the composite fibers were prepared at low sol volume, and the diameter of the nanoparticles is 20-30 nm. TEM analysis shows that the nanoparticles are maily located inside the nanofiber when prepared at high sol volume, and finally form a bamboo-like structure. The accelerated degradation of composite nanofibers with high sol volume was studied. The long-continued nanofibers can be effectively degraded into small CNFs with aspect ratio due to the degradation of (3-TCP nanoparticles.
     The biocompatibility test was carried on the above-mentioned composite nanofibrous scaffolds, including cytotoxicity test (MTT test) and human periodontal ligament cells (hPDLCs) in vitro co-culture experiments. MTT test results indicate that the prepared materials have good biocompatibility, and no apparent toxicity. Confocal laser microscope observation shows that the PDLCs adhere favorably onβ-TCP/CNFs membranes with proliferating preferencely along the aligned longitudinal direction of nanofibers. Scanning electron microscopy (SEM) shows that the PDLCs were in close combination with materials, and produces large amounts of extracellular matrix.
     It is generally believed that bioglass is a widely-used bone repair material, which has shown an excellent behavior when it is in contact with physiological fluids. In addition, bioglass is the only one, which can bond to both hard and soft tissue. In this study, carbon nanofibers decorated with bioglass nanoparticles have been prepared by sintering electrospun polyacrylonitrile fibers with calcium nitrate tetrahydrate as the calcium source, tetraethoxysilane (TEOS) as the silica source and triethyl phosphate as the phosphorus source. The SEM reveals that the average diameter of the nanofibers is 360 nm, and the diameter of nanoparticles on the surface of the composite nanofibers is about 20 nm. The results of mineralization in five-timed simulated body fluid (5SBF) characterized by XRD, FTIR and EDX analysis indicate that this kind of hybrid nanofibers possesses good bioactivity. After immersion in 5SBF for 6 h, granular crystals grow from the bioglass nanoparticles which are on the surface of the nanofiber. With the mineralization time extending, the granular crystals become more and more spherical, and after 30 h, the mineral layer are thicker than 600 nm, completely covering the surface of the composite nanofibers. The results show that the obtained flower-like crystals are carbonated hydroxyapatite.
     Therefore, theβ-TCP or bioglass decorated CNF nanofibrous materials with good biocompatibility and structural properties can be used as promising biomaterials for guide tissue/bone regeneration.
引文
[1]阮建明,邹俭鹏,黄伯云著.生物材料学[M].北京:科学出版社,2004.27-32
    [2]Matthew RA, Janet MH, David BB. Periosteum:biology, regulation, and response to osteoporosis therapies[J]. Bone,2004,35:1003-1012
    [3]Jeffery JA, Jennifer LD, James LMF, Frederick PH. Distinct phases in recovery of reconstituted innate cellular-mediated immunity after murine syngeneic bone marrow transplantation[J]. Biology of Blood and Marrow Transplantation,2004,10:834-847
    [4]Charles A, Babbush. Dental implants:the art and science[M]. W. B. Sauders Co.,2001.
    [5]Liebschner M, Wettergreen M. Optimization of bone scaffold engineering for load bearing applications[M]. In Ferretti P, Ashammakhi N:Topics in Tissue Engineering,2003.
    [6]Lieberman JR, Friedlaender GE. Bone regeneration and repair[M]. Humana press Inc., Totowa, New Jersey,2005.
    [7]Qin L, Genant HK, Griffith JF, Leung KS. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials[M]. Springer-Verlag Berlin Heidelberg, New York,2007.
    [8]Dahlin C, Andersson L, Linde A. Bone augmentation at fenestrated implants by osteopromotive membrane techniques:A controlled clinical study[J]. Clin. Oral Implants Res.,1991,2(4):159-165.
    [9]Gottlow J, Nyman S, Karring T, Lindhe J. New attachment formation as the result of controlled tissue regeneration[J]. J. Clin. Periodontol,1984,11(8):494-503.
    [10]Nyman S, Gottlow J, Karring T, Lindhe J. The regenerative potential of the periodontal ligament:an experimental study in the monkeys[J]. J. Clin. Periodontol,1982,9(3): 257-261.
    [11]Buser D, Dula K, Belser U. Localized ridge augmentation using guided bone regeneration[J]. Int. J. Periodontics Restorative Dent.,1993,13(1):29-45.
    [12]Osteohealth Company. Bone grafting & guided bone regeneration, www.osteohealth.com
    [13]张慎.静电纺丝法制备复合引导组织/骨再生材料[D].北京:北京化工大学.2009
    [14]Cristina CV, David LC. Regeneration of Periodontal Tissues:Guided Tissue Regeneration[J]. Dental Clinics of North America,2010,54:73-92
    [15]Yoon JP, Young K, Chong PC, Seung JL. Controlled release of platelet-derived growth factor from porous poly(L-lactide) membranes for guided tissue regeneration[J]. Journal of Controlled Release,1998,51:201-211
    [16]Lin SJ, Hou LT, Liu CM, Liao CS, Wong MY, Ho JY, Chang WK. Bacterial morphotypes and early cellular responses in clinically infected and non-infected sites after combination therapy of guided tissue regeneration and allograft[J]. J. Dent.,2000,28(3):199-206.
    [17]Delloye C, Bannister G. Impaction bone grafting in revision arthroplasty[M]. Marcel Dekker,2004.
    [18]Chen PY, Stokes AG, McKittrick J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk[J]. Acta Biomaterialia,2009, 5:693-706
    [19]Landete-Castillejos T, Garcia A, Gallego L. Body weight, early growth and antler size influence antler bone mineral composition of Iberian Red Deer[J]. Bone,2007,40:230-235
    [20]Chen G, Ushida T, Tateishi T. Hybrid Biomaterials for Tissue Engineering:A Preparative Method for PLA or PLGA±Collagen Hybrid Sponges[J]. Adv. Mater.,2000,12:455-457
    [21]Chen X, Qi Y, Wang L, Yin Z, Yin G, Zou X, Ouyang H. Ligament regeneration using a knitted silk scaffold combined with collagen matrix[J]. Biomaterials 2008,29:3683-3692
    [22]Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone Tissue Engineering[J]. Biomacromolecules,2006,7:2237-2242
    [23]Misra SK, Valappil SP, Roy I, Boccaccini AR. Polyhydroxyalkanoate (PHA)/Inorganic Phase Composites for Tissue Engineering Applications[J]. Biomacromolecules,2006,7: 2249-2258
    [24]Piattelli A, Podda G, Scarano A. Histological evaluation of bone reactions to aluminium oxide dental implants in man:a case report[J]. Biomaterials,1996,17:711-714
    [25]Laurent-Dominique P, Beat G, Louis S. Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application[J]. Biomaterials,2000,21:2193-2201
    [26]徐晓宙著.生物材料学[M].北京:科学出版社,2005,69-77
    [27]Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone[J]. Biomaterials, 2004,25:987-994
    [28]Yuki T, Atsushi S, Toshiki M, Chikara O. Acceleration of calcium phosphate formation on bioactive PMMA-based bone cement by controlling spatial design[J]. Materials Science and Engineering:C,2010,30:624-630
    [29]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at interface of ceramic prosthetic materials[J]. J Biomed Mater Res Symp,1971,2:117-141
    [30]Sepulveda P, Jones JR., Hench LL. Bioactive sol-gel foams for tissue repair[J]. J Biomed Mater Res,2002,59:340-348
    [31]Martinez A, Izquierdo-Barba I, Vallet-Regi M. Bioactivity of a CaO-SiO2 Binary Glasses System[J]. Chem. Mater.,2000,12:3080-3088
    [32]Vallet-Regi M, Ramila A. New Bioactive Glass and Changes in Porosity during the Growth of a Carbonate Hydroxyapatite Layer on Glass Surfaces[J]. Chem. Mater.,2000,12: 961-965
    [33]Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situ tissue regeneration[J]. J. Biomater. Sci. Polym. Ed.,2004,15:543-562
    [34]Xia W, Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass[J]. J. of Non-Crystalline Solids,2008,354:1338-1341
    [35]谢广文.纳米碳纤维表面化学镀层及模板法纳微结构的制备与表征[D].青岛:青岛科技大学,2007
    [36]Hughes TV, Chambers CR. Manufacture of carbon filaments[P]. US Patent,405,1889,480
    [37]Lijima S. Helical microtubes of graohitic carbon[J]. Nature,1991,354:56-58
    [38]Liu J, Yue ZR, Fong H. Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength[J]. Small,2009,5:536-542
    [39]AjayanPM, Nanotubes from Carbon[J]. Chemical Reviews,1999,99(7):1787-1799
    [40]Rodriguez NM, A review of catalytically grown carbon nanofibers[J]. Journal of Materials Research,1993,8:3233-3250
    [41]赵稼祥.纳米碳纤维及其应用[J].高科技纤维与应用,2003,28:7-11
    [42]Bemado CA, Alstrup I, Rostrup NJR. Carbon deposition and methane steam reforming on silica-supported Ni-Cu catalysts[J] J. Cata.,1985,96:517
    [43]Motojima S, Hasegawa I, Kagiya S, Momiyama M, Kawaguchi M, Iwanaga H. Preparation of coiled carbon fibers by pyrolysis of acetylene using a Ni catalyst and sulfur or phosphorus compound impurity[J]. Appl. Phys. Lett.,1993,62:2322
    [44]Chen Y, Wang ZL, Yin JS, Johnson DJ, Prince RH. Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition[J]. Chem. Phys. Lett.,1997,272: 178
    [45]Baker RTK, Harris DS, Thomas RB, Waite RJ. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene[J]. J. Cata.,1973,30:86
    [46]Kim MS, Bodriguez NM, Baker RTK. The role of interfacial phenomena in the structure of carbon deposits[J]. J. Cata.,1992,134:252
    [47]Kim MS, Bodriguez NM, Baker RTK. The interaction of hydrocarbons with copper---nickel and nickel in the formation of carbon filaments[J]. J. Cata.,1991,131:60
    [48]Ishioka M, Okada T, Malkysubara K. Formation of vapor-growth carbon fiber in CO-CO2-H2 mixtures,1. Influence of carrier gas compositon[J]. Carbon,1992,30:859
    [49]Maxlake L. Lecture presented at conference [A]. Glabal outlook for carbon fiber 2002[C], Raleigh, NC. USA,2002:21-23
    [50]成会明.纳米碳管制备、结构、物性及应用[M].北京,化学工业出版社,2002
    [51]Audrey F, Ioannis SC. Polymer nanofibers assembled by electrospinning[J]. Current Opinion in Colloid & Interface Science,2003,8; 64-75
    [52]He JH, Wu Y, Zuo WW. Critical length of straight jet in electrospinning[J]. Polymer,2005, 46:12637-12640
    [53]赵雪飞,邱介山,孙业新,郝策,孙天军,崔凌威.电弧放电法制备煤基炭纳米纤维及开口竹节状碳纳米管[J].新型炭材料,2009,02:109-113
    [54]VanderWR, Thomas M. Diffusion flame synthesis of single-walled carbon nanotubes[J]. Chemical Physies Letters,2000,323:217-223
    [55]Chun I, Reneker D H, Fong H, Fang X. Carbon nanofibers from polyacrylonitrile and mesophase pitch[J]. Journal of Advanced Materials,1999,31:36-41
    [56]Olive GH, olive. Molecular interactions and macroscopic Properties of Polyacrylonitrile and model substances[J]. Advances in Polymer Science,1979,32:123-152.
    [57]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构转变[D].济南:山东大学,2007
    [58]Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A. Characterization of commercially available PAN-based carbon fibers. Pure and Applied Chemistry,1986,58: 455-468
    [59]Kalashnik AT. The role of different factors in creation of the structure of stabilized acrylic fibers[J]. Fiber chemistry,2002,34:10-17
    [60]Ko T, Ting H, Lin C, Chen J. The microstructure of stabilized fibers[J]. Journal of Applied Polymer Science,1988,35:863-874
    [61]Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibers[J]. Polymer, 1999,40:5531-5543
    [62]Gupta A, Harrison IR. New aspects in the oxidadtive stabilization of PAN-based carbon fiers[J]. Carbon,1996,34:1427-1445
    [63]Fitzer E, Fiedler AK. [J]. Polymer preprints,1973,14:401
    [64]Kowbel W., Hippo E, Murdie N. Influence of graphitization environment of pan based carbon fibers on microstructure[J]. Carbon,1989,27:219-226
    [65]Deurbergue A, Oberlin A. TEM study of some recent high modulus pan-based carbon fibers[J]. Carbon,1992,30:981-987
    [66]Ko TH, Day TC, Perng JA, Lin ME The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization[J]. Carbon,1993,31:765-771
    [67]Fitzer E, Muller DJ, The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor[J]. Carbon,1975,13:63
    [68]王茂章,贺福著.碳纤维的制造、性质及其应用[M].北京:科学出版社,1984
    [69]Bahl OP, Manocha LM. Effect of preoxidation conditions on mechanical properties of carbon fibers[J]. Carbon,1975,13:297-300
    [70]Dennet JB, Bansal RC著.李仍元,过梅丽译.碳纤维[M].北京:科学出版社,1989
    [71]舒卫国.碳纤维复合材料在民品中的应用[J].纤维复合材料,2004,3:54-59
    [72]Johnson JA, Barbato MJ, Hopkins SR. Dispersion and film properties of carbon nanofiber pigmented conductive coatings[J]. Progress in Organic Coatings,2003,47:198-206
    [73]Xu J, Donohoe JP, Charles JRU. Preparation, electrical and mechanical properties of vapor grown carbon fiber/inyl ester composites[J]. Composites:Part A,2004,35:693-701
    [74]Chen CF, Lin CL, Wang CM. Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor desposition[J]. Appl Phys Lett.,2003,82:2515-2517
    [75]Smith RC, Carey JD, Poa CHP. Electron field emission from room temperature grown carbon nanofibers[J]. J Appl Phys.,2004,95:3153-3157
    [76]Merkulov VI, Melechko AV, Guillorn MA. Controlled alignment of carbon nanofibers in a large-scale synthesis process[J]. Appl Phys Lett.,2002,80:4816-4818
    [77]Adhyapak PV, Maddanimath T, Pethkar S. Application of electrochemically prepared carbon nanofibers in supercapacitors[J]. Journal of Power Sources,2002,109:105-110
    [78]Hammel E, Tang X, Trampert M. Carbon nanofibers for composite applications[J]. Carbon, 2004,42:1153-1158.
    [79]Teng DH, Yu YH, Liu HY, Yang XP, Ryu SK, Lin YH. Facile fabrication of heterostructured TiO2-xNx/CNFs as an efficient visible-light responsive photocatalyst[J]. Catalysis Communications,2009,10:442-446
    [80]于运花,滕冬华,杨小平.纳米纤维负载二氧化钛光催化剂及其制备方法[P].专利申请号:200710176994.2
    [81]于运花,滕冬华,杨小平.多孔碳纳米纤维负载纳米晶粒催化剂及其制备方法[P].专利申请号:200710179526.0
    [82]Zimmerman R, Ila D, Muntele C, Rodrigues M, Poker DB, Hensley D. Enhanced tissue adhesion by increased porosity and surface roughness of carbon based biomaterials[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2002,191:825-829
    [83]Shum PW, Zhou ZF, Li KY. Enhancement of adhesion strength and tribological performance of pure carbon coatings on Ti-6Al-4V biomaterials with ion implantation pre-treatments[J]. Tribology International,2007,40:313-318
    [84]Park D, Yun YS, Park JM. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons[J]. Journal of Hazardous Materials, 2006,137:1254-1257
    [85]Loir AS, Garrelie F, Donnet C, Subtil JL, Belin M, Forest B, Rogemond F, Laporte P. Mechanical and tribological characterization of tetrahedral diamond-like carbon deposited by femtosecond pulsed laser deposition on pre-treated orthopaedic biomaterials[J]. Applied Surface Science,2005,247:225-231
    [86]Arnould C, Koranyi TI, Delhalle J, Mekhalif Z. Fabrication of tantalum oxide/carbon nanotubes thin film composite on titanium substrate[J]. Journal of Colloid and Interface Science,2010,344:390-394
    [87]Thomson LA, Houlton JEF, Allen MJ, Rushton N. Replacement of the anterior cruciate ligament with a coated carbon fibre prosthesis:a biomechanical study in goats[J]. The Knee, 1994,4:139-145
    [88]Bray RC, Dandy DJ. Comparison of arthroscopic and open techniques in carbon fibre reconstruction of the anterior cruciate ligament:Long-term follow-up after 5 years[J]. Arthroscopy:The Journal of Arthroscopic & Related Surgery,1987,3:106-110
    [89]Claes L, Burri C, Neugebauer R, Wolter D, Rose P. The influence of various carbon fibre braiding techniques and methods of fixation on the extensibility of ligament prostheses[J]. Biomaterials,1983,4:134-136
    [90]Adams D, Williams DF. The response of bone to carbon-carbon composites[J]. Biomaterials,1984,5:59-64
    [91]Harrison RG, Katzenberg MA. Paleodiet studies using stable carbon isotopes from bone apatite and collagen:examples from Southern Ontario and San Nicolas Island, California[J]. Journal of Anthropological Archaeology,2003,22:227-244
    [92]Litzler PY, Benard L, Noelle BF, Sebastien V, Thierry J, Eric B, Claude B, Lemeland JF, Bessou JP. Biofilm formation on pyrolytic carbon heart valves:Influence of surface free energy, roughness, and bacterial species[J]. The Journal of Thoracic and Cardiovascular Surgery,2007,134:1025-1032
    [93]Wang XH, Zhang F, Li CR, Zheng ZH, Wang X, Liu XH, Chen AQ, Jiang ZB. Improvement of blood compatibility of artificial heart valves via titanium oxide film coated on low temperature isotropic carbon[J]. Surface and Coatings Technology,2000,128:36-42
    [94]Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers[J]. Biomaterials 2002; 23:3279-87.
    [95]Price RL, Waid MC, Haberstroha KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers[J]. Biomaterials 2003; 24:1877-87.
    [96]McKenzie JL, Waid MC, Shi R, Webster TJ. Decreased functions of astrocytes on carbon nanofiber materials[J]. Biomaterials 2004; 25:1309-17.
    [97]Liu HY, Cai Q, Lian PF, Fang Z, Duan S, Yang XP, Deng XL, Ryu SK. β-tricalcium phosphate nanoparticles adhered carbon nanofibrous membrane for human osteoblasts cell culture[J]. Materials Letters,2010,64:725-728
    [98]Liu HY, Cai Q, Lian PF, Fang Z, Duan S, Ryu SK, Yang XP, Deng XL. The biological properties of carbon nanofibers decorated with β-tricalcium phosphate nanoparticles[J]. Carbon, In press (doi:10.1016/j.carbon.2010.02.042)
    [99]Formhals A. Process and apparatus for preparing artificial threads [P]. US Patent,1975504, 1934
    [100]Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanoomposites[J]. Composites Science and Technology,2003, 63(15):2223-2253
    [101]Li D, Xia YN. Electrospinning of nanofibers:reinventing the wheel[J]. Advanced Materials, 2004,16(14):1151-1170
    [102]Greiner A, Wendorff JH. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition,2007,46(30):5670-5703
    [103]Hunley MT, Long TE. Perspective electrospinning functional nanoscale fibers:a perspective for the future[J]. Polymer International,2008,57(3):385-389
    [104]Seo JM, Heiden PA, Mullins ME, Hill SE. Michigan technology university,2005.
    [105]Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition,2007,46(30):5670-5703
    [106]大卫R.萨利姆著,高续珊,吴大诚等译.聚合物纤维结构的形成[M].化学工业出版社,2004.
    [107]Kowalewski TA, Blonski S, Barral S. Experiments and modelling of electrospinning process[J]. Bulletin of the Polish Academy of Sciences:Technical Sciences,2005,53(4): 385-394.
    [108]Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers[J]. Journal of Applied Polymer Science,2005,96(2):557-569.
    [109]Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma ZW. An introduction to electrospinning and nanofibers[M]. World Scientific, Singapore,2005.
    [110]Boland ED, Wnek GE, Simpson DQ Palowski KJ, Bowlin GL. Tailoring tissue engineering scaffolds using electrostatic processing techniques:a study of poly (glycolic acid) electrospinning[J]. J. Macromol. Sci. Pur. Appl. Chem.,2001,38A (12):1231-1243.
    [111]Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibers[J]. Nanotechnology,2001,12:384-90.
    [112]Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63:2223-2253.
    [113]Dalton PD, Kleea D, Mollera M. Electrospinning with dual collection rings[J]. Polymer, 2005,46:611-614.
    [114]Macdiarmid AG. "Synthetic metals":a novel role for organic polymers[J]. Current applied Physics,2001,1:269-279.
    [115]Bornat A. Production of electrostatically spun products[P]. US Patent,4689186. 1987-08-25.
    [116]http://www.fuence.co.jp/
    [117]http://www.dongascience.com/
    [118]Morrissey SR, Washingtion C. Commercializing nanomaterials[R]. Government & policy, 2005,83(29):25-27.
    [119]Ko KF. Nanofiber technology:challenges and opportunities for the nonwovens industry[R]. 14th TANDEC International Nonwovens Conference,2004.
    [120]http://www.elmarco.com/
    [121]Kousaku O, Dongil C, et al. Electrospinning of Chitosan[J].Macromolecular Rapid Communicationgs,2004,25:1600-1605.
    [122]You Y, Lee SW. In vitro degradation behaviour of non-porous ultra-fine poly (glycolic acid)/poly (L-lactic acid) fibres and porous ultra-fine poly (glycolic acid) fibres[J]. Polymer Degradation and Stability,2005,90:441-448.
    [123]Wang CH, Shao CL, Wang LJ, Zhang LN, Li XH, Liu YC. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers [J]. J of Colloid and Interface Science,2009,333:242-248.
    [124]Shao DF, Wei QF, Zhang LW, Cai YB, Jiang SD. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide[J]. Applied surface science,2008, 254:6543-6546
    [125]Toshiaki K, Takao Y, Takashi N, Seiya K, Tadashi K, Hiroyasu T. Four calcium phosphate ceramics as bone substitutes for non-weight-bearing[J]. Biomaterials,1993,14:216-224
    [126]Warner SB, Buer A, GrimLer M, Ugbolue SC. A fundamental investigation of the formation and properties of electrospun fibers[R]. National Textile Center Annual Report,1999.
    [127]黄剑锋著.溶胶凝胶原理与技术[M].北京,化学工业出版社,2005.
    [128]雷万军,李秉哲,曹谊林,Kainero KU,彭淑鸽,崔磊,周宁生.组织工程骨和外科人工植入物的仿生技术研究[J].中国组织工程研究与临床康复,2008,12(14):2721-2726.
    [129]Zong XH, Kim K, Fang DF, Ran SF, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer,2002,43:4403-4412.
    [130]Yu L, Liu HS, Xie FW, Chen L, Li XX. Effect of annealing and orientation on microstructures and mechanical properties of polylactic acid[J]. Polymer Engineering and Science,2008,48(4):634-641.
    [131]Dunham MG, Edie DD. Model of stabilization for pan-based carbon fiber precursor bundles[J]. Carbon,1992,30:435-450
    [132]Ko TH, Day TC, Perng JA, Lin MF. The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization[J]. Carbon,1993,31:765-771
    [133]Michel B. Nature Materials[J].2002,1:205-206
    [134]Kirchner HOK. Metallurgical Transactions[J].1970,2:2861-64.
    [135]Tao J, Jiang W, Zhai H, Pan H, Xu X, Tang R. Structural components and anisotropic dissolution behaviors in one hexagonal single crystal of b-tricalcium phosphate[J]. Cryst Growth Des,2008,8(7):2227-34
    [136]Abarrategi A, Gutierrez MC, Moreno-Vicente C, Hortiguela MJ, Ramos V, Lopez-Lacomba JL, et al. Multiwall carbon nanotube scaffolds for tissue engineering purposes[J]. Biomaterials,2008,29:94-102.
    [137]Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers[J]. PNAS,2006,103(9):3357-62.
    [138]Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, et al. Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles[J]. Biomacromolecules,2007,8:3729-35
    [139]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at interface of ceramic prosthetic materials[J]. J Biomed Mater Res Symp,1971,2:117-41.
    [140]Sepulveda P, Jones JR, Hench LL. Bioactive sol-gel foams for tissue repair[J]. J Biomed Mater Res,2002,59:340-8.
    [141]余政炎,黄宏伟.正硅酸乙酯的水解所举反应极其应用[J].杭州化工,2009,3:37-39
    [142]王喜贵,赵慧,张强,吴红英.正硅酸乙酯水解过程的研究进展[J].内蒙古石油化工,2001,27:17-18
    [143]毛丹,姚建曦,王丹.有机溶剂对正硅酸乙酯水解制备二氧化硅微球的影响[J].稀有金属材料与工程,2007,36:180-183
    [144]沈炜明.甲酰胺对正硅酸乙酯水解的影响机理[J].安徽大学学报(自然科学版),2002,26:85-88
    [145]Xia W, Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass[J]. J. of Non-Crystalline Solids 2008,354:1338-1341
    [146]Barrere F, Blitterswijk CA, Groot K, Layrolle P. Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution[J]. Biomaterials 2002,23:1921-1930
    [147]Vallet-Regi M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses[J]. J. Biomed. Mater. Res. 1999,44:416-421
    [148]Rangavittal N, Landa-Canovas AR, Gonzalez-Calbet JM, Vallet-Regi M. Structural study and stability of hydroxyapatite and β-tricalcium phosphate:Two important bioceramics. J Biomed Mater Res.2000,51:660-668.
    [149]Yuan Y, Liu CS, Zhang Y, Shan XQ. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template[J].2008,112:275-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700