仿生型复合式人工胸壁的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     胸壁肿瘤、放射性溃疡、感染、外伤及先天性畸形等疾病的广泛胸壁切除及胸部创伤均可造成胸壁缺损。大块胸壁缺损的重建对于外科医生仍然是一个挑战,人工材料应用于胸壁缺损修复,大大拓展了可选材料来源,推动了胸壁重建外科的发展。许多材料曾被尝试应用于胸壁重建,然而到目前为止,还没有一种完全理想的胸壁重建材料。目前临床上可用的材料仍然存在各种问题:与组织结合能力差,难以与组织有机融合,后期常可松动、移位、活动甚至脱出;长期植入后易导致血清肿、瘘管形成、疼痛、血管破坏及引发感染等并发症,部分病人后期需要再次手术取出。而对于重建方式来说,目前应用最多的仍是MARLEX网+骨水泥+MARLEX网的三明治结构,但是其不能进行解剖和功能的双重重建,往往会影响胸廓的美观或者影响术后对于内脏器官的观察。
     目前,组织工程技术的临床应用已经取得了举世瞩目的成绩,包括骨、软骨、皮肤等多种组织的再生。组织工程技术主要有两个关键因素,即种子细胞和支架。骨髓基质干细胞作为种子细胞已经得到了公认,其可向多种细胞分化,而对于支架材料的应用,目前种类和方式较多,但是到目前为止没有一种完全理想的材料和方法,对于骨缺损来说,目前只能修复短缺损,而对于长段缺损仍然束手无策。
     研究目的
     一、在前期的研究基础上,优化PDO补片,探索新编织方法,使其带有管道结构,为后期的仿生型人工胸壁提供软组织修复支架;同时筛选出符合要求的组织工程人工肋骨支架,为人工胸壁硬组织修复提供支架;
     二、利用多段支架结合组织工程技术修复长段肋骨缺损,证明分段融合定向成骨修复长段骨缺损的可行性;
     三、利用PDO补片和分段融合定向成骨方法修复大面积胸壁缺损,证明其可行性。
     研究内容与方法
     一、仿生型人工胸壁补片的选材、设计与编织
     我们在前期的研究工作基础上,继续采用PDO单丝作为补片的原材料,探索其新编织方法,使其能满足以下条件:1)补片大小为8cm×5.5cm;2)补片带有两个横向的管道结构;3)补片具有较好的孔径大小。
     二、组织工程人工肋骨三维支架的筛选
     按照医疗器械生物学评价IS010993-1998和GB/T16886-2001标准和要求,对三种待试材料进行了体内外生物相容性和安全性试验研究,包括细胞毒性试验、急性全身毒性试验、溶血试验、热源试验,体内降解试验等,同时对其结构和组份进行测试,筛选出更符合要求的肋骨支架。
     三、分段融合定向成骨修复长段骨缺损的实验研究
     建立犬单根肋骨长段缺损动物模型,并利用双段支架结合骨髓基质干细胞和PDO管道来修复此缺损,分别于术后各时间点行影像学检查,并于24周时处死所有实验犬,利用组织学检查观察肋骨修复情况,证明分段融合定向成骨修复长段骨缺损的可行性。
     四、仿生型复合式人工胸壁动物模型的建立
     建立犬胸壁缺损动物模型,应用自行设计制备的仿生型人工胸壁重建胸壁缺损,并设置相应对照组,动态观察胸壁组织的再生过程,包括软组织和硬组织,同时进行大体标本、影像学、组织学和力学检查进行验证,探讨利用补片结合分段融合定向成骨修复大面积胸壁缺损的的可行性。
     研究结果
     一、利用穿综方法编织出了带有双管道结构的PDO补片,其大小为8cm×5.5cm,管径为1.25cm,两管道间间隔1cm,孔径大小为250um×250um,补片能够进行任意裁剪。
     二、脱钙骨、多孔磷酸钙(CPC)、和PLGA/HA三种待试材料均具有较好的生物相容性,安全无毒;但是从体内降解实验来看,PLGA/HA材料8周时已经完全失去强度,降解速度太快,与骨组织再生速度不匹配,而其它两种材料均具有较好的力学强度;结构测试表明脱钙骨和CPC同时具有较好的孔径、孔隙率和HA含量,但CPC材料脆性较脱钙骨大,因此脱钙骨是较好的组织工程肋骨支架。
     三、实验结果表明,我们所制备的4cm肋骨缺损超出了自身的再生能力,可以认为是长段骨缺损,影像学检查和组织学检查证明PDO管道/DBM/BMSCs组的肋骨无论是在原肋骨与支架之间还是支架与支架之间均存在着骨连接,分段融合定向成骨能够修复长段骨缺损。
     四、除空白组外,所有实验犬均存活。对于软组织重建而言,PDO补片于术后6月时已经完全降解,原PDO补片为纤维结缔组织所替代,其厚度与正常肋间隙的厚度几乎一致,统计学无差异(P>0.05);而对于肋骨重建而言,影像学检查和组织学检查均证明有新生骨存在,支架间均为骨性连接,而在其他两个组均为纤维连接,没有力学强度,且其弧度与原来肋骨具有相同的弧度;力学测试也证明重建的肋骨强度达到了正常肋骨强度的70%左右,统计学没有差异(P>0.05)。
     实验结论
     异体脱钙骨具有良好的生物相容性和力学强度,是组织工程骨理想的支架材料;利用多段支架结合组织工程技术能够修复长段骨缺损,这为长段骨缺损的修复提供了新思路和新方法;利用我们所制备的仿生型复合式人工胸壁能够进行胸壁缺损解剖和功能的双重重建,其能进行胸壁软组织和硬组织的同时重建,是一种具有较好前景的胸壁缺损修复方法。
Background
     Reconstruction of chest wall defects remains a great challenge for the reconstructive surgeons. Extensive chest wall defects, which result primarily from tumor, radiation necrosis, infection, or trauma, often require prosthetic repair to prevent flail chest and paradoxical breathing. The artificial prostheses have gained increasing popularity as it provides better stability with shorter and easier surgical procedure. Over the years, many different types of materials have been introduced and used to repair the chest wall. However, no product possesses the properties of the ideal material and late wound complications such as prosthesis dislocation, infection, fistulas or dense scar tissue formation, occur frequently in the chest wall reconstruction, due to the properties of the employed materials. As to the method of reconstruction, the sandwich structure "marlex mesh+bone cement+marlex mesh" is the most popular method in clinic use, but it can't reconstruct the chest wall defect both in anatomy and function which result in affecting the shape of chest wall and the observation of the organ in the chest cage.
     Now, tissue engineering technique has achieving tremendous success in clinic use, including bone, cartilage,skin reconstruction. Tissue engineering technique contains two critical factors, seed cell and scaffold. Bone marrow stem cell(BMSC) which can been induced to various cell is an acknowleded seed cell. As to the use of scaffolds, there are many different types and forms, but to now there is no ideal material and method. And long bone defect reconstruction is still a challenge problem.
     Objective
     1.On the base of early research, explore new method of weavement to improve the PDO mesh which would have two cages and to be the scaffold of soft tissue reconstruction; Choose the most suitable tissue engineered rib scaffold to reconstruct the rib defect;
     2. To prove the possibility of the method that using multiple scaffolds to reconstruct the long defect of rib,
     3. To prove the possibility of chest wall reconstruction using PDO mesh and tissue engineering rib
     Methods
     1. The design, preparation of bionic chest wall prosthesis
     On the base of early research, PDO suture will still be used as raw material for mesh. New method of weavement will be explored and the improved mesh will satisfy the following requirement:1) The size of the mesh is 8cm×5.5cm; 2) the mesh has two cages; 3)the mesh has many pores which allow the adhesion of tissue
     2. The selection of tissue engineering rib scaffold
     the biocompatibility and biological safety of the three materials for chest wall prosthesis were evaluated comprehensively in accordance with ISO10993-1:1998 and GB/T16886.1-2001, including in vitro cytotoxicity test, acute systemic toxicity test, hemolysis test, and pyrogen test, and in vivo biodegradation test. In the while, the structure and components of the scaffolds will be analyzed to select the most suitable scaffold.
     3. the research of long defect of rib reconstruction using multiple scaffolds
     The compound of the PDO cage containing two demineralized bone matrix(DBM) which seeded with osteogenically induced BMSCs was used to reconstruction the single long defect of rib defect. The radiographic examination and histological examination were used to observe the new bone regeneration.
     4. Establishing the animal model of the chest wall reconstruction using bionic,multiplex prothesis
     Establish the animal model of chest wall defect, then reconstruct it with the bionic artificial chest wall designed by ourselves. Observe the regeneration of chest wall tissue including soft tissue and hard tissue by gross view of the sample, radiographic examination, histological examination and mechanical test. Explore the possibility of reconstruction of chest wall defect with biodegradable mesh and tissue engineering rib.
     Results
     Part 1 We successfully weaved a new PDO mesh which had two cages. The mesh's size is 8cm×5.5cm. The cages diameter is 1.25cm. The intervals between the two cages is 1cm in width. The mesh had a lot of pores whose size is 250um×250um. Besides, the mesh also can be optionally cut out.
     Part 2 DBM, CPC and PLGA/HA have good biocompatible and they are all nontoxic. The in vivo biodegradation test showed that the degradable speed of PLGA/HA was so fast that it lost its strength 8 weeks after it was inplant into the animal body, in the mean while, the other two materials had good mechanical strength. The structure test showed that DBM and CPC had good pore and HA content. But CPC is more fragile than DBM. So DBM is the most suitable scaffold for tissue engineering rib.
     Part 3 The result showed that the 4-cm long defect of rib is acknowleded as the long defect of bone as it exceeded the natural regeneration capability. Radiographic and histological examination showed that there were bone union not only in the connection of two scaffolds but also in the connection of scaffold and primary rib. Reconstruction of the long defect of bone using multiple pieces of scaffolds was a feasible method.
     Part 4 All the dogs survived after surgery while dogs in blank group died. As to the soft tissue reconstruction, PDO mesh completely degraded 6 months after surgery and the primary mesh was replaced by fibrous tissue whose thickness was nearly equal to the normal one.(No significant difference were found between the two groups (P>0.05). As to the rib reconstruction, Radiographic and histological examination showed that there were bone union not only in the connection of two scaffolds but also in the connection of scaffold and primary rib in the experimental group while they were fibrous union in other two groups which had no mechanical strength. The reconstruction rib' s radian was analogus to the primary rib. The result of mechanical test also proved that the strength of reconstructed rib was familiar to the primary one(No significant difference were found between the two groups (P>0.05).
     Conclusions
     Xenograft-DBM is a ideal scaffold for tissue engineering tib as it has good compatible and mechanical strength; Reconstucting the long defect of rib with multiple pieces of scaffolds seed with BMSCs is a promising method for the long defect of bone reconstruction; The bionic prothesis can reconstruct the chest wall not only in anatomy but also in function. It can reconstruct the soft tissue and hard tissue in the same time which make it a new and promising method for chest wall reconstruction.
引文
[1]. Kamal A. Mansour, MD, Vinod H. Thourani, MD, Chest Wall Resections and Reconstruction:A 25-Year Experience.Ann Thorac Surg 2002,73:1720-6
    [2].Arnold PG, Pairolero PC. Chest-wall reconstruction:an account of 500 consecutive patients. Plast Reconstr Surg 1996,98(5):804-810
    [3]. Losken A, Thourani VH, Carlson GW, et al. A reconstructive algorithm for plastic surgery following extensive chest wall resection. Br J Plast Surg 2004,57(4):295-302.
    [4]. Tansini I. Nuovo processo per amputations della mammellaper cancro. Reform Med 1896;12:3-5
    [5]. Brown R, Fleming W, Jurkiewicz M. An island flap of the pectoralis major muscle. Br J Plast Surg 1977,30:161-5
    [6]. Bartlett SP, May JW, Yaremchuk MJ. The latissimus dorsi muscle:a fresh cadaver study of the primary neurovascular pedicle. Plast Reconstr Surg 1981,67:631-6
    [7[. Horst Kocha, F. Tomasellib, G. Piererc, F. Schwarzla, F. Haasa,F.M. Smolle-Ju'ttnerb, E. Scharnagla Thoracic wall reconstruction using both portions of the latissimus dorsi previously divided in the course of posterolateral thoracotomy.European Journal of Cardio-thoracic Surgery 2002,21:874-878
    [8]. Laitung JKG, Peck F. Shoulder function after the loss of the latissimus dorsi. Br J Plast Surg 1985,38:375-9.
    [9].Widmer MK, Krueger T, Lardinois D, Banic A, Ris HB. A comparative evaluation of intrathoracic latissimus dorsi and serratus anterior muscle transposition. Eur J Cardiothorac Surg 2000,18:435-9
    [10]. Martinez-Ferro M, Fraire C, Saldana L, Reussmann A, Dogliotti P. Complete videoendoscopic harvest and transposition of latissimus dorsi muscle for the treatment of Poland syndrome:a first report.J Laparoendosc Adv Surg Tech A.2007,17(1):108-13
    [11]. Eldad Erez, Miriam Katz, Erez Sharoni, Yaakov Katz, Amos Leviav, Bernardo A. Vidne, Ovadia Dagan. Pectoralis Major Muscle Flap for Deep Sternal Wound Infection in Neonates Ann Thorac Surg 2000,69:572-7
    [12]. Periklis Tomos, Elias Lachanas, MD, Panagiotis O. Michail, and Alkiviadis Kostakis Alternative Bi-Pectoral Muscle Flaps for Postoperative Sternotomy Mediastinitis.Ann Thorac Surg 2006,81:754-5
    [13]. Armin Alex Klesius, Omer Dzemali, Andreas Simon, Peter Kleine, Ulf Abdel-Rahman,Christopher Herzog, Gerhard Wimmer-Greinecker, Anton Moritz Successful treatment of deep sternal infections following open heart surgery by bilateral pectoralis major flaps.European Journal of Cardio-thoracic Surgery 2004,25:218-223
    [14]. schusterman MA,krollSS,Miller MJ,et al.The free transever rectus abdominis musculocutaneous flap for breast reconstruction one cemer's experience with 211consecutive cases Ann Plast Surg 1994,32:234-24
    [15]. Toshihiko Shibata, Koji Hattori, Hidekazu Hirai, Hiromichi Fujii, Takanobu Aoyama, and Shigefumi Seuhiro.Rectus Abdominis Myocutaneous Flap AfterUnsuccessful Delayed Sternal Closure Ann Thorac Surg 2003,76:956-8
    [16]. Sullivan SR, Truxillo TM, Mann GN, Isik FF. Utility of the free deep inferior epigastric perforator flap in chest wall reconstruction.Breast J.2007,13(1):50-4.
    [17]. Zhang QX, Magovern CJ, al. MCe. Vascular endothelial growth factor is the major angiogenic factor in omentum:mechanism of the omentum-mediated angiogenesis.. J Surg Res,1997,67(2):147-154.
    [18].Le Roux BT,Maintenance of chest wall stability.Thorax 1964,19:397
    [19].McCormack P,Bains MS,Beatie EJ,et al.New trends in skeletal reconstruction after resection of chest wall tumors. Ann Thorac Surg 1981,31:45-52
    [20].Graham J,Usher FC.Marlex mesh as a prosthesis in the repair if thoracic wall defect.Ann Surg 1960,151:489
    [21]孙玉鹗Marlex网修复胸壁大块缺损.中华外科杂志.1990,28(3):173-175
    [22].Kroll SS,Waish G,Ryan B,et al.Risks and benefits of using Marlex mesh in chest wall reconstrution.Ann Plast Surg 1993,31:303-306
    [23].Larson DL,McMurtrey MJ.Musculocutaneous flap reconstruction of chest wall defects.an experience with 50 patients.Plast Reconstr Surg 1984,73:734-740
    [24].McKenna RJ, McMurtrey MJ,Larson D,et al.A perspective on chest wall resection in patients with breast cancer.Ann Thorac Surg,1984;38:482-486
    [25]. Eschapasse H,Gaillard J.Prosthetic substitutes of the chest wall.InCurrent therapy in cardiothoracic surgery.Toronto,Philadepthia:Decker,1989;96-98
    [26].Lamp JP,Viale T,Kaminskd DL.Comparative evaluation of synthetic meshes used for abdominal wall replacement.Surgery 1983,93:643-648
    [27].Alain R, Chapelier, Marie-Christine Missana, et al. Sternal Resection and Reconstruction for Primary Malignant Tumors Ann Thorac Surg 2004,77:1001-7
    [28]. Deschamps C, Tirnaksiz BM, Darbandi R, Trastek VF, Allen MS,Miller DL, Arnold PG, Pairolero PC. Early and long-term results of prosthetic chest wall reconstruction. J Thorac Cardiovasc Surg 1999,117(3):588-91, discussion 591-2.
    [29]. Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral. J Bone Joint Surg Am 1991,73(5):692-703.
    [30]. J.M.Bellon,L.A.Contreras.et al.Tissue response to polypropylene mesh used in the repair of abdominal defects.Biomaterials 1998,19:669-675
    [31].A. Danino, S Saito, K. Mamlouk, Cuminet, et al. Reconstruction des pertes de substance totales transfixiantes du thorax par combinaisoGore-Tex(?)/Marlex(?)/lambeau musculocutane. Etude retrospective de 14 casComplete chest wall reconstruction after en bloc excisions with Gore-Tex(?)/Marlex(?)/Flap sandwich. A retrospective study of 14 cases.Annales de Chirurgie Plastique Esthetique 2003,48(2):86-92
    [32]. Sridhar Rathinam, Rajamiyer Venkateswaran, Pala B. Rajesh, Francis J. Collins Reconstruction of the chest wall and the diaphragm using the inverted Y Marlex methylmethacrylate sandwich flap European Journal of Cardio-thoracic Surgery 2004,26 (5):197-201
    [33]. Puma F, Ragusa M, Daddi G Chest wall stabilization with synthetic reabsorbable material. Ann Thorac Surg 1992,53(3):408-411.
    [34]. Rudolphy VJ,Tukkie R,Klopper PJ.Chest Wall Reconstruction With Degradable Processed Sheep Dermal Collagen in Dogs. Ann Thorac Surg 1991,52:821-825
    [1]. Beardsley,J.The use of tantalum plate when resecting large area of the chest wall.Thoracic Surg 1950; 19:444
    [2]. Ada AE,Hevenor EP.Reconstruction of defects of the thoracic wall with tantalum mesh gauze.J Thoracic Surg 1951;21:125
    [3]. Kiyoshi Ohno, Keiji Kuwata, Yoshio Yamasaki, Katsuhiko Akizuki. Chest Wall Repair With a Titanium Instrument Ann Thorac Surg 1998;66:1805-6
    [4]. Eschapasse H,Gaillard J,Herry F,et al. Repair of large chest wall defects:experienct with 23 patients.Ann Thorac Surg 1981,32:329-336
    [5].王敏生.复发性胸骨巨大软骨肉瘤根治切除后用多孔有机玻璃板作胸壁重建.上海第一医学院学报1980,7:365
    [6].孙金星,刘崇伟.胸壁骨骼恶性肿瘤切除后胸壁缺损修复.中华外科杂志1983,21(4):229-230
    [7].胡永校,李厚文,杨志山,等.胸壁大块缺损修补术六例体会.实用外科杂志1985,5(4):220
    [8]. David W. Tuggle, P. Cameron Mantor, David S. Foley, Michele M. Markley, and Nikola Puffinbarger.Using a Bioabsorbable Copolymer Plate for Chest Wall Reconstruction J Pediatr Surg 2004,39:626-628.
    [9]. Lardinois D,Muller M,Fuffer M,et al.Functional assessment of chest wall integrity after methlmethacrylate reconstruction.Ann Thorac Surg 2000,69:919-923
    [10]. Julie R. Fuchs, Shinichi Terada, Didier Hannouche, Erin R. Ochoa, Joseph P. Vacanti, and Dario O Fetal Tissue Engineering:Chest Wall Reconstruction J Pediatr Surg 2003,38:1188-1193
    [11].杨志明,赵雍凡,解慧琪,等.组织工程肋骨移植修复胸壁巨大缺损.中有修复重建外科杂志2000,14(6):365-368
    [12]Peppas NA, Langer R. New challenges in biomaterials. Science,1994,263(5154): 1715-1720.
    [13].ISO10993-1:1998.Biological evaluation of medical device, Part1:Guidance on selection of tests.
    [14].中华人民共和国国家标准/医疗器械生物学评价(GB/T16886-1997).1997.
    [15].中华人民共和国国家标准/医疗器械生物学评价(GB/T16886-2001).2001.
    [16].生物材料和制品的生物学评价标准.1994.
    [17]. Leininger RI. Re:Biocompatibility testing of polymers:in vitro studies with in vivo correlation. J Biomed Mater Res,1978,12(6):941.
    [18].Pizzoferrato A, Ciapetti G, Stea S, et al. Cell culture methods for testing biocompatibility. Clin Mater,1994,15(3):173-190.
    [19].Pizzoferrato A, Vespucci A, Ciapetti G, et al. Biocompatibility testing of prosthetic implant materials by cell cultures. Biomaterials,1985,6(5):346-351.
    [20].杨晓芳.生物材料生物相容性评价研究进展.生物医学工程学杂志2001,11(1):123-128.
    [21].贺亚敏,黄培林,等.几种医用材料的细胞生物相容性评价的实验研究.东南大学学报:医学版2003,7(2):75-79.
    [1].J6nsson P, Gyllstedt E, Hambraeus G Chest wall sarcoma:outcome in 22 patients after resection requiring thoracic cage reconstruction. Sarcoma.1998;2(3-4):143-7.
    [2].Altunkaya A, Aktunc E, Buyukates M.Giant chest wall tumour invading the abdominal cavity:simultaneous reconstruction of the chest wall and hemidiaphragm. Can J Surg. 2008 Apr;51(2):E30-1
    [3].Saour S, Shaaban H, McPhail J Customised silicone prostheses for the reconstruction of chest wall defects:technique of manufacture and final outcome. J Plast Reconstr Aesthet Surg.2007 Sep 14
    [4]. Kiyoshi Ohno, MD, Keiji Kuwata, MD, Yoshio Yamasaki, MD, et al.Chest Wall Repair With a Titanium Instrument.Ann Thorac Surg,1998,66:1805-6
    [5].Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canines egmental bone defects.J Bone Joint Surg Am 1998,80:985-96.
    [6].Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al.Autologous bone marrow stromal cells loaded onto porous hydro-xyapatite ceramic accelerate bone repair in critical-size defects ofheep long bones. J Biomed Mater Res 2000;49:328-37.
    [7].Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S,Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone ina critical-sized canine segmental defect. J Bone Joint Surg Am 2003;85A:1927-35.
    [8].Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988;254:317-30.
    [9].Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R,et al. Prefabricated engineered bone flaps:an experimental model oftissue reconstructionin plastic surgery. Plast Reconstr Surg 1998;101:577-81.
    [10]Kridel RW, Ashoori F, Liu ES, Hart CG. Long-term use and follow-up of irradiated homologous costal cartilage grafts in the nose. Arch Facial Plast Surg 2009,11(6):378-94.
    [11]Bapat MR, Chaudhary K, Garg H, Laheri V. Reconstruction of large iliac crest defects after graft harvest using autogenous rib graft:a prospective controlled study. Spine 2008, 33(23):2570-5.
    [12]Jie Yuan, Lei Cui, Wen Jie Zhang,et al. Repair of canine mandibular bone defects with bone marrow stromal cells and porous b-tricalcium phosphate. Biomaterials 2007,28 (6):1005-1013
    [13]Garreta E, Gasset D, Semino C. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomolecular Engineering 2007,24 (1):75-80
    [14]Syed-Picard FN, Larkin LM, Shaw CM, Arruda EM.Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Eng Part A.2009,15(1):187-95.
    [15]Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials.2007,28(5):814-24
    [16]Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng.2006,12(6):1539-51.
    [17]Barone A, Covani U. Maxillary alveolar ridge reconstruction with nonvascularized autogenous block bone:clinical results. J Oral Maxillofac Surg.2007,65(10):2039-46.
    [18]Da Silva RV, Bertran CA, Kawachi EY, Camilli JA. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. J Craniofac Surg.2007, 18(2):281-6.
    [19]Xiong Qin, Hua Tang, Zhifei Xu, Xuewei Zhao, Yaochang Sun, Zhiyun Gong. Chest wall reconstruction with two types of biodegradable polymer prostheses in dogs. European Journal of Cardio-thoracic Surgery.2008,34 (4):870-874
    [20]Lindsey RW, Probe R, Miclau T, Alexander JW, Perren SM. The effects of antibiotic-impregnated autogenic cancellous bone graft on bone healing. Clin Orthop Relat Res 1993,291:303-312.
    [21]Segal N, Hell J, Berzins DW.Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire. Am J Orthod Dentofacial Orthop.2009, 135(6):764-70.
    [22]Hamad AM, Marulli G, Bulf R, Rea F. Titanium plates support for chest wall reconstruction with Gore-Tex dual mesh after sternochondral resection Eur J Cardiothorac Surg.2009,36(4):779-80.
    [23]Makela P, Pohjonen T, Tormala P, Waris T, Ashammakhi N. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (Maxon) and polydioxanone (PDS) sutures. An in vitro study. Biomaterials 2002,23(12):2587-2592.
    [24]Kontio R, Ruuttila P, Lindroos L, Suuronen R, Salo A, Lindqvist C, et al. Biodegradable polydioxanone and poly(1/d)lactide implants:an experimental study on peri-implant tissue response. Int J Oral Maxillofac Surg 2005,34(7):766-776.
    [25]Lindsey RW, Gugala Z, Milne E, Sun M, Gannon FH, Latta LL..The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect. J Orthop Res.2006,24(7); 1438-1453
    [26]Cobos J, Lindsey RW, Gugala Z. The cylindrical titanium mesh cage for the treatment of a long segmental bone defect:description of a new technique and report of two cases. J Orthop Trauma 2000,14(1):54-59.
    [27]Dallari D, Fini M, Stagni C, Torricelli P, Nicoli Aldini N, Giavaresi G. In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res.2006,24(5): 877-88.
    [28]Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials.2006,27(7):1071-80
    [29]Chistolini P, Ruspantini I, Bianco P, Corsi A, Cancedda R, Quarto R. Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects. J Mater Sci Mater Med.1999,10(12):739-42.
    [30]Masatoshi Hoshino, Takeshi Egi, Hidetomi Terai, Takashi Namikawa, Kunio Takaoka. Regenerative repair of long intercalated rib defects using porous cylinders of β-Tricalcium phosphate:an experimental study in a canine model. Plast Reconstr Surg.2007, 119(5):1431-9.
    [1]. Jonsson P, Gyllstedt E, Hambraeus G, Lillogil R, Rydholm A. Chest wall sarcoma: outcome in 22 patients after resection requiring thoracic cage reconstruction. Sarcoma 1998; 2(34):143-147.
    [2]. Novoa N, Benito P, Jimenez MF, De Juan A, Luis Aranda J, Varela G. Reconstruction of chest wall defects after resection of large neoplasms:ten-year experience. Interact Cardiovasc Thorac Surg 2005; 4(3):250-255.
    [3]. Hidalgo DA, Saldana EF, Rusch VW. Free flap chest wall reconstruction for recurrent breast cancer and radiation ulcers. Ann Plast Surg 1993; 30(4):375-380.
    [4]. Isik AF, Tuncozgur B, Elbeyli L, Akar E,Pereira LH, Sabatovich O, et al. Congenital chest wall deformities:a modified surgical technique. Acta Chir Belg 2007; 107(3): 313-316.
    [5]. Horio H, Ohtsuka T, Kubota Y, Hasegawa T, Nomori H, Naruke T, et al. Large chest wall reconstruction using titanium micromesh and a pedicled latissimus dorsi musculocutaneous flap:report of a case. Surg Today 2005; 35(1):73-5.
    [6]. Puma F, Ragusa M, Daddi G. Chest wall stabilization with synthetic reabsorbable material. Ann Thorac Surg 1992; 53(3):408-411.
    [7]. Deschamps C, Tirnaksiz BM, Darbandi R, Trastek VF, Allen MS, Miller DL, et al. Early and long-term results of prosthetic chest wall reconstruction. J Thorac Cardiovasc Surg 1999; 117(3):588-591.
    [8]. Kroll SS, Walsh G, Ryan B, King RC. Risks and benefits of using Marlex mesh in chest wall reconstruction. Ann Plast Surg 1993; 31(4):303-306.
    [9].Van Geel AN, Contant CM, Wiggers T. Full thickness resection of radiation-induced ulcers of the chest wall:reconstruction with absorbable implants, pedicled omentoplasty, and split skin graft. Eur J Surg 1998; 164(4):305-307.
    [10].Akhavani MA,Gore S,Kang N. Chest wall reconstruction using a prolene/hydroxyapatite paste sandwich. Plast Reconstr Surg 2007; 119(2):761-762.
    [11]. Kiyoshi Ohno, Keiji Kuwata, Yoshio Yamasaki, Katsuhiko Akizuki, Iwao Satoh.Chest wall repair with a titanium instrument. Ann Thorac Surg 1998; 66(5):1805-1806
    [12]. Rathinam S, Venkateswaran R, Rajesh PB, Collins FJ. Reconstruction of the chest wall and the diaphragm using the inverted Y Marlex methylmethacrylate sandwich flap. Eur J Cardiothorac Surg 2004; 26 (9):197-201
    [13]. Klinge U, Schumpelick V, Klosterhalfen B. Functional assessment and tissue response of short-and long-term absorbable surgical meshes. Biomaterials 2001; 22(11):1415-1424.
    [14]. Rudolphy VJ, Tukkie R, Klopper PJ. Chest wall reconstruction with degradable processed sheep dermal collagen in dogs. Ann Thorac Surg 1991; 52(4):821-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700