PHEMA/SiO_2/n-HA凝胶膜的制备和生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节软骨损伤是骨科较为常见的一种疾病,软骨损伤后不能进行有效地修复,可导致关节软骨组织学环境、关节内力学环境和生物学环境的紊乱,使受损面积扩大,最终导致骨关节炎等严重疾患,寻觅理想的骨创伤修复材料成为治疗该类疾患的关键。
     用于软骨组织工程研究的支架材料很多,主要天然材料和人工合成的材料。天然生物材料,修复效果较好但生物力学性能差,不能提供移植后的即时应力支撑,造成移植组织的有害应力损害和周围软骨的异常应力集中,影响修复效果。合成材料具有良好的力学性能,但是由于它的疏水性,使水分子难以在材料中扩散,也不利于关节内营养物质的输运,仿生性能较差。
     甲基丙烯酸羟乙酯聚合物(PHEMA)水凝胶比较柔软,力学强度较高,具有一定的透氧性、亲水性,利于关节内外营养物质和代谢产物的交换。但是,PHEMA水凝胶其生物力学性能及机械性能不理想,改造方法是制备PHEMA的复合材料,本研究的设计思路,从改进PHEMA材料的力学强度出发,添加无机成分——SiO_2和n-HA,掺杂入无机成分之后,将使制备的PHEMA无机复合材料在生物力学性能和机械性能上得到改善,n-HA的引入主要考虑使所制备的材料更接近于天然仿生材料,使骨细胞更易生长。本研究的主要创新点在于引入两种无机成分于PHEMA中,并在制备过程通过工艺改革得到具有双层骨架的PHEMA/ SiO_2/ n-HA无机复合凝胶膜,通过生物学实验证明了本研究制备的材料具有良好的生物相容性,适宜于作为骨创伤的仿生修复材料。
     本论文主要做了以下几方面研究:
     1、以蒸馏水为溶剂,以N',N'-亚甲基双丙烯酰胺(MBA)为交联剂,制备了PHEMA水凝胶。通过电子扫描电镜对PHEMA凝胶的显微形貌进行了观察;研究了MBA添加量对PHEMA凝胶在蒸馏水中的溶胀特性、收缩动力学的影响。实验结果表明添加7.5wt%MBA的PHEMA水凝胶膜表面褶皱和沟痕更少,整体面光滑、表面形态理想,接近于软骨结构。既增加了材料的强度和减少了摩擦又不明显降低吸水量等重要指标。在生理温度下是稳定的,也更接近于人的关节软骨。
     2、在前期单纯PHEMA的基础上,加入SiO_2拟制备出含无机盐SiO_2的PHEMA无机复合凝胶膜,以及PHEMA与n-HA复合材料膜,发现两种无机分子都能与HEMA形成良好的共溶混合物,基于生物软骨材料中软骨下骨富含钙,综合考虑,在制备的仿生生物软骨膜中引入两种无机成分,更能贴近原生材料,因此,通过混合HEMA与纳米级SiO_2和n-HA通过引发剂进行聚合,最终制备既含有SiO_2又含有n-HA的双层支架软骨凝胶膜,并对他们的理化性能、膨胀性能、机械性能作了探索。
     PHEMA/SiO_2/n-HA无机复合凝胶膜中SiO_2为0.5 wt% ,n-HA的比为1 wt%时所制备的材料为双层支架式材料,它的吸水溶胀性能要比单纯PHEMA、PHEMA/SiO_2、PHEMA/n-HA无机复合凝胶膜低,保水性能良好。在滑动和固定磨料磨损条件下具有很高的耐磨性,PHEMA/SiO_2/n-HA无机复合凝胶膜具有良好的摩擦学性能,能满足受损关节软骨的替换修复后的正常摩擦耐受考验。蛋白吸附实验表明该双层框架结构的无机复合凝胶膜具有良好的吸附蛋白的作用,且在生物蛋白溶液中,不使蛋白质发生变性,揭示了所制备的PHEMA/SiO_2/n-HA无机复合凝胶膜具有良好的生物相容性,将会给生物细胞的培植生长提供一个良好的生存环境。
     3、观察人工合成材料PHEMA对兔软骨细胞增殖影响及体内移植骨关节修复情况与炎症反应,采用胶原酶消化法培养兔股关节软骨细胞,免疫细胞化学法鉴定兔股关节软骨细胞;MTT法测定软骨细胞的增殖;流式细胞仪测软骨细胞的生长周期;比色法检测软骨细胞碱性磷酸酶活性; ELISA法测关节液IL-1β、TGF-β、TNF-α;HE染色观察关节修复情况;体内试验取健康成年新西兰大白兔10只,制备双侧直径为1.5cm膝关节缺损模型,采用同体对照方法实验侧(左侧)移植人工合成材料,对照侧自体移植缺损部份骨组织。结果表明PHEMA材料加入0.5% SiO_2不改变软骨细胞增殖活性;软骨细胞活性与PHEMA/0.5%SiO_2/ n-HA无机复合凝胶膜中n-HA含量有关;PHEMA/0.5%SiO_2/n-HA无机复合凝胶膜中含1%n-HA最适合软骨细胞生长;PHEMA/0.5%SiO_2/n-HA无机复合凝胶膜中含1%n-HA可促进软骨损伤缺损修复。
Articular cartilage injury is a common disease in orthopaedics. Articular cartilage injury repaired ineffectively would lead to the disorder of histological environment of articular cartilage, mechanical environment and biological environment, then expand the lesion area, and eventually result into osteoarthritis and other serious diseases. It is a key to find the ideal materials for bone trauma in the treatment of such diseases.
     Natural materials and synthetic materials are the main kinds of scaffolds used for research in cartilage tissue engineering. Natural materials have good repairing effect but poor biomechanical property, so they can not provide timely stress support after transplantation, which results in harmful stress damage of transplanted tissue and abnormal stress concentration around the cartilage and affects the recovery effect. Synthetic materials have good biomechanical property but poor hydrophilicity, so water molecules are difficult to diffuse in the synthetic materials and the transport of nutrition is restrained due to their hydrophobicity.
     Poly-Hydroxyethyl methacrylate(PHEMA) hydrogel films has good pliability, mechanical strength, oxygen permeability and hydrophilicity, which are beneficial to exchange nutrition and metabolites between internal and external of joint. The biomechanical and mechanical properties of PHEMA are not ideal, so it is necessary to synthesize PHEMA composite to improve its properties. In this paper, SiO_2 and n-HA are introduced to PHEMA in order to improve the biomechanical and mechanical properties. Addition n-HA into PHEMA makes the synthetic material closer to the natural biomimetic materials for osteocyte growth. A double frame of PHEMA/SiO_2/n-HA inorganic composite hydrogel films is prepared by introducing two kinds of inorganic components (SiO_2 and n-HA ) into the PHEMA. Biological study has proved that the material has good biocompatibility and is suitable to be used as bionic repairing material for bone trauma.
     The main work of this paper:
     1.PHEMA hydrogel films are prepared by using H2O as solvent and MBA as crosslinking agent. The micro appearance of PHEMA was characterized by SEM. Effect of the addition amount of MBA on the swelling property and shrinking dynamics of PHEMA were studied. The results showed that the surface of PHEMA hydrogel films with 7.5wt%MBA is smooth and has less folds and grooves, close to the structure of cartilage. The addition of 7.5wt%MBA increases the strength and reduces the friction without significantly reducing the water absorption. This material is stable under physiological temperature and closer to human articular cartilage.
     2. PHEMA/SiO_2 and PHEMA/n-HA inorganic composite hydrogel films were prepared respectively. Two kinds of inorganic ingredients can be mixed very well with HEMA. Subchondral bone is rich in calcium, so two kinds of inorganic ingredients were introduced into bionic perichondrium to make the synthetic PHEMA composites closer to original material. PHEMA/SiO_2/n-HA inorganic composite hydrogel films were prepared by polymerization HEMA with nano-SiO_2 and n-HA through the initiator. The physical and chemical properties, swelling properties and mechanical properties of PHEMA/SiO_2/n-HA inorganic composite hydrogel films were discussed.
     PHEMA inorganic composite hydrogel films containing 0.5 wt%SiO_2/ and 1 wt%n-HA is a double-frame structure. It has better swelling property and water retention property than PHEMA, PHEMA/ SiO_2 and PHEMA/ n-HA inorganic composite hydrogel films respectively. PHEMA/SiO_2/n-HA inorganic composite hydrogel films have better tribological properties and can meet the request of normal friction after replacement of damaged articular cartilage. Protein adsorption experiments showed that the double-frame structure material has good adsorption of protein, and can not occur protein denaturation in the biological protein solution. The result indicated the prepared inorganic composite hydrogel films—PHEMA/SiO_2/ n-HA have good biocompatibility and will provide a good living environment to the growth of biological cells.
     3.The effect of PHEMA inorganic composite hydrogel films on proliferation of the rabbit chondrocyte and on the recovery and inflammatory reaction of transplanted joint in vivo were observed. Rabbit hip chondrocytes is cultured by collagenase digestion. Immunity cell chemical method is used to identify the chondrocytes of the rabbit joint. Chondrocyte proliferation was determinded by MTT. Chondrocyte growth cycle was measured by flow cytometer. The basic phosphatase activity of the rabbit chondrocyte was detected by chromatometry. Joint fluid IL-1β, TGF-β, TNF-αare measured by ELISA. Joint recovery was observed by using HE staining. In vivo test, 10 rats (derived from healthy adult New Zealand white rabbits) were prepared with bilateral knee defect model 1.5cm in diameter, using the same body control methods with the experimental side (left) transplant synthetic material and the control side autotransplant bone tissue of defect part. The result indicated that PHEMA /0.5% SiO_2 inorganic composite hydrogel films can not change the proliferation activity of the rabbit chondrocyte. The proliferation reactivity of the chondrocyte is related to the content of n-HA in PHEMA/0.5%SiO_2/n-HA inorganic composite hydrogel films. PHEMA/0.5%SiO_2/n-HA inorganic composite hydrogel films containing 1%n-HA is best for the growth of the chondrocyte and promote the defect repair of the cartilage injury.
引文
[1] Pilliar RM, Kandel RA, Grynpas MD, et al.Osteochondral defect repair using a novel tissue engineering approach: sheep model study[J].Technol Health Care, 2007,15(1):47-56.
    [2]李旭升,胡蕴玉,范宏斌等.组织工程骨软骨复合物的构建与形态学观察[J].中华实验外科杂志,2005,22(3):284-286.
    [3]张东,赵斌,卢世璧等.骨软骨复合体修复软骨及软骨下骨缺损[J].中华骨科杂志,2005,25(8):497-502.
    [4]顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社,2005:1-12.
    [5]邹新禧.超强吸水剂[M].北京:化学工业出版社,2002:473-635.
    [6]吴季怀,林建明,魏月琳等.高吸水保水材料[M].北京:化学工业出版社,2005:1-12.
    [7] Hradil J,Horak D.Characterization of pore structure of PHEMA-based slabs [J].Reactive and Functional Polymers,2005,62(1):1-9.
    [8]金曼蓉,吴长发,张桂英等.聚N-烷基丙烯酰胺类凝胶及其温敏特性[J].高分子学报,1995,3:321-326.
    [9] Nagarsekar A,Crissman J,Crissman M,et al. In: AAPS Works hopon Critical Issue sinthe Design and Applications of Polymeric Biomaterials in Drug Delivery[J]. Arlington,VA,2002.
    [10] Cappello J,Domb A J,Kost J,et al.Hand book of biode gradable polymers[J]. Amsterdam:Harwood Academic Pub lishers,1997,387.
    [11] Sukegawa,Makoto,et al. Manufacture of poly (aminoacid)part with narrow particlesize distribution and theiruse saswater sorbents[M].JP Pat,11240958. 1999-09-07.
    [12]蔡立彬,刘正堂,崔英德等.有机硅改性共聚物水凝胶接触镜材料的合成与性能研究[J].化工进展,2005,24(4):399-402.
    [13]王琴梅,潘仕荣.聚氨酯表面接枝聚甲基丙烯酸羟乙酯的研制[J].中山医科大学学报,2001,22(1):25-28.
    [14]张吉林.甲基丙烯酸-β-羟乙酯的合成[J].陕西化工,1998,27(2):31-33.
    [15] Richardson RR,Miller JA,Reichert WM.Polyimides asbiomaterials prelminarybiocompatibility testing[J].Biomate2rials,1993,14(9):627-134.
    [16]覃百花,黄海,狄静芳等.PHEMA-MMA材料的细胞毒性试验[J].中国医学物理学杂志,2003,7,20(3):186-188.
    [17]刘磊,郑一仁,刘歆等.PHEMA微孔人工角膜支架对成纤维细胞生长的影响[J].同济大学学报(医学版),2002,8,23(4):287-288.
    [18]李武宏,李弘.化学法制备高分子水凝胶的研究进展[J].离子交换与吸附,2003,19(6):567-573.
    [19]Bajpai A K,Shrivastava M.Enhanced water sorption of a semi-interpenetrating polymer network (IPN) of poly (2-Hydroxyethyl Methacrylate)(PHEMA) and poly(ethyleng glycol)(PEG)[J].Journal of Macromolecular Science,Part A,2002,39 (7):667-692.
    [20]Lou X,Vijayasekaran S,Sugiharti R,et al.Morphological and topographic effects on calcification tendency of pHEMA hydrogels[J].Biomaterials,2005,26(29):5808- 5017.
    [21]Christova D,Ivanova S D,Velichkova R S,et al.Organic-inorganic composites based on cyclotriphosphazene-cross-linked PHEMA networks[J].Designed Monomers and Polymers,2003,6(1):11-21.
    [22]Huang SL,Chin WK,Yang WP,et al.Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA[J].Polymer,2005, 46(6):1865-1877.
    [23]Gracida J,Guevara F P,MartíNez J C.Thermal and dynamic mechanical properties of binary blends of bacterial copolyester poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmethacrylate)[J].Journal of Materials Science,2005,40(9-10):2565-2567.
    [24]Asano A,Kurotu T.Thermal stability of the poly(2-hydroxyethyl methacrylate) /poly(methacrylic acid) blend by the intermolecular bond between PHEMA and PMAA and its mobility investigated by 2D WISE NMR[J].Polymer Degradation and Stability,2002,78(1):137-141.
    [25]Gulay B,Emine Y,Yakup A M,et al.Adsorption of serum albumin andγ-globulinfrom single and binary mixture and characterization of pHEMA-based affinity membrane surface by contact angle measurements[J].Biochemical Engineering Journal,2005,26(1):12-21.
    [26]Martins MC,Wang D,Ji J,et al.Albumin and fibrinogen adsorption on cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethyl methacrylate)) surfaces[J].J Biomater Sci Polym Ed,2003,14(5):439-455.
    [27]Casimiroa M H,Lealb J P,Gil M H.Characterisation of gamma irradiated chitosan/pHEMA membranes for biomedical purposes[J].Nuclear Instruments and Methods in Physics Research Section B,2005,236(1-4):482-487.
    [28]Gracida J,Alba J,Cardoso J.Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethyl metacrilate) (PHEMA)[J].Polymer Degradation and Stability,2004,83(2):247-253.
    [29]Bayramoglu G,Arica MY.Surface energy components of a dye-ligand immobilized pHEMA membranes:Effects of their molecular attracting forces for non-covalent interactions with IgG and HSA in aqueous media[J].International Journal of Biological Macromolecules,2005,37(5):249-256.
    [30]Arica MY,Yilmaz M,Yalcin E,et al.Surface properties of Reactive Yellow 2 immobilised pHEMA and HEMA/chitosan membranes:characterisation of their selectivity to different proteins[J].Journal of Membrane Science,2004,240(1-2): 169-178.
    [31] Darmawan Darwis,Przemyslaw Stasica,Mirzan T.Razzak,et al.Characterization of Poly(vinyl alcohol)hydrogel for prosthetic intervertebral disc nucleus[J].Radiation Physics and chemistry,2002,63(3-6):539-542.
    [32] Merrett K, Griffith CM,Deslandes Y,et al.Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces[J].J Biomater Sci Polym Ed,2001,12(6):647-671.
    [33] Kim SH,Opdahl A,Marmo C,et al.AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution:adhesion,friction,and the presence of non-crosslinked polymer chains at the surface[J].Biomaterials,2002,23(7):1657-1666.
    [34] Chirila TV.An overview of the development of artificial corneas with porousskirts and the use of PHEMA for such an application[J].Biomaterials,2001,22(24): 3311-3317.
    [35] Alvarez-Lorenzo C,Ya?ez F,Barreiro-Iglesias R,et al.Imprinted soft contact lenses as norfloxacin delivery systems[J].J Control Release,2006,113(3):236-244.
    [36] Wichterle O,Lim D.Hydrophilic gels for biologic use[J].Nature,1960,185:117- 118.
    [37] Rosiak J M,Ulanski P,Pajewski L A,et al.Radiation formation of hydrogel for biomedical purposes.Some remarks and comments[J].Radiation Physics and chemistry,1995,46(2):161-168.
    [38] Lou X,Munro S,Wang S,et al.Drug release characteristics of phase separation pHEMA sponge materials[J].Biomaterials,2004,25(20):5071-5080.
    [39] Lin M,Wang H,Meng S,et al.Structure and release behavior of PMMA/silica composite drug delivery system[J].J Pharm Sci,2007,96(6):1518-1526.
    [40] Kronman JH,Green RE,Goldman M,et al.Poly-HEMA sponge:a biocompatible calcification implant[J].Biomater Med Devices Artif Organs,1979,7(2):299-305.
    [41] Teichroeb JH, Forrest JA, Jones LW, et al.Quartz crystal microbalance study of protein adsorption kinetics on poly(2-hydroxyethyl methacrylate)[J].J Colloid Interface Sci, 2008,325(1):157-164.
    [42]Liu YY, Liu TY, Chen SY,et al.Synthesis and characterization of nanoporous SiO(2)/pHEMA biocomposites[J].J Mater Sci Mater Med, 2008,19(8):2903-2911.
    [43]Xu X, Goponenko AV, Asher SA.Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials[J].J Am Chem Soc, 2008 ,130(10):3113-3119.
    [44]Costantini A, Luciani G, Silvestri B,et al.Bioactive poly(2-hydroxyethyl- methacrylate)/silica gel hybrid nanocomposites prepared by sol-gel process[J].J Biomed Mater Res B Appl Biomater,2008 ,86(1):98-104.
    [45]Theneau C, Salmeron Sanchez M, Rodriguez Hernandez JC, et al.The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy[J]. Eur Phys J E Soft Matter, 2007, 24(1):69-77.
    [46]Tsukagoshi T, Kondo Y, Yoshino N.Protein adsorption on polymer-modified silicaparticle surface[J].Colloids Surf B Biointerfaces, 2007 ,54(1):101-7.
    [47] J.Habsuda,GP.Simon,YB.Cheng,et al.Organic-inorganic hybrids derived from 2- hydroxyethylmethacrylate and (3-methacryloyloxypropyl) trimethoxysilane [J]. Polymer,2002, 43(15):4123-4136.
    [48] Schiraldi C,D'Agostino A,Oliva A,et al.Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation [J]. Biomaterials,2004,25(17):3645-3653.
    [49] Silvestri B, Luciani G, Costantini A,et al.In-situ sol-gel synthesis and characterization of bioactive pHEMA/SiO2 blend Hybrids[J].J Biomed Mater Res B Appl Biomater, 2009 ,89B(2):369-378.
    [50] Joschek S,Nies B,Krotz R,et al.Chermical and Physicochemical characterization of porous hydroxyapatite ceramics made of natural bone[J].Biomaterials,2000, 21(16):1645-1658.
    [51] Branda F, Costantini A, Luciani G,et al.Improvement of swelling properties of poly(2-hydroxyethyl methacrylate) hydrogel by means of biomimetic method[J].J Biomed Mater Res,2001,57(1):79-83.
    [52] Huang J, Best SM, Brooks RA,et al.In vitro evaluation of nanosized carbonate-substituted hydroxyapatite and its polyhydroxyethylmethacrylate nanocomposite[J].J Biomed Mater Res A,2008,87(3):598-607.
    [53]Giordano C, Causa F, Silvio LD,et al.Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly- (epsilon- caprolactone) / hydroxyapa- titeComposite[J].J Mater Sci Mater Med, 2007,18(4):653-660.
    [54] Kaufman JD, Song J, Klapperich CM.Nanomechanical analysis of bone tissue engineering scaffolds[J].J Biomed Mater Res A,2007,81(3):611-623.
    [55] Giavaresi G, Branda F, Causa F,et al.Poly(2-hydroxyethyl methacrylate) biomimetic coating to improve osseointegration of a PMMA/HA/glass composite implant: in vivo mechanical and histomorphometric assessments[J]. Int J Artif Organs, 2004 ,27(8):674-680.
    [56] Song J, Saiz E, Bertozzi CR.A new approach to mineralization of biocompatiblehydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites [J]. J Am Chem Soc,2003,125(5):1236-1243.
    [57] Bavaresco VP, de Carvalho Zavaglia CA, de Carvalho Reis M,et al.Devices for use as an artificial articular surface in joint prostheses or in the repair of osteochondral defects[J].Artif Organs, 2000,24(3):202-205.
    [58] Zhang L, Rodriguez J, Raez J,et al.Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes[J].Nanotechnology, 2009 ,20(17):175101.
    [59] Song J,Xu J,Filion T,et al.Elastomeric high-mineral content hydrogel- hydroxyapatite composites for orthopedic applications[J].J Biomed Mater Res A,2009,89(4):1098-1107.
    [60] Huang J, Lin YW, Fu XW,et al.Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds[J].J Mater Sci Mater Med,2007,18(11):2151-2157.
    [61] Giordano C, Causa F, Silvio LD,et al.Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly- (epsilon- caprolactone)/hydroxyapa- titeComposite[J].J Mater Sci Mater Med,2007,18(4):653- 660.
    [62]蒋柳云,李玉宝,张利等.纳米羟基磷灰石/壳聚糖-羧甲基纤维素复合支架材料的研究[J].无机材料学报,2008,23(1):135-140.
    [63]宋忠臣,束蓉,谢玉峰等.Bio-oss胶原与骨髓基质细胞相容性的实验研究[J].上海口腔医学,2008,17(4):161-164.
    [64]覃百花,黄海,狄静等.PHEMA-MMA材料的细胞毒性试验[J].中国医学物理学杂志,2003,20(3):186-189.
    [65]赵冬梅,徐日炜,王宇昕等.电纺丝法制备骨组织工程用聚羟基丁酸酯支架及性能研究[J].中国生物医学工程学报,2008,27(4):591-596.
    [66]徐晓峰,马鹏,钱栋等.骨髓间充质干细胞与不同基质修饰的纳米晶胶原基骨体外生物相容性研究[J].中国生物医学工程学报,2008,27(6):894-899.
    [67]孙文晓,张海港,韦卓等.骨修复材料的研究应用现状与展望[J].生物骨科材料与临床研究,2009,6(3):35-40.
    [68]刘曦明,罗飞,曾玲等.骨组织工程经多聚赖氨酸修饰的脱钙骨基质富集材料的细胞毒性研究[J].中国中医骨伤科杂志,2008,16(3):31-34.
    [69]徐建强,张树明,王烈明等.聚己内酯-聚乙二醇共聚物复合软骨细胞构建组织工程化软骨[J].中国组织工程研究与临床康复,2007,11(26):5066-5069.
    [70]刘芳,周晓莲,崔凤萍等.聚甲基丙烯酸羟乙酯水凝胶人工晶状体材料的合成与性能[J].生鞠医学工程学杂志,2007,24(3):595-598.
    [71]赵其纯,蔡道章.聚羟基丁酸-羟基异戊酯与绵羊软骨细胞的相容性[J].中国组织工程研究与临床康复,2009,13(8):1427-1431.
    [72]郑裕东,王迎军,陈晓峰等.聚乙烯醇/羟基磷灰石复合水凝胶软骨植人材料的研究[J].生物医学工程学杂志,2002,20(3):401-403.
    [73]卢华定,蔡道章,刘青等.聚乙烯醇/羟基磷灰石复合水凝胶移植修复兔膝关节软骨缺损[J].中国矫形外科杂志,2004,12(21-22):1701-1703.
    [74]杨自权,何君仁,李刚等.可塑形脱细胞软骨基质材料的制备及性状研究[J].中国修复重建外科杂志,2008,22(10):1232-1237.
    [75]沈家骢.纳米生物医用材料[J].中国医学科学院学报,2006,28(4):472-474.
    [76]陈英华,董为人,陈清元等.人发角蛋白-胶原海绵-聚甲基丙烯酸羟乙酯复合生物敷料对大鼠烧伤创面修复作用的实验研究[J].南方医科大学学报,2007,27(11):1621-1626.
    [77]唐翀,宣鸣.软骨组织工程支架材料的研究进展[J].国际口腔医学杂志,2008,35:189-192.
    [78]尹飚,张余,张宏斌等.珊瑚羟基磷灰石/骨形态发生蛋白复合骨组织工程细胞支架的生物相容性[J].中国组织工程研究与临床康复,2007,11(1):191-193.
    [79]刘文忠,夏亚一,汪玉良等.水凝胶材料复合物修复软骨缺损的组织学评鉴[J].兰州大学学报,2006,32(4):26-33.
    [80]吴巧凤,陈槐卿.提高骨组织工程支架材料生物相容性的关键影响因素[J].国际生物医学工程杂志,2007,30(2):104-108.
    [81]王东,孙海钰,任军等.新型复合型生物多孔支架生物安全性初步评价[J].山西医科大学学报,2009,40(4):322-325.
    [82]李轶,冉炜,王改玲等.新型骨组织工程支架材料生物相容性的体内研究[J].华西口腔医学杂志,2009,27(4):447-450.
    [83]陈辉,张春礼,杨清芳,等.新型前交叉韧带支架材料的构建及其生物相容性的实验研究[J].科学技术与工程,2007,7(24):6305-6308.
    [84]袁健东,赵杰,李忠海等.新型三维编织型生物支架的研制及体外生物相容性[J].中同组织工程研究与临床康复,2009,13(29):5619-5623.
    [85]肖飞,郑治,王剑龙.新型支架材料磷酸钙骨水泥-聚乳酸聚羟基乙酸二聚体复合物生物相容性的研究[J].中华实验外科杂志,2006,23(10):1254-1256.
    [86]唐德志,程少丹,施杞等.转染特异性报导基因成骨细胞生物学性状及其与骨支架材料生物相容性的研究[J].中华创伤骨科杂志,2007,9(8):725-729.
    [87]周辉,梁瑜.多种生物材料细胞生物相容性及其安全性的系统评价[J].中国组织工程研究与临床康复,2009,13(38):7559-7562.
    [88]卢志华,孙康宁.羟基磷灰石/碳纳米管复合材料的制备及其细胞毒性研究[J].材料导报,2010,24(2):47-55.
    [89]吴邦耀,罗卓荆,孟浩等.胶原-明胶支架材料交联改性的制备及细胞毒性实验研究[J].生物医学工程与临床,2007,11(6):420-425.
    [90]王放,冯超,周庆海等.新型生物材料改性聚碳酸亚丙酯的制备及其生物相容性研究[J].中国实验诊断学,2007,11(8):1084-1086.
    [91]赵畅.PLLA/PLGA/HA复合材料的制备和生物相容性研究[D].中南大学,2009.:20-33.
    [92] Merrett K, Griffith CM, Deslandes Y,et al. Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces[J]. J Biomater Sci Polym Ed, 2001, 12(6):647-671.
    [93]张铁峰,李景峰.细胞因子IL-1β和TNF-α在骨关节炎软骨中mRNA表达的变化及意义[J].中国现代医生,2008,46(15):116-117.
    [94]谈志龙,邢国胜,李德达等.细胞因子对关节软骨细胞作用的研究[J].骨与关节损伤杂志,2003,18(5):316-318.
    [95]谈志龙,邢国胜,李德达等.细胞因子对关节软骨细胞增殖的实验研究[J].骨与关节损伤杂志,2004,19(9):614-616.
    [96] Kuiper S, Joosten LA, Bendele AM,et al. Different roles of tumour necrosisfactor alpha and interleukin 1 in murine streptococcal cell wall arthritis[J]. Cytokine, 1998,10(9):690-702.
    
    [1]胡蕴玉.把握契机加快我国组织工程学的应用研究[J].中华骨科杂志,2000,20(9):517-518.
    [2]张东,袁玫,孙明学等.骨软骨复合体修复软骨及软骨下骨缺损[J].中华骨科杂志,2005,25(8):497-502.
    [3]Tanaka T, Komaki H, Chazono M, et al. Use of a biphasic graft constructed with chondrocytes overlying a beta-tricalcium phosphate block in the treatment of rabbit osteochondral defects [J].Tissue Eng,2005,11(1-2):331-339.
    [4]Oliveira JM, Rodrigues MT, Silva SS,et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells[J]. Biomaterials,2006,27(36):6123-6137.
    [5]Emans PJ, Pieper J, Hulsbosch MM, et al. Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs followingimplantation into osteochondral defects[J].Tissue Eng,2006,12(6):1699-1709.
    [6]Ochi M,Uchio Y,Kawasaki K,et al. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee[J].The Journal of Bone and Joint Surgery (British Volume),2002,84(4):571-578.
    [7] Marcacci M, Berruto M, Brocchetta D,et al. Articular Cartilage Engineering with Hyalograft C:3-year clinical results[J].Clin Orthop Relat Res,2005,435:96–105.
    [8] Scapinelli R,Aglietti P, Baldovin M,et al.Biologic resurfacing of the patella:current status[J].Clin Sports Med,2002,21(3):547–573.
    [9] Gobbi A,Kon E,Berruto M,et al.Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review[J].Am J Sports Med,2006,34(11):1763-1773.
    [10]杨志明,王跃,解慧琪等.应用无支架离心管培养技术构建组织工程化关节软骨[J].中华骨科杂志,2000,20(9):521-524.
    [11]吕昌伟,胡蕴玉,崔玉明等.应力环境下三维诱导组织工程种植细胞修复关节软骨缺损[J].中国矫形外科杂志,2004,12(1):74-76.
    [12]吕晓杰,周广东,李宏等.灌流-液压式反应器体外构建组织工程化软骨[J].上海交通大学学报(医学版),2006,26(9):1006-1010.
    [13] Mano JF,Reis RL.Osteochondral defects: present situation and tissue engineering approaches[J].J Tissue Eng Regen Med,2007,1(4):261-273.
    [14]余方圆.几种构建组织工程关节软骨方法的比较研究[D].解放军军医进修学院博士论文,2004.
    [15] Jiang CC, Chiang H, Liao CJ,et al. Repair of porcine articular cartilage defect with a biphasic osteochondral composite[J].J Orthop Res,2007,25(10):1277-1290.
    [16]Yin Y,Ye F,Cui J,et al.Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering[J]. J Biomed Mater Res A, 2003,67(3):844-55.
    [17]张梅霞,姚瑶,闵少雄等.生物活性玻璃/胶原蛋白/透明质酸/磷酸丝氨酸仿生复合支架的成骨及矿化效应[J].中国组织工程研究与临床康复,2008,12(14):2611-2614.
    [18]叶咏梅,李全利,陈治清.磷灰石-多孔纤维素复合物与成骨细胞相容性的研究[J].华西口腔医学杂志,2008,26(1):101-104.
    [19]谈伟强,徐靖宏,刘友山等.胶原蛋白/BMP复合材料的制备和成骨性能研究[J].生物工程学报,2008,24(2):272-277.
    [20]俞园园,范代娣,米钰等.重组类人胶原蛋白Ⅱ仿生人工骨材料的制备[J].西北大学学报,2008,38(5):753-758.
    [21]杨艳,颜世峰,李孝秀等.聚L-乳酸/二氧化硅纳米复合材料及其表面诱导生成类骨磷灰石的制备[J].高等学校化学学报,2008,29(11):2294-2298.
    [22]陈楚,谭庆刚,任杰等.热致相分离法制备聚(乳酸-乙醇酸)/羟基磷灰石复合骨组织工程支架材料的生物相容性[J].中国组织工程研究与临床康复,2007,11(31):6135-6138.
    [23]Bajpai A K,Shrivastava M.Enhanced water sorption of a semi-interpenetrating polymer network (IPN) of poly (2-Hydroxyethyl Methacrylate)(PHEMA) and poly(ethyleng glycol)(PEG)[J].Journal of Macromolecular Science,Part A,2002,39 (7):667-692.
    [24]Lou X,Vijayasekaran S,Sugiharti R,et al.Morphological and topographic effects on calcification tendency of pHEMA hydrogels[J].Biomaterials,2005,26(29):5808- 5017.
    [25]Christova D,Ivanova S D,Velichkova R S,et al.Organic-inorganic composites based on cyclotriphosphazene-cross-linked PHEMA networks[J].Designed Monomers and Polymers,2003,6(1):11-21.
    [26]Huang SL,Chin WK,Yang WP,et al.Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA[J].Polymer,2005, 46(6):1865-1877.
    [27]Gracida J,Guevara F P,MartíNez J C.Thermal and dynamic mechanical properties of binary blends of bacterial copolyester poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmethacrylate)[J].Journal of Materials Science,2005,40(9-10):2565-2567.
    [28]Asano A,Kurotu T.Thermal stability of the poly(2-hydroxyethyl methacrylate) /poly(methacrylic acid) blend by the intermolecular bond between PHEMA and PMAA and its mobility investigated by 2D WISE NMR[J].Polymer Degradation andStability,2002,78(1):137-141.
    [29]Gulay B,Emine Y,Yakup A M,et al.Adsorption of serum albumin andγ-globulin from single and binary mixture and characterization of pHEMA-based affinity membrane surface by contact angle measurements[J].Biochemical Engineering Journal,2005,26(1):12-21.
    [30]Martins MC,Wang D,Ji J,et al.Albumin and fibrinogen adsorption on cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethyl methacrylate)) surfaces[J].J Biomater Sci Polym Ed,2003,14(5):439-455.
    [31]Casimiroa M H,Lealb J P,Gil M H.Characterisation of gamma irradiated chitosan/pHEMA membranes for biomedical purposes[J].Nuclear Instruments and Methods in Physics Research Section B,2005,236(1-4):482-487.
    [32]Gracida J,Alba J,Cardoso J.Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethyl metacrilate) (PHEMA)[J].Polymer Degradation and Stability,2004,83(2):247-253.
    [33]Bayramoglu G,Arica MY.Surface energy components of a dye-ligand immobilized pHEMA membranes:Effects of their molecular attracting forces for non-covalent interactions with IgG and HSA in aqueous media[J].International Journal of Biological Macromolecules,2005,37(5):249-256.
    [34]Arica MY,Yilmaz M,Yalcin E,et al.Surface properties of Reactive Yellow 2 immobilised pHEMA and HEMA/chitosan membranes:characterisation of their selectivity to different proteins[J].Journal of Membrane Science,2004,240(1-2): 169-178.
    [35] Darmawan Darwis,Przemyslaw Stasica,Mirzan T.Razzak,et al.Characterization of Poly(vinyl alcohol)hydrogel for prosthetic intervertebral disc nucleus[J].Radiation Physics and chemistry,2002,63(3-6):539-542.
    [36] Merrett K, Griffith CM,Deslandes Y,et al.Adhesion of corneal epithelial cells to cell adhesion peptide modified pHEMA surfaces[J].J Biomater Sci Polym Ed,2001,12(6):647-671.
    [37] Kim SH,Opdahl A,Marmo C,et al.AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution:adhesion,friction,and the presence ofnon-crosslinked polymer chains at the surface[J].Biomaterials,2002,23(7):1657-1666.
    [38] Chirila TV.An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application[J].Biomaterials,2001,22(24): 3311-3317.
    [39] Alvarez-Lorenzo C,Ya?ez F,Barreiro-Iglesias R,et al.Imprinted soft contact lenses as norfloxacin delivery systems[J].J Control Release,2006,113(3):236-244.
    [40] Wichterle O,Lim D.Hydrophilic gels for biologic use[J].Nature,1960,185:117- 118.
    [41] Rosiak J M,Ulanski P,Pajewski L A,et al.Radiation formation of hydrogel for biomedical purposes.Some remarks and comments[J].Radiation Physics and chemistry,1995,46(2):161-168.
    [42] Lou X,Munro S,Wang S,et al.Drug release characteristics of phase separation pHEMA sponge materials[J].Biomaterials,2004,25(20):5071-5080.
    [43] Lin M,Wang H,Meng S,et al.Structure and release behavior of PMMA/silica composite drug delivery system[J].J Pharm Sci,2007,96(6):1518-1526.
    [44] Zhang L, Rodriguez J, Raez J,et al.Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes[J].Nanotechnology, 2009 ,20(17):175101.
    [45] Song J,Xu J,Filion T,et al.Elastomeric high-mineral content hydrogel- hydroxyapatite composites for orthopedic applications[J].J Biomed Mater Res A,2009,89(4):1098-1107.
    [46] Huang J, Lin YW, Fu XW,et al.Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds[J].J Mater Sci Mater Med,2007,18(11):2151-2157.
    [47] Giordano C, Causa F, Silvio LD,et al.Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly- (epsilon- caprolactone)/hydroxyapa- titeComposite[J].J Mater Sci Mater Med,2007,18(4):653- 660.
    [48] Gao J, Dennis JE, Solchaga LA,et al. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate andhyaluronan sponge[J].Tissue Eng,2002,8(5):827-837.
    [49] Chen G, Sato T, Ushida T,et al.Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen[J].Tissue Eng,2004,10(3-4):323-330.
    [50] Schaefer D, Martin I, Jundt G,et al. Tissue-engineered composites for the repair of large osteochondral defects[J].Arthritis Rheum,2002,46(9):2524-2534.
    [51] Sherwood JK, Riley SL, Palazzolo R,et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair[J].Biomaterials,2002,23(24):4739 -4751.
    [52] Hoemann CD, Sun J, Legare A,et al.Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle[J].Osteoarthritis Cartilage,2005,13(4):318-329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700