轨道交通用工业铝合金淬火敏感性及在线淬火装备研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业化生产条件下,经过熔铸、均匀化及挤压得到了几种轨道交通用主要6xxx和7xxx工业铝合金的棒材,通过力学性能测试、电导率测试,显微组织分析和计算机软件模拟等方法研究了可实现在线淬火的主要轨道交通用工业铝合金的固溶-时效制度,采用等温-淬火-电导率测试和等温-淬火-时效-硬度测试获得合金的TTT和TTP曲线,之后利用Jmat Pro软件计算出6XXX系和7XXX系5个合金的TTT和CCT曲线,并与实验研究得到的有关参数进行对比分析,再利用Jmat Pro软件得到的合金物理参数,应用于Abaqus软件,来模拟不同淬火条件下合金的应力分布情况,旨在为确定这些合金在线淬火工艺提供实验依据。最后,设计研制了一套在线淬火装置,来实际考察研究合金的在线淬火特性。实验结果表明:
     (1)6005A合金适宜的固溶-时效制度为535℃×50mmin固溶,水淬,180℃×6h时效,在此条件下,6005A合金的抗拉强度、屈服强度和伸长率分别为329MPa、305MPa和14%。
     (2)6005A合金TTT曲线和TTP曲线呈“C”型,鼻尖温度在340℃附近,孕育时间为9s,淬火敏感性高,合金在340℃等温处理的相变动力学方程为:f=1-exp(-0.006t0.9457);6005A合金等温保温过程中过饱和固溶体分解析出第二相粒子,在鼻尖温度340℃达到最大的脱溶速率,合金的析出序列为:过饱和固溶体-p”-p’-p。
     (3)7005合金热挤压棒材合宜的离线固溶-时效制度为470℃/30min固溶水淬和105℃/10h+145℃/10h双级时效,在此条件下,合金棒材的抗拉强度、屈服强度、延伸率分别为480Mpa、451Mpa和8.4%。在优先考虑合金强度的前提下,时效各因素对合金性能影响的主次关系为:A>C>B>D,即一级时效温度>二级时效温度>一级时效时间>二级时效时间。
     (4)7005合金的TTT和TTP曲线都呈“C”形,C曲线鼻尖温度为285℃,C曲线鼻尖温度附近,固溶体分解对应的相转变孕育期极短,固溶体容易分解,即淬火敏感性高,而低温区及高温区淬火敏感性较低。7005型材生产在线挤压后淬火时,高温及低温区域可以适当降低冷却速度,而在鼻尖温度区域其冷却速度应该尽量大于6℃/s,以抑制各种物相的析出,保证其具有较好的综合性能。
     (5) Jmat pro软件通过计算模拟出主要6xxx和7xxx合金的TTT曲线及CCT曲线,给出了抑制不同合金不同析出相析出的最小淬火冷却速度,与淬火因子分析方法所得到的最小冷却速度基本一致,为在线淬火工艺提供理论和实际指导。
     (6) Abaqus CAE软件利用Jmatpro软件模拟计算出的合金相关物理量,可以模拟出合金在不同淬火制度下的温度场及应力场。分段淬火与一次性淬火相比,在保证合金性能基本不下降的同时,能够大幅度减小合金的内应力。
     (7)6005A型材生产在线挤压后淬火时,型材出口温度(相当于在线淬火温度)最好大于500℃,自500℃以上冷却到分解危险温度415℃时,可以适当慢速,随后要以9℃/s快速淬火通过280~415℃淬火敏感区,在低温区域再适当提高冷却速度。
     (8)6061合金在在250-450℃范围内淬火敏感性高,合金中β相无析出的临界冷却速度约为2℃/s,β”相和p’相无析出的临界冷却速度约为9℃/s。因此对于6061合金其冷却速度应该尽量大于9℃/s,以抑制p相、p’相和p”相的析出保证其具有较好的综合性能。
     (9)6082合金在340-360℃范围内淬火敏感性高,合金中p相的无析出临界冷却速度约为3℃/s,p”相和β’相的无析出临界冷却速度约为15℃/s。因此合金淬火冷却速度应该尽量大于15℃/s,以抑制p相、p’相和p”相的析出保证其具有较好的综合性能。
     (10)7003合金淬火敏感区间为250-330℃,η’相的析出敏感鼻尖温度为270℃,η’相的无析出临界冷却速度约为1℃/s,因此对于7003合金其冷却速度应该在1℃/s左右,以抑制各种物相的析出保证其具有较好的综合性能。
     (11)在前期研究的基础上,开发了一套精密在线水-雾-风淬火系统,可以实现周向分区控制,轴向分段控制冷却,并可对某一冷却参数以模具编号形式进行存储,在后续生产可实现直接调用,满足主要轨道交通用6xxx和7xxx工业合金的淬火要求。
Some round bar of6xxx and7xxx alloys for rail vehicle use were produced through smelting&casting, homogenization and extrusion under industrial condition. The reasonable solution&aging process and quench sensitivities of main industrial alloys for rail vehicle use were investigated through mechanical property test, electrical conductivity test, and microstructure analysis as well as computer software simulation. The TTT and TTP curve of these alloys were obtained based on all of the experimental data, and then the results were compared with those of computer simulation. the effect of different cooling rate to the inner stress was analyzed through finite element analysis software. At last,A precise on-line water-miss-wind quenching system were developed under the research which was used in real production line to the sensitivity evaluation. the results shows that:
     (1) The suitable solution-aging system of6005A alloy is535℃×50min solid solution and water quenching,180℃×6h aging. In this condition, the6005A alloy tensile strength, yield strength and elongation are329MPa,305MPa and14%.
     (2) The TTT curve and TTP curve of6005A alloy are "C" type, the nose temperature is340℃, the time of gave birth is9s,6005A alloy has high quench sensitivity, The phase transformation kinetics equation of6005A alloy at340℃isothermal treatment is f=1-exP(-0.006t0.9457.)The supersaturated solid solution of6005A alloy decompose and precipitate second phase particles during the isothermal process, and has the maximum rate at the tip temperature of340℃,6005A alloy precipitation sequence is:supersaturated solid solution-β"-β'-β.
     (3) The best solution quenching and aging technology of extrusion bar of7005alloy is470℃/30min solution, water quenching and with two step aging of105℃/10h+145℃/10h, under this condition, the tensile strength, yield strength and elongation of alloy bar can get to480Mpa,451Mpa and8.4%respectively. Take alloy strength as priority, the effect of every factor of aging process to strength is A>C>B>D, that is:the aging temperature of the first step> the aging temperature of the second step> the aging time of the first step> the aging time of the second step.
     (4) The TTT curve and TTP curve of7005alloy are"C" type, the nose temperature is285℃, and the incubation period of phase transformation corresponding to the decomposition of solid solution is extremly short in the nose area, which menns that it has very high quenching sensitivity, but it has low quenching sensitivity in the area of high temperature and low temperature. During the on-line quenching, the quenching rate can slow down in the area of high temperature and low temperature, but the quenching rate should exceed6℃/s in the nose area, so as to restrain the presipitates of phase, and ensure the synthesis property of alloy.
     (5) The TTT and CCT curve of main6xxx and7xxx alloy were simulated and calculated through Jmatpro5.1software, and the results are the same with those obtained by experiment.
     (6) Abaqus CAE software can simulate the temperature field and stress field at different quenching systems through the curves of physical parameters changing with temperature which get from JmatPro5.1software. Compared with the one-time quenching section, to ensure the basic performance is not declining, sub-quenching can reduce the stress of the alloy.
     (7) The outlet temperature (the equivalent of online quenching temperature) of6005A profile alloy should be higher than500℃after online extrusion quenching. The speed can be slowed down from500℃to415℃, and higher than9℃/s form415℃to280quenching sensitive areas. For one thing, this can reduce the residual stress. For another, this can avoid the decomposition of solid solution, which can guarantee the mechanical properties.
     (8) The quenching sensitivity of6061alloy is very high bettween the temperature of250~450℃, and the criticle cooling rate to prevent the precipitate of (3phase is2℃/s, and9℃/s for β" and β' phase, so for6061Al-alloy the quench rate should be more than9℃/s at the quench sensitivity temperature zone (250~450℃) so as to gain the best properties.
     (9) The quenching sensitivity of6082alloy is very high bettween the temperature of340~360℃, and the criticle cooling rate to prevent the precipitate of β phase is3℃/s, and15℃/s for β" and β' phase, so for6082Al-alloy the quench rate should be more than15℃/s at the quench sensitivity temperature zone so as to gain the best properties.
     (10) The quenching sensitivity of7003alloy is very high bettween the temperature of250~330℃, and the criticle cooling rate to prevent the precipitate of η' phase is1℃/s, so for7003Al-alloy the quench rate should be more than1℃/s at the quench sensitivity temperature zone so as to gain the best properties.
     (11) An precise on-line water-mist-wind quenching system was developed based on the former research. And it can be precise controlled in different direction in the circle and axis, and the cooling data can be stored in the form of the die number, and could directly used the next time during production, and could satisfy the quenching requierment of main6xxx and7xxx alloy for industrial use.
引文
[1]刘静安.铝材在交通运输工业中的开发与应用[J].中国有色金属加工工业协会铝加工高新技术文集.477-489
    [2]张君,杨合,谢东钢.大型挤压铝型材淬火技术与装置[J].机械工程学报.2007,43(7):133-138
    [3]王任甫,胡素坤,孙民等.4.5Ni钢淬透性试验研究[J].材料开发与应用.1995,10(5):15-19
    [4]MingChun Zhao, Ke Yang, FuRen Xiao, et al. Continuous cooling transferation of undeformed and deformned low carbon pipeline steels[J]. Materials Science and Engineering A.2003,355:126-136
    [5]王涛.淬透性试验方法在2024、7075合金厚板淬火工艺中的应用研究[R].东北轻合金加工厂,1991
    [6]王国军,熊柏青,张永安等.2D70铝合金淬透性研究[J].稀有金属,2009,33(3):304-308
    [7]林高用,郑小燕,冯迪等.铝合金厚板淬火残余应力的研究进展[J].材料导报,2008,22(6):70-74
    [8]V. G. Davydov, L. B. Ber, E. Ya. Kaputkin. TTP and TTT diagrams for quench sensitivity and aging of 1424 alloy[J]. Materials science and Engineering A. 2000,280:76-82
    [9]S. T. Lima, S. J. Yun, S. W. Nam. Improved quench sensitivity in modified aluminum alloy 7175 forthick forging applications [J]. Materials Science and Engineering A.2004,371:82-90
    [10]B. Milkereit, O. Kessler, C. Schick. Recording of continuous cooling precipitation diagrams of aluminium alloys[J]. Thermochimica Acta,2009,492: 73-78
    [11]G. P. Dolan, R. J. Flynn, D. A. Tanner. Quench factor analysis of aluminium alloys using the Jominy end quench technique[J]. Materials Science and Technology,2005,21(6):687-692
    [12]Murat Tiryakioglu, Palph T. Shuey. Quench Sensitivity of an Al-7 Pct Si-0.6 Pct Mg Alloy:Characterization and Modeling[J]. Metallurgical and Materials Transactions,2007,38B(8):575-582
    [14]席桂荣(译),张君尧(校).化学成分对铝合金淬透性的影响[J].轻合金加工技术.1994,22(11):36-39
    [15]毛小南,张鹏省,于兰兰等.BT22合金的成分设计和淬透性的关系研究[J].稀有金属快报.2006,25(6):21-26
    [16]苏兴武,顾敏.淬火冷却过程数值模拟的研究现状及展望[J].金属热处理,2008,33(6):1-7
    [17]胡少虬,张辉,杨立斌等.7075铝合金厚板淬火温度场及热应力场的数值模拟[J].湘潭大学自然科学学报,2004,26(2):66-71
    [18]吴运新,廖凯,张舒原.大规格高强铝厚板淬火实验问题研究[J].材料热处理技术,2008,37(6):50-55
    [19]刘胜胆,张新明,游江海等.7055铝合金的TTP曲线及其应用[J].中国有色金属学报,2006,16(12):2034-2039
    [20]肖从文,汪明朴,王正安,等.6005A合金的淬火敏感性[J],中国有色金属学报,2003,13(3):635-639
    [21]Pierre Archambauh, David Godard. High temperature precipitation kinetics and TTT curves of a 7XXX alloy by in-situ electrical resistivity measurements and differential calorimetry[J]. Scripta mater.2000,675-680
    [22]R. C. Dorward. A dynamic quench model for strensth predictions in heat-treatable aluminum alloys [J]. Jourhal of Materials Processing Technology. 1997,25-29.
    [23]J.S.Robinson, R.L.Cudd, D.A.Tsnner. Queneh sensitivity and tensile property in homogenity in 7010 forgings [J]. Journal of Materials Proeessing Tehnology, 2001,119(1-3):261-267.
    [24]Benjamin Milkereit, Olaf Kessler, Christoph Schick. Recording of continuous cooling precipitation diagrams of aluminium alloys[J], Thermochimica Acta, 2009.01.027.
    [25]Th. Herding, O. Kessler, F. Hoffmann. An Approach for Continuous Cooling Transformation (CCT) Diagrams of Aluminium Alloys [C], in:P.J. Gregson, S.J. Harris (Eds.),8th International Conference on Aluminium Alloys, Trans Tech Publications Ltd, Cambridge, UK,2002, pp.869-874.
    [26]O. Kessler, R. von Bargen, F. Hoffmann, H.W. Zoch, Continuous cooling transformation (CCT) diagram of aluminum alloy Al-4.5Zn-1Mg [C], in:W.J. Poole, M.A. Wells, D.J. Lloyd (Eds.),10th International Conference on Aluminium Alloys, Pts 1 and 2, Trans Tech Publications,2006, pp.1467-1472.
    [27]B. Milkereit, O. Kessler, C. Schick, Continuous cooling precipitation diagrams of aluminium-magnesium-silicon alloys, in:J. Hirsch, B. Skrotzki, G. Gottstein (Eds.),11th International Conference on Aluminium Alloys, Deutsche Gesellschaft fiir Materialkunde e.V, WILEY-VCH Weinheim, Aachen, Germany, 2008, pp.1232-1237.
    [28]LI Hong-ying, GENG Jin-feng, ZHENG Zi-qiao. Continuous cooling transformation curve of a novel Al-Cu-Li alloy [J], Trans. Nonferrous Met. Soc. China,2006,16(5):1110-1115.
    [29]张新明,刘文军,刘胜胆,等.7050铝合金的TTP曲线[J].中国有色金属学报,2009,19(5):861-868.
    [30]李红英,唐宜,曾再得,等.A1-Zn-Mg-Cu合金连续冷却转变曲线的测量[J],中国有色金属学报,2008,18(9):1613-1621.
    [31]中国金属学会,中国有色金属学会.金属材料物理性能手册(1)[M].北京:冶金工业出版社,1987.
    [32]李周,王正安,郭明星等.轨道交通车辆用大型材铝合金6005A的TTP曲线与7005合金双级时效特性的研究[J].铝合金,2003(5):5-8.
    [33]LI Hong-ying, GENG Jin-feng, ZHENG Zi-qiao et al. Continuous cooling transformation curve of a novel Al-Cu-Li alloy [J]. Transactions of Nonferrous Metal Society of China,2006,16(5):1110-1115.
    [34]刘胜胆,张新明,黄振宝等.7055铝合金的淬火敏感性研究[J].中南大学学报(自然科学版).2006,37(5):846-849
    [35]石琳.铝锂合金的淬透性研究[J].航空制造工程.1997.5:33-35
    [36]刘胜胆,张新明,游江海等.微量锆对7055型铝合金淬火敏感性的影响[J].稀有金属材料与工程.2007,36(4):607-611
    [37]席桂荣(译),张君尧(校).化学成分对铝合金淬透性的影响[J].轻合金加工技术.1994,22(11):36-39
    [38]陈忠伟,胡锐,介万奇.A357合金淬火敏感性的研究[J].材料热处理学报.2004,25(6):76-78
    [39]CAO Ling-fei, WANG Ming-pu, GUO Ming-xing et al.Heat Treatment of Modified 6005 A Alloy for Vehicles[J]. Trancaction of materials and heat tratment proceedings of the ifhtse congress.2004,25(5):619-622
    [40]S.T. Lim, S.J. Yun,S.W. Nam. Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications[J]. Materials Science and Engineering.A 371 (2004) 82-90
    [41]D. S. Thompson, B. S. Subramanya, S. A. Levy. Quench Rate Effects in Al-Zn-Mg-Cu Alloys[J]. Metallurgical transaction.1971,2:1149-1160
    [42]R.C. Dorward.A dynamic qunch model for strength prediction in heat-treatable aluminum alloys [J].Journal of Materials Processing Technolog,1997,66:25-29
    [43]B.M. Gable, A.A. Csontos, E.A. Starke Jr.A quench sensitivity study on the novel Al-Li-Cu-X alloy AF/C 458[J]. Journal of Light Metals.2002,2:65-75
    [44]R. J. Livak, J.M. Papazian.Effect of copper on prediction and qunch sensitivity of Al-Zn-Mg alloy [J]. Scripta Metallurgica.1984,18:483-488
    [45]A. Deschamps, Y. Bre'chet. Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy[J]. Materials Science and Engineering.1998,251:200-207
    [46]YOU Jiang-hai(游江海),LIU Sheng-dan(刘胜胆),ZHANG Xin-ming(张新明).Influence of quench transfer time on microstructure and mechanical properties of 7055 aluminum alloy[J]. Journal of Central South University(Technology). 2008,15:153-158
    [47]M. Conserva, P. Fiorini. Interpretation of Quench-Sensitivity in Al-Zn-Mg-Cu Alloys[J]. Metallurgical transaction,1973,4:857-862
    [48]刘静安.6005A铝合金大型特种型材的研制[J].轻合金加工技术,2004,32(4):36-41.
    [49]苏鸿英.飞机、轨道车辆和船舶的用铝趋势[J].世界有色金属,2010,(4):69.
    [50]刘静安,盛春磊,王文琴.铝合金锻压生产技术及锻件的应用开发[J].轻合金加工技术,2010,38(1):13-18.
    [51]柯映林,董辉跃.7075铝合金厚板预拉伸模拟分析及其在淬火残余应力消除中的应用[J].中国有色金属学报,2004,14(4):639-645.
    [52]李晓峰,陈冰泉,黄永溪.JMatPro软件在药芯焊丝W110性能研究中的应用[J].金属铸锻焊技术,2010,39(9):5-7.
    [53]LI Hui-ping, ZHAO Guo-qun, HE Lian-fang. Finite element method based simulation of stress-strain field in the quenching process [J]. Materials Science and Engineering A,2008,478(1/2):276-290.
    [54]LI Hui-ping, ZHAO Guo-qun, HE Lian-fang, et al. Solution of non-linear thermal transient problems by a new adaptive time-step method in quenching process[J]. Applied Mathematical Modelling,2009,33(1):329-342.
    [55]Tanner D A, Robinson J S. Modelling stress reduction techniques of cold compression and stretching in wrought aluminum alloy products [J]. Finite Elements in Analysis and Design,2003,39(5/6):369-386.
    [56]王岗,尹志民,周春荣,等.Lw 2010铝型材技术(国际)论坛文集[C].广州:广州有色金属研究院,2010.
    [57]宋广胜,孟庆华,王洪顺.工件淬火过程表面综合换热系数的测算[J].沈阳航空工业学院学报,2008,25(1):29-32.
    [58]张勇.7050铝合金材料淬透性的末端淬火研究[D].中南大学,2008.
    [59]张圆圆.铝合金厚板淬火过程及预拉伸热-力仿真与实验研究[D].中南大学.2008.
    [60]俞景禄,魏季和.冶金中的传热传质现象[M].北京:冶金工业出版社,1981:296-299.
    [61]尹丽丽.6005A合金的加工特性和性能[J].轻合金加工技术.2000,28(6):41-46.
    [62]FP因克罗普拉,DP德威特.传热基础[M].北京二宇航出版社,1985.
    [63]尹志民,潘青林,姜峰,等.钪和含钪合金[M].长沙:中南大学出版社,2007:294-305.
    [64]Robert J. Flynn, J.S. Robinson. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy [J]. Journal of Materials Processing Technology,2004,153-154:674-680.
    [65]中国金属学会,中国有色金属学会.金属材料物理性能手册(1)[M].北京:冶金工业出版社,1987:418-454.
    [66]何立子.Al-Mg-Si系合金组织性能[D].沈阳:东北大学材料与冶金学院材料制备与成形研究所博士论文,2001:36-38.
    [67]Cai M, Field D.P, Lorimer G.W, et al. A systematic comparison of static and dynamic ageing of two Al-Mg-Si alloys[J]. Materials Science and Engineering A,2004,373 (1-2):65-71.
    [68]Mondolfo L F. Aluminium alloys structure and properties[M]. London-Boston: Butter Worths,1976:25.
    [69]国家机械工业委员会统编.金属物理测试技术[M].北京:机械工业出版社,1988:35-40.
    [70]George E. Totten, D. Scott MacKenzie, Handbook of Aluminum Volume 1: Physical Metallurgy and Processes, Marcel Dekker Press, New York, (2003) 1001-1008.
    [71]D. H. Bratland, O. Grong, H. Shercliff, et al. Overiew NO.124 Modelling of precipitation reactions in industrial processing[J]. Acta Materialia.1997,45 (1): 1-22.
    [72]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:400-401.
    [73]D.A.Porter, K.E.Easterling. Phase transformations in metals and alloys[M]. London:Chapman & Hall,1992:263-381.
    [74]田荣璋,王祝堂.铝合金及其加工手册[M].长沙:中南大学出版社,2000:252.
    [75]T. Sritharan, R. S. Chandel. Phenomena in interrupted tensile tests of heat treated aluminium alloy 6061[J]. Acta Materialia,1997,45(8):3155-3161.
    [76]潘道召,王芝秀,李海,等.双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响[J].中国有色金属学报,2010,20(3):435-440.
    [77]GP. Dolan, J. S. Robinson. Residual stress reduction in 7175-T73,6061-T6 and 2017A-T4 aluminium alloys using quench factor analysis[J]. Journal of Materials Processing Technology,2004,153-154:346-351.
    [78]G. B. Burger, A. K. Gupta, P. W. Jeffrey, et al. Microstructural control of aluminum sheet used in automotive applications [J]. Materials Characterization. 1995,35:23-39.
    [79]S. J. Andersen, H. W. Zandbergen, J. Jansen, et al. The crystal structure of the β" phase in Al-Mg-Si alloy[J]. Acta Mater.1998,46:3283-3298.
    [80]金曼,邵光杰.Cu对6082A1-Mg-Si合金时效初期析出相的影响[J].中国有色金属学报,2009,19(1):1-7.
    [81]S. J. Andersena, C. D. Marioaraa, A Frosethb, et al. Crystal structure of the orthorhombic U2-A14Mg4Si4 precipitate in theAl-Mg-Si alloy system and its relation to the β'and β" phases[J]. Materials Science and Engineering A,2005, 390:127-138.
    [82]R. Vissers, M.A. van Huis, J. Jansen, et al. The crystal structure of the β' phase in Al-Mg-Si alloys[J]. Acta Materialia,55 (2007):3815-3823.
    [83]C. D. Marioaar, S. J. Andesren, J. Jnasen, et al. Atomic model for GP-zones in A6082 Al-Mg-Si system[J]. Aetamater,2001,49:321-328.
    [84]陈小明,宋仁国,张宇,等.过烧对7003铝合金组织与性能的影响[J].轻合金加工技术,2009,37(2):48-52.
    [85]R. G Song, M. K. Tseng, B. J. Zhang, et al. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy [J]. Acta Materialia,1996, 44:3241.
    [86]J. Yan, C. Z. Li, M. G Yan. On the prime precipitate phase in 7050 aluminium alloy[J]. Materials Science & Engineering A:Structural Materials:Properties, Microstructure and Processing,1991,141(1):123-128.
    [87]A.撒利.金属蠕变与耐热合金[M].国防工业出版社,1953.
    [88]N. C. W. Kuijpers, F. J. Vermolen, C. Vuik, et al. The dependence of the-AlFeSi to-Al(Fe,Mn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements[J]. Materials Science and Engineering A.2005,394:9-19.
    [89]N. C. W. Kuijpers, W. H. Kool, P. T. G Koenis, et al. Assessment of different techniques for quantification of a-Al(FeMn)Si and b-AlFeSi intermetallics in AA 6xxx alloys[J]. Materials Characterization.2003,49:409-420.
    [90]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994.
    [91]D. A. PORTER, K. E. EASTERLING Phase transformations in metals and alloys[M]. London, Chapman and Hall,1992.
    [92]G. E. Totten, D. S. Mackenzie. Handbook of Aluminum Volume 1:Physical Metallurgy and Processes[M]. New York:Marcel Dekker Press,2003.
    [93]H. R. Shercliff, M. F. Ashby. Acta Metal,1990,38(10):1789-1802.
    [94]L. F. Mondolfo. Aluminium alloys structure and properties[M]. London-Boston: Butter Worths,1976:25.
    [95]国家机械工业委员会统编.金属物理测试技术[M].北京:机械工业出版社,1988:35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700