高强高导形变Cu基原位复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子、电力、信息、交通及机电等行业的快速发展对高强高导形变Cu基原位复合材料的强度、电导率和塑性提出了更高要求。本文通过合金成分优化、熔铸、大塑性变形及各种热处理,设计并制备了Cu.14Fe.Cu-7Cr和Ag微合金化的Cu-14Fe-0.1Ag.Cu-7Cr-0.1Ag四种实验材料,并采用X射线衍射仪(XRD)、光学显微镜(OM)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等手段观察和分析了材料的微观组织结构;采用液晶电子拉力试验机、维氏硬度计、数字微欧仪等测试和分析了材料的力学性能和导电性能。系统研究了Ag微合金化在材料凝固、形变及热处理过程中的作用及机理,并引入了定向凝固和强磁场处理技术,详细研究了其对材料组织和性能的影响规律和机制,结合适当的时效工艺,对材料的强度、电导率和塑性进行了有效调控。得出了以下主要研究结果:
     铸态Cu-Fe合金的Fe相主要以树枝晶的形态分布于Cu基体中,Cu-Cr合金的Cr相绝大部分以树枝晶、少量以细小的共晶形态存在于Cu基体中。微量Ag元素加入后,铸态Cu-Fe.Cu-Cr合金中的初生相和形变Cu-Fe.Cu-Cr原位复合材料中的纤维相平均尺寸和间距减小、分布更加均匀。纤维组织的立体形态为弯曲的薄片状,其轴向形成过程主要经历了枝晶破碎、颗粒扁化与旋转、纤维搭接与合并、纤维细化与均匀化等四个阶段。
     提出了分段的强化机制物理模型,当冷变形应变量较小时,材料的强度符合修正的混合法则σC=σM fM+σX fX,其中σM=σ+k3m1/2X,对形变Cu-14Fe原位复合材料,当η≤5时,k3=52;随着冷变形应变量的增加,材料的强化机制逐渐偏离混合法则,其强度满足Hall-Petch关系,对形变Cu-14Fe原位复合材料,当5<η≤7.8时,具体的强化数学模型可表示为σC=108+1299λ-1/2;随着冷变形应变量的进一步提高,材料内的位错密度下降,抗拉强度与纤维平均间距之间逐渐偏离Hall-Petch关系,其抗拉强度主要由界面障碍强化模型决定。Ag微合金化使形变Cu-14Fe.Cu-7Cr原位复合材料的强度提高。这主要是因为Ag的加入细化了初生相,使Ag微合金化形变Cu-b.c.c.原位复合材料在更低的变形量下满足Hall.Petch关系,对形变Cu-14Fe-0.1Ag原位复合材料,当4<η≤7.8时,Ag微合金化的强化数学模型可表示为σc=139+1299λ-1/2.
     通过对不同材料的拉伸断口形貌观察发现,随着冷变形应变量的不断增加,宏观上材料的断口逐渐由杯锥状向剪切形态转变;微观上断口韧窝尺寸逐渐减小、变浅。微量Ag元素加入后,材料出现上述变化的相应冷变形应变量提高,表明微量Ag元素的加入将提高形变Cu-b.c.c.原位复合材料的塑性变形能力。
     冷变形应变量对形变Cu-b.c.c.原位复合材料电导率的影响主要由Cu基体和纤维相的界面引起的界面散射电阻率决定。界面散射电阻率的数学模型可表示为pint=—0.09+KD(d0/d),对形变Cu-14Fe原位复合材料而言,kD=0.02。微量Ag元素加入后,在相同的冷变形应变量下,形变Cu-14Fe.Cu.7Cr原位复合材料的电导率均有所上升。微量Ag元素对形变Cu-b.c.c.原位复合材料电导率的影响主要是由杂质散射电阻率变化引起的。由于Ag元素与Fe/Cr相比,在Cu基体中具有溶解竞争优势,加入后可进一步促进固溶Fe/Cr原子的析出,而且固溶Ag原子对Cu基体电导率的影响要远远低于固溶Fe/Cr原子。因此,Ag微合金化可降低杂质散射电阻率,从而促使复合材料的电导率上升。
     微量Ag元素的加入,有利于第二相纤维的细化、纤维/基体的界面能降低以及Fe/Cr等原子在基体中扩散系数的提高,从而导致材料中第二相纤维的热稳定性下降,促使热处理过程中材料的电导率峰值向低温方向偏移;有利于加速第二相粒子的时效析出,促使Cu基体在较低温度下发生脱溶分解,析出细小弥散的第二相粒子,从而导致材料的强度峰值向低温方向偏移。
     通过Ag微合金化、形变、适当的中间热处理和最终时效处理的协同作用,对形变Cu-14Fe和Cu-7Cr原位复合材料的强度、电导率和塑性进行了综合调控,形成了一种有效的调控工艺。采用合适的强磁场预备热处理,可提高第二相Fe原子在Cu基体中的扩散系数,加速过饱和固溶Fe原子的析出,促使第二相Fe枝晶的球化、细化和均匀化,使形变Cu-Fe原位复合材料的强度和电导率同时获得提高;采用适当的定向凝固处理,有利于铸态组织中初生Cr晶粒形成沿抽拉方向排列的方向性,使第二相长棒状组织的平均尺寸和间距减小、分布更加均匀,从而使形变Cu-Cr原位复合材料在保持高电导率的同时获得强度的大幅提升;结合适当的后续热处理,可对材料的强度、电导率和塑性变形能力进行有效调控。η=7.8的形变Cu-14Fe-0.1Ag原位复合材料经10T强磁场等时时效1h后获得的较好强度/电导率/断后伸长率组合主要有1149MPa/60.3%IACS/3.3%、1093MPa/61.9%IACS/3.5%和1006MPa/63.7%IACS/3.7%等;η=8的形变Cu-7Cr-0.1Ag原位复合材料经等时时效1h后获得的较好强度/电导率/断后伸长率组合主要有1067MPa/74.9%IACS/2.9%、1018MPa/76.0%IACS/3.0%和906MPa/77.6%IACS/3.3%等。
The higher strength, better plasticity and conductivity of high-strength and high-conductivity deformation processed Cu-based in situ composites are being required due to the rapid development of microelectronics, electric power, information, transportation and electromechanical industries. Deformation processed Cu-14Fe, Cu-7Cr, Cu-14Fe-0.1Ag and Cu-7Cr-0.1Ag in situ composites were designed and prepared by optimized alloying composition, cast, deformation and heat treatment. Effect of Ag micro-alloying, directional solidification and high magnetic field on the microstructure and properties of Cu-Fe/Cr during the solidification, cold drawing and heat treatment were investigated by using X-Ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), LCD electronic tensile-testing machine, Vickers hardness tester and micro-ohmmeter. The main results of the research are as follows.
     The as-cast microstructure of Cu-Fe alloys included Cu matrix and Fe dendrite, and that of Cu-Cr alloys was made of Cu matrix, Cr dendrite and a small quantity of Cu-Cr eutectic. Ag micro-alloying refined the Fe and Cr dendrites in Cu-Fe and Cu-Cr alloys, which decreased the average size and spacing of the filaments in deformation processed in situ composites. During the cold deformation, the formation of the curved lamelliform filaments experienced the following four main steps in the longitudinal section, namely breaking of dendrites, flattening and rotating of particles, lapping and merging of filaments, refining and homogenizing of filaments.
     Sectionalized physical model of strengthening mechanism was developed. With small cold deformation strain, the strength of the composites can be calculated by the modified rule of mixing <σC=σMfM+σXfX, where σM=σ+k3m1/2X, and k3=52for deformation processed Cu-14Fe in situ composite at η≤5. As the cold deformation strain increasing, the strengthening mechanism deviated from the rule of mixing gradually, and the strength agreed with Hall-Petch relation. The mathematical model can be expressed as σC=108+1299λ-1/2for Cu-14Fe composite at5<η≤7.8. As the cold deformation strain further increasing, the dislocation density in the composites decreased, so that the strengthening mechanism disobeyed Hall-Petch relation gradually, and the strength can be forecasted by the interface obstacle strengthening model. Ag micro-alloying increased the strength of Cu-14Fe and Cu-7Cr composites. This is attributed to the microstructure refinement which makes Ag micro-alloying deformation processed Cu-b.c.c. in situ composites conform to Hall-Petch relation in smaller cold deformation strain. The strengthening mathematical model of Ag micro-alloying can be expressed as σC=139+1299λ-1/2for Cu-14Fe-0.1Ag composite at4<77<7.8.
     The fracture surface analysis of the samples showed that the macroscopic fracture morphology of the composites gradually changed into shear fracture from cup and cone shape with the cold deformation strain increasing, and the dimples size in the microstructure gradually decreased. The shear fracture was delayed to bigger cold deformation strain after the addition of trace Ag, which indicated that Ag micro-alloying could improve the plastic deformability of deformation processed Cu-b.c.c. in situ composite.
     The influence of cold deformation strain on the conductivity of the composites depends on the interface scattering resistivity generated by the interface between Cu matrix and filaments. The mathematical model of the interface scattering resistivity can be expressed as ρint=-0.09+kD(d0/d), where kD=0.02for Cu-14Fe composite. Ag micro-alloying improved the conductivity of Cu-14Fe and Cu-7Cr composites. The effect of trace Ag on the conductivity of the composites depends on the impurity scattering resistivity. Ag micro-alloying promoted the solid solution Fe/Cr atoms to precipitate due to the solid solution advantage of Ag in Cu matrix, and solid solution Ag has relatively little damage to the conductivity of Cu matrix contrast to Fe/Cr. Therefore Ag micro-alloying reduced the impurity scattering resistivity to improve the conductivity of the composites.
     Ag micro-alloying reduced the thermal stability of Fe/Cr filaments due to refined filaments, decreased the interface energy between Cu matrix and filaments, and increased the diffusion coefficient of Fe/Cr atoms in Cu matrix, which promoted the peak conductivity to migrate to lower temperature during heat treatment. Moreover, it also contributed to promote precipitation decomposition of Cu matrix at lower temperature, and accelerate aging precipitation of Fe/Cr atoms to form dispersed precipitates, which led to the peak strength to migrate to lower temperature during heat treatment.
     The combination of the strength, conductivity and plasticity of Cu-14Fe and Cu-7Cr composites was optimized by using Ag micro-alloying, deformation, intermediate heat treatment and aging treatment. A new micro-alloying thermo-mechanical treatment process was developed. The prior heat treatment under high magnetic field enhanced the diffusion coefficient of Fe atoms in Cu matrix, accelerated the precipitation of supersaturated solid solution Fe atoms, and promoted Fe dendrites spheroidizing, refining and homogenizing, which made both strength and conductivity of the Cu-Fe composites increase. Directional solidification technology made primary Cr phase arrange along the drawing direction, decreased the average size and spacing of rod-like Cr phase, and made Cr distribute more uniform, which improved the strength of Cu-Cr composites significantly and retained the relatively high conductivity. Combining optimized subsequent heat treatment processes made the composites obtain good combination property of strength, conductivity and elongation. The strength/conductivity/elongation of Cu-14Fe-0.1Ag composite reached1149MPa/60.3%IACS/3.3%,1093MPa/61.9%IACS/3.5%and1006MPa/63.7%IACS/3.7%at η=7.8after isochronic aging treatment1h under10T magnetic intensity; The strength/conductivity/elongation of Cu-7Cr-0.1Ag composite reached1067MPa/74.9%IACS/2.9%,1018MPa/76.0%IACS/3.0%and906MPa/77.6%IACS/3.3%at η=8after isochronic aging treatment1h.
引文
[1]王笑天.金属材料学[M].北京:机械工业出版社,1987:267-274.
    [2]赵瑞龙,刘勇,田保红,等.纯铜的高温变形行为[J].金属热处理,2011,36(8):17-20.
    [3]刘平,任凤章,贾淑果,等.铜合金及其应用[M].北京:化学工业出版社,2007:8-9.
    [4]姚再起.形变Cu-Fe原位复合材料研究[D].大连:大连交通大学,2004.
    [5]Lei Q, Li Z, Pan Z Y, et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging[J]. Trans. Nonferrous Met. Soc. China,2010,20(6):1006-1011.
    [6]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002:1-8.
    [7]Lu D P, Wang J, Zeng W J, et al. Study on high-strength and high-conductivity Cu-Fe-P alloys[J]. Mater. Sci. Eng. A,2006,421:254-259.
    [8]支海军,徐玉松,陆敏松,等.高速电气化铁道用CuSn合金接触线成形工艺研究[J].铸造技术,2009,30(12):1591-1594.
    [9]方行,方强,王珺,等.Cu引线框架氧化对功率器件中Cu/EMC界面的影响[J].半导体技术,2010,35(2):142-145.
    [10]马莒生,黄福祥,黄乐,等.铜基引线框架材料的研究与发展[J].功能材料,2002,33(1):1-4.
    [11]闵光辉,宋立,于化顺,等.高强度导电铜基复合材料[J].功能材料,1997,28(4):342-345.
    [12]Jia S G, Liu P, Ren F Z, et al. Wear behavior of Cu-Ag-Cr alloy wire under electrical slidingfJ]. Mater. Sci. Eng. A,2005,398:262-267.
    [13]Han K, Embury J D, Sims J R, et al. The fabrication, properties and microstructure of Cu-Ag and Cu-Nb Composite Conductors[J]. Mater. Sci. Eng. A,1999,267:99-114.
    [14]Hong S I, Hill M A. Microstructural stability and mechanical response of Cu-Ag micro composite wires[J]. Acta Mater.,1998,46(12):4111-4122.
    [15]Raabe D, Ge J P. Experimental study on the thermal stability of Cr filaments in a Cu-Cr-Ag in situ composite [J]. Scripta Mater.,2004,51:915-920.
    [16]Courtney T H, Kampe J C M. Shape instabilities of plate-like structures. Ⅱ. Analysis[J]. Acta Metall.,1989,37:1747-1758.
    [17]牛玉英,宋宝韫,刘元文.银铜合金接触线的制造新工艺[J].塑性工程学报,2006,13(3):65-68.
    [18]Bevk J, Harbison J P, Bell J D. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J]. J. Appl. Phys.,1978,49: 6031-6038.
    [19]Gao H Y, Wang J, Sun B D. Effect of Ag on the thermal stability of deformation processed Cu-Fe in situ composites[J]. J. Alloys Compd.,2009, 469(1-2):580-586.
    [20]Qu L, Wang E G, Zuo X W, et al. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite[J]. Mater. Sci. Eng. A,2011, 528(6):2532-2537.
    [21]Liu J B, Zhang L, Meng L. Effects of rare-earth additions on the microstructure and strength of Cu-Ag composites[J]. Mater. Sci. Eng. A,2008, 498(1-2):392-396.
    [22]Carpenter J S, Vogel S C, Ledonne J E, et al. Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding[J]. Acta Mater., 2012,60(4):1576-1586.
    [23]Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation[J]. Scripta Mater., 2008,58(12):1125-1128.
    [24]Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu-Nb-Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography [J]. Acta Mater.,2009,57(17): 5254-5263.
    [25]Venugopal T, Prasad R K, Murty B S. Mechanical and electrical properties of Cu-Ta nanocomposites prepared by high-energy ball milling[J]. Acta Mater., 2007,55 (13):4439-4445.
    [26]Spitzig W A, Chumbley L S, Verhoeven J D, et al. Effect of temperature on the strength and conductivity of a deformation processed Cu-20%Fe composite [J]. J. Mater. Sci.,1992,27:2005-2011.
    [27]Wu Z W, Liu J J, Chen Y, et al. Microstructure, mechanical properties and electrical conductivity of Cu-12%Fe microcomposite annealed at different temperatures[J]. J. Alloys Compd.,2009,467(1-2):213-218.
    [28]Motohisa M. High-strength and high-conductivity alloy KL F201[J]. Journal of the Japan Copper and Brass Research Association,1988,27:93-98.
    [29]陆德平.高强高导电铜合金研究[D].上海:上海交通大学,2007.
    [30]何启基.金属的力学性能[M].北京:冶金工业出版社,1982:193-194.
    [31]Tallbenblet P W, Tiainen T. Research of high-electrical-conductivity copper alloys[J]. Mater. Eng.,1986,02:863-866.
    [32]Ghosh Q Miyake J, Fine M E. The systems-based design of high-strength, high-conductivity alloys[J]. JOM,1997, (3):56-60.
    [33]Daizen W, Chihiro W, Ryoichi M. Determination of the interface energies of spherical, cuboidal and octahedral face-centered cubic precipitates in Cu-Co, Cu-Co-Fe and Cu-Fe alloys[J].Acta Mater.,2009,57(6):1899-1911.
    [34]Zhou Z M, Xiao Z P, Wei B W, et al. The numerical simulation of rapidly solidified Cu-Cr alloys[J]. Procedia Eng.,2012,29:3944-3948.
    [35]陈少华,李银华,刘平,等.CuNiSi系合金热压缩行为研究[J].特种铸造及有色合金,2009,29(2):120-122.
    [36]Azimi M, Akbari G H. Development of nano-structure Cu-Zr alloys by the mechanical alloying process[J]. J. Alloys Compd.,2011,509(1):27-32.
    [37]Levent Y, Ozgur D, Bulent A. Investigation of metastable y'precipitate using HRTEM in aged Cu-Be alloy[J]. Mater. Sci. Eng. A,2011,528(12): 4147-4151.
    [38]Lei R S, Wang M P, Guo M X, et al. Microstructure evolution and thermal stability of nanocrystalline Cu-Nb alloys during heat treatment[J]. Trans. Nonferrous Met. Soc. China,2009,19(2):272-276.
    [39]Yang W, Xu Z F, Li W J, et al. Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled Cu-Co and Cu-Ni alloys[J]. Physica B:Condensed Matter,2011,406(19):3710-3714.
    [40]陆德平,王俊,陆磊,等.硼和铈对Cu-Fe-P合金显微组织和性能的影响[J].中国稀土学报,2006,24(4):475-479.
    [41]Liu P, Kang B X. Interaction of precipitation and recrystallization in rapidly solidified Cu-Cr-Zr-Mg alloy[J]. Acta Metall. Sinica,1999, (3):273-276.
    [42]温盛发.形变Cu-14Fe原位复合材料研究[D].长沙:中南大学,2011.
    [43]Xie H, Jia L, Lu Z L. Microstructure and solidification behavior of Cu-Ni-Si alloys[J]. Mater. Characterization,2009,60(2):114-118.
    [44]Zhang H, Zhang H G, Li L X. Hot deformation behavior of Cu-Fe-P alloys during compression at elevated temperatures[J]. J. Mater. Proc. Techno.,2009, 209(6):2892-2896.
    [45]Hiroshi Y. Cu-Fe-Ti-Mg alloy used in electronic material[J]. Journal of the Japan Copper and Brass Research Association,1984,23:109-115.
    [46]Liu Q, Zhang X, Ge Y, et al. Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire[J]. Metall. Mater. Trans. A, 2006,12:3233-3237.
    [47]Motohisa M. Performance of KFC-SH and KLF194-SHT copper alloys in high-strength and high-conductivity for lead fram[J]. Journal of the Japan Copper and Brass Research Association,1990,29:224-233.
    [48]Motohisa M. High-strength and high-conductivity alloy KLF201 [J]. Journal of the Japan Copper and Brass Research Association,1988,27:93-98.
    [49]熊拥军,邓至谦,凌兴珠.TiB2增强铜基复合材料的研究[J].中南工业大学学报,2001,(6):294-297.
    [50]申玉田,崔春翔,孟凡斌,等.高强度高电导率Cu-Al2O3复合材料的制备[J].金属学报,1999,35(8):888-892.
    [51]贾燕民,丁秉钧.制备弥散强化铜的新工艺[J].稀有金属材料与工程,2004,4(2):141-145.
    [52]Musil J, Louda M, Soukup Z, et al. Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films[J]. Diamond Related Mater.,2008,17(11):1905-1911.
    [53]Ran L P, Peng K, Yi M Z, et al. Ablation property of a C/C-Cu composite prepared by pressureless infiltration[J]. Mater. Lett.,2011,65(13):2076-2078.
    [54]曾松岩.一种新型的制备金属基复合材料的方法——接触反应法[J].宇航材料工艺,1995,25(5):27-32.
    [55]蒋建清.自生复合材料及其进展[J].材料科学与工程,1993,11(1):38-44.
    [56]Hu R, Bi X Q, Li J S, et al. Interface morphology evolvement and microstructure characteristics of hypoeutectic Cu-1.0wt%Cr alloy during unidirectional solidification[J]. Sci. Techno. Adv. Mater.,2005,6(8):950-955.
    [57]Cui H B, Guo J J, Su Y Q, et al. The evolution of directional solidification microstructure of the Cu-Pb monotectic alloys[J]. Trans. Nonferrous Met. Soc. China,2006,9(4):783-790.
    [58]李双明,马伯乐,吕海燕,等.Cu-70%Sn包晶合金高温度梯度定向凝固的组织及其尺度[J].金属学报,2005,41(4):411-416.
    [59]Grunberger W, Heilmaier M, Schultz L. Development of high-strength and high-conductivity conductor materials for pulsed high-field magnets at Dresden[J]. Physica B:Condensed Matter,2001,294-295:643-647.
    [60]Wood J T, Embury J D, Ashby M F. An approach to materials processing and selection for high field magnet design[J]. Acta Mater.,1997,45:1099-1104.
    [61]吴云忠,马永订,高洪涛,等.铜包钢线材室温拉变形后的显微组织和力学性能[J].材料工程,2006(10):19-22.
    [62]Lecouturier F, Spencer K, Thilly L, et al. Perspectives for Cu-SS macrocomposite and Cu/X nanofilamentary conductors used in non-destructive high-field pulsed magnets under cryogenic conditions [J]. Physica B:Condensed Matter,2004,346-347:582-588.
    [63]运新兵,宋宝韫,刘元文.铜包钢接触线坏连续挤压包覆成形的实验研究[J].塑性工程学报,2004,11(6):55-57.
    [64]Gao H Y, Wang J, Shu D, et al. Effect of Ag on the aging characteristics of Cu-Fe in situ composites[J]. Scripta Mater.,2006,54:1931-1935.
    [65]Heringhaus F, Raabe D. Recent advances in the manufacturing of copper-base composites[J]. J. Mater. Proc. Techno.,1996,59:367-372.
    [66]Popova E N, Popov V V, Rodionova L A, et al. Effect of annealing and doping with Zr on the structure and properties of in situ Cu-Nb composite wire[J]. Scripta Mater.,2002,46(3):193-198.
    [67]Yao D W, Meng L. Effects of solute, temperature and strain on the electrical resistivity of Cu-Ag filamentary composites [J]. Physica B:Condensed Matter, 2008,403(19-20):3384-3388.
    [68]Wu Z W, Meng L. Influences of different prior heat treatments on the microstructural and mechanical properties of Cu-Fe filamentary composites [J]. J. Alloys Compd.,2011,509(36):8917-8921.
    [69]Deng J Q, Zhang X Q, Shang S Z, et al. Effect of Zr addition on the microstructure and properties of Cu-lOCr in situ composites[J]. Mater. Design, 2009,30(10):4444-4449.
    [70]Gao H Y, Wang J, Shu D, et al. Effect of Ag on the properties of Cu-Fe in situ composites[J]. Scripta Mater.,2005,53:1105-1109.
    [71]武志玮.纤维复合Cu-Fe合金的显微组织及力学和电学性能[D].杭州:浙江大学,2009.
    [72]Bliselli C, Morris D G. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders[J]. Acta Metall. Mater., 1994,42:163-176.
    [73]Spitzig W A, Trybus C L, Laabs F C. Structure properties of heavily cold-drawn niobium[J]. Mater. Sci. Eng. A,1991,145:179-187.
    [74]Spitzig W A. Strengthening in heavily deformation processed Cu-20%Nb[J]. Acta Metall. Mater.,1991,39:1085-1090.
    [75]Funkenbusch P D, Courtney T H. Microstructural strengthening in cold worked in situ Cu-14.8Vol.%Fe composites[J]. Scripta Metall.,1981,15: 1349-1354.
    [76]Verhoeven J D, Chumbley L S, Laabs F C, et al. Measurement of filament spacing in deformation processed Cu-Nb alloys[J]. Acta Metall.,1991,39: 2825-2834.
    [77]Bliselli C, Morris D G Microstructure and strength of Cu-Fe in situ composites after very high drawing strains[J]. Acta Metall. Mater.,1996,44: 493-504.
    [78]Hong S I. Yield strength of a heavily drawn Cu-20% Nb filamentary microcomposite[J]. Scripta Mater.,1998,39:1685-1691.
    [79]Raabe D, Hangen U. Introduction of a modified linear rule of mixtures for the modelling of the yield strength of heavily wire drawn in situ composites[J]. Composites Sci. Technol.,1995,55(1):57-61.
    [80]Raabe D, Hangen U. Simulation of the yield strength of wire drawn Cu-based in-situ composites[J]. Comput. Mater. Sci.,1996,5(1-3):195-202.
    [81]Karasek K R, Berk J. High temperature strength of in situ formed Cu-Nb multifilamentary composites[J]. Scripta Metall.,1979,13:259-263.
    [82]Verhoeven J D, Downing H L, Gibson E D. Resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J. Appl. Phys.,1989,65:1293-1301.
    [83]葛继平.形变Cu-Fe原位复合材料[D].大连:大连交通大学,2005.
    [84]高海燕,王俊,疏达,等.Cu-Fe-Ag原位复合材料的组织和性能[J].复合材料学报,2006,23:120-126.
    [85]Liu K M, Lu D P, Zhou H T, et al. Effect of Ag micro-alloying on the microstructure and properties of Cu-14Fe in situ composite[J]. Mater. Sci. Eng. A,2010,527:4953-4958.
    [86]陈树川.材料物理性能[M].上海:上海交通大学出版社,1999:40-65.
    [87]Zhang L, Meng L. Microstructure, mechanical properties and electrical conductivity of Cu-12%Ag[J]. Mater. Lett.,2004,58:3888-3892.
    [88]高海燕.高强高导形变Cu-Fe-Ag原位复合材料制备技术基础[D].上海:上海交通大学,2007.
    [89]刘祥.铸造合金力学及物理性能[M].北京:机械工业出版社,1982:61-62.
    [90]Sinclair C W, Embury J D, Weatherly G C. Basic aspects of the co-deformation of bcc/fcc materials[J]. Mater. Sci. Eng. A,1999,272:90-98.
    [91]Liu K M, Lu D P, Zhou H T, et al. Influence of Ag micro-alloying on the microstructure and properties of Cu-7Cr in situ composite[J]. J. Alloys Compd.,2010,500:L22-25.
    [92]邓鉴棋,张修庆,尚淑珍,等.Cu-10Cr-0.4Zr形变原位复合材料的组织演变特征[J].材料工程,2010,(4):59-62.
    [93]Pelton A R, Laabs F C, Spitzig W A, et al. Microstructural analysis of in-situ Cu-Nb composite wires[J]. Ultramicroscopy,1987,22:251-265.
    [94]Wang Y L, Han K, Huang Y, et al. Microstructure in Cu-Nb microcomposites[J]. Mater. Sci. Eng. A,2003,351:214-223.
    [95]Ning Y T, Zhang X H, Wu Y J. Electrical conductivity of Cu-Ag in situ filamentary composite[J]. Trans. Nonferrous Met. Soc. China.,2007,17: 378-383.
    [96]Gaganov A, Freudenberger J, Botcharova E, et al. Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7wt.%Ag alloys[J]. Mater. Sci. Eng. A,2006,437:313-322.
    [97]刘克明,陆德平,周海涛,等.形变Cu-Cr-Ag原位复合材料组织和性能[J].稀有金属材料与工程,2011,40(11):1931-1935.
    [98]Go Y S, Spitzig W A. Strengthening in deformation-processed Cu-20%Fe composites[J]. J. Mater. Sci.,1991,26:163-171.
    [99]Wu Z W, Liu J J, Chen Y, et al. Microstructure, mechanical properties and electrical conductivity of Cu-12%Fe microcomposite annealed at different temperatures[J]. J. Alloys Compd.,2009,467(1-2):213-218.
    [100]Wu Z W, Chen Y, Meng L. Effects of rare earth elements on annealing characteristics of Cu-6wt.%Fe microcomposites[J]. J. Alloys Compd.,2009, 477(1-2):198-204.
    [101]Wu Z W, Zhang J D, Chen Y, et al. Effects of rare earth additions on microstructural, mechanical and electrical characteristics of Cu-6%Fe microcomposites[J]. J. Rare Earths,2009,27(1):87-91.
    [102]Wu Z W, Chen Y, Meng L. Microstructure and properties of Cu-Fe microcomposites with prior homogenizing treatments[J]. J. Alloys Compd., 2009,481(1-2):236-240.
    [103]葛继平,姚再起.形变Cu-17.5wt.%Fe原位复合材料热稳定性研究[J].大连铁道学院学报,2004,25(2):57-63.
    [104]Brokmeier H G, Bolmaro R E, Signorelli J A, et al. Texture development of wire drawn Cu-Fe composites[J]. Physica B:Condensed Matter,2000, 276-278:888-889.
    [105]Sun B D, Gao H Y, Wang J, et al. Mechanical strength of Cu-Fe-Ag in-situ composites[J]. Mater. Lett.,2007,61:1002-1006.
    [106]Song J S, Hong S I, Kim H S. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites[J]. J. Mater. Proc. Techno.,2001,113(1-3):610-616.
    [107]孙世清.形变铜铁铬系复合材料的研究[D].北京:北京科技大学,2002.
    [108]葛继平,姚再起,刘书华.合金元素对形变Cu-Fe原位复合材料性能的影响[J].材料热处理学报,2005,26(1):14-19.
    [109]杨浩.高强高导Cu-Cr-Zr合金时效析出相的微观表征及性能研究[D].长沙:湖南大学,2010.
    [110]陈小红,刘平,田保红,等.Cu-Cr原位复合材料组织性能研究[J].材料热处理学报,2007,28(8):288-291.
    [111]Peng L M, Mao X M, Xu K D, et al. Property and thermal stability of in situ composite Cu-Cr alloy contact cable[J]. J. Mater. Proc. Techno.,2005,166: 193-198.
    [112]Masuda C S, Tanaka Y S. Fatigue properties of Cu-Cr in situ composite [J]. International Journal of Fatigue,2006,28:1426-1434.
    [113]Sauvage X, Wilde G, Divinski S V, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena[J]. Mater. Sci. Eng. A,2012,540:1-12.
    [114]邓鉴棋.大塑性变形制备Cu-Cr-Zr原位形变复合材料及其性能研究[D].上海:华东理工大学,2010.
    [115]Song J S, Hong S I. Strength and electrical conductivity of Cu-9Cr-1.2Co filamentary microcomposite wires[J]. J. Mater. Proc. Techno.2000,311: 265-269.
    [116]Gautam R K, Ray S, Jain S C, et al. Tribological behavior of Cu-Cr-SiCP in situ composite[J]. Wear,2008,265:902-912.
    [117]陈小红.超高强度Cu-Cr系原位复合材料的研究[D].西安:西安理工大学,2009.
    [118]孙世清.Cu-Fe-Cr-Ni原位复合材料的组织结构与磁性[J].稀有金属材料与工程,2009,38(9):1594-1597.
    [119]Servant C, Guymont M, Lyon O. A new phase in the ternary system Cu-Fe-Ni[J]. Scripta Mater.,2001,45:103-108.
    [120]Verhoeven J D, Chuen S C, Gibson E D. Strength and conductivity of in situ Cu-Fe alloys[J]. J. Mater. Sci.,1989,24:1748-1752.
    [121]Xie M, Liu J L, Lu X Y, et al. Investigation on the Cu-Cr-RE alloys by rapid solidification[J]. Mater. Sci. Eng. A,2001,304-306:529-533.
    [122]Mu S G, Guo F A, Tang Y Q, et al. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy[J]. Mater. Sci. Eng. A,2008,475:235-240.
    [123]左小伟,王恩刚,张林,等.原位形变铜基复合材料研究现状[J].材料导报,2008,22(9):34-37.
    [124]张毅,刘平,田保红,等.形变铜基原位复合材料的研究现状与发展前景[J].铸造技术,2008,29(3):351-354.
    [125]刘克明,陆德平,周海涛,等.形变铜基原位复合材料研究与展望[J].热处理技术与装备,2011,32(4):45-49.
    [126]张俊超,刘平,田保红,等.形变原位铜基复合材料的研究进展[J].材料导报,2006,20(8):80-83.
    [127]Frings P H, Bockstal L V. Strength versus conductivity [J]. Physica B: Condensed Matter,1995,211(1-4):73-76.
    [128]Gao H Y, Wang J, Shu D, et al. Microstructure and properties of Cu-11Fe-6Ag in situ composites after thermo-mechanical treatments [J]. J. Alloys Compd., 2007,438:268-273.
    [129]Ge J P, Zhao H, Yao Z Q, et al. Microstructure and properties of deformation-processed Cu-Fe in-situ composites[J]. Trans. Nonferrous Met. Soc. China,2005,15(5):971-977.
    [130]孙世清,毛磊,刘宗茂,等.Cu-20vo1%(Fe-Cr)原位复合材料中Cr元素的作用[J].材料热处理学报,2003,24(1):19-22.
    [131]孙世清,毛磊,郭志猛,等.Cu-Fe-Cr原位复合材料中的纤维相[J].金属学报,2003,39(6):565-568.
    [132]Sun S Q, Mao L, Guo Z M, et al. Structures and properties of deformation-processed Cu-16Fe-2Cr in-situ composites [J]. Trans. Nonferrous Met. Soc. China,2003,13(2):307-310.
    [133]孙世清.磁性Fe-Cr纤维的长期稳定性和热稳定性[J].中国有色金属学报,2006,16(4):663-669.
    [134]孙世清,毛磊,刘宗茂,等.热处理对Fe-Cr纤维组织结构和磁性的影响[J].材料热处理学报,2006,27(6):14-17.
    [135]孙世清.微米、亚微米高铬铁基纤维的结构和热稳定性[J].材料科学与工艺,2007,15(6):844-847.
    [136]Song J S, Hong S I, Park Y G Deformation processing and strength /conductivity properties of Cu-Fe-Ag microcomposites[J]. J. Alloys Compd., 2005,388:69-74.
    [137]Hong S I, Song J S, Kim Y S. Thermo-mechanical processing and properties of Cu-9Fe-1.2Co microcomposite wires[J]. Scripta Mater.,2001,45: 1295-1300.
    [138]Gao H Y, Wang J, Shu D, et al. Microstructure and strength of Cu-Fe-Ag in situ composites[J]. Mater. Sci. Eng. A,2007,452-453:367-373.
    [139]陈小红,刘平,井晓天,等.形变Cu-Cr原位复合材料中纤维相的热稳定性[J].中国有色金属学报,2009,19(2):328-333.
    [140]陈小红,刘平,井晓天,等.微合金化对Cu-15Cr原位复合材料组织和性能的影响[J].材料热处理学报,2009,30(2):44-49.
    [141]Chen X H, Liu P, Zhang Y, et al. Microstructure and mechanical properties of Cu-15Cr-0.1Zr fiber composite[J]. Trans. Mater. Heat Treatment,2010,31(9): 15-17.
    [142]陈小红,刘平,张俊超,等.Cu-10Cr-2Zr原位复合材料性能研究[J].铸造技术,2009,30(3),359-361.
    [143]邓鉴棋,张修庆,尚淑珍,等.Cu-10Cr-0.4Zr原位复合材料的微观组织和拉伸性能、电学性能研究[J].功能材料,2009,40(11):1825-1828.
    [144]Song J S, Kim H S, Lee C T, et al. Deformation processing and mechanical properties of Cu-Cr-X (X=Ag or Co) microcomposites[J]. J. Mater. Proc.Techno.,2002,130-131:272-277.
    [145]Raabe D, Miyake K, Takahara H. Processing, microstructure, and properties of ternary high-strength Cu-Cr-Ag in situ composites[J]. Mater. Sci. Eng. A, 2000,291(1-2):186-197.
    [146]Massalski T. Binary alloys phase diagrams[J]. Ohio:ASM International,1990. 121-121.
    [147]Raabe D, Mattissen D. Microstructure and mechanical properties of a cast and wire-drawn ternary Cu-Ag-Nb in situ composite[J]. Acta Mater.,1998,46(16): 5973-5984.
    [148]Raabe D, Mattissen D. Experimental investigation and Ginzburg-Landau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J]. Acta Mater.,1999,47(3):769-777.
    [149]Cairns J H, Clough J, Deway M, et al. Structure and mechanical properties of heavily deformed copper[J]. J. Inst. Metals,1971,99:93-97.
    [150]Sun Z B, Guo J, Song X P. Effects of Zr addition on the liquid phase separation and the microstructures of Cu-Cr ribbons with 18-22at.%Cr[J]. J. Alloys Compd.,2008,455:243-248.
    [151]He W X, Wang E D. Effect of extrusion on microstructure and properties of a submicron crystalline Cu-5wt.%Cr alloy[J]. J. Mater. Proc. Techno.2008,208: 205-210.
    [152]Tallbenblet P W, Tiainen T. Research of high-electrical-conductivity copper alloys[J]. Mater. Sci. Eng.,1986,2:863-866.
    [153]Spitzig W A, Pelron A R, Laabs F C. Characterization of the strength and microstructure of heavily cold worked Cu-Nb composites [J]. Acta Metall., 1985,35:2427-2442.
    [154]刘嘉斌.双相纤维复合Cu-6%Ag合金组织演化及强化机制[D].杭州:浙江大学,2009.
    [155]Liu J B, Zhang L, Meng L. Relationships of mechanical strength and electrical conductivity for Cu-Ag filamentary microcomposites[J]. Applied Physics A: Materials and Processing,2007,86:529-532.
    [156]Liu J B, Zeng Y W, Meng L. Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J]. Mater. Sci. Eng. A,2006, 435-436:237-244.
    [157]Verhoeven J D, Spitzig W A, Jones L L, et al. The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. J. Mater. Eng.1990,12: 127-133.
    [158]Went H, Wagner R. Mechanical properties of Cu-Fe alloys in the transition from solid to precipitation hardening[J]. Acta Metall.,1982,30:1561-1570.
    [159]Benghalem A, Morris D G. Microstructure and strength of wire drawn Cu-Ag filamentary composites[J]. Acta Mater.,1997,45:397-406.
    [160]Pankhurst Q A, Cohen N S, Odlyha M. Thermal analysis of metastable Fe-Cu-Ag prepared by mechanical alloying[J]. J. Phys.:Condensed Matter, 1998,10:1665-1676.
    [161]Mattissen D, Raabe D, Heringhaus F. Experimental investigation and modeling of the influence of microstructure on the resistive conductivity of a Cu-Ag-Nb in situ composite[J]. Acta Mater.,1999,47:1627-1634.
    [162]Raabe D. Simulation of the resistivity of heavily cold worked Cu-20wt.%Nb wires[J]. Comput. Mater. Sci.,1995,3:402-412.
    [163]Bojarski Z, Babinski W, Morawiec H, et al. Metal Technol[J].1985,1: 1053-1058.
    [164]Karasek K R, Bevk J. Normal-state resistivity of in situ-formed ultrafine filamentary Cu-Nb composite[J]. J. Appl. Phys.,1981,52(3):1370-1375.
    [165]Sondheimer E H. The mean free path of electrons in metals[J]. Ady. Phys., 1952,1(1):1-42.
    [166]Heringhaus F, Schneider-Muntau H, Gottstein G Analytical modeling of the electrical conductivity of metal matrix composites:application to Ag-Cu and Cu-Nb[J]. Mater. Sci. Eng. A,2003,347(1-2):9-20.
    [167]毕莉明.形变Cu-Fe原位复合材料组织和性能研究[D].洛阳:河南科技大学,2009.
    [168]Kwon H J, Hong S I. Superplastic Cu-Ag microcomposites[J]. J. Alloys Compd.,2001,327(1-2):161-166.
    [169]石德珂,高守义,柴慧芬,等.材料科学基础[M].北京:机械工业出版社,2005:138-149.
    [170]Kampe J C M, Courtney T H, Leng Y. Shape instabilities of plate-like structures(1):Experiment observations in heavily cold worked in situ composites[J].Acta Metall.,1989,37:1735-1746.
    [171]Courtney T H, Kampe J C M. Shape instabilities of plate-like structures(II): Analysis[J].Acta Metall.,1989,37:1747-1758.
    [172]Sleeswyk A W, Verbraak C A. Incorporation of slip dislocations in mechanical twins[J]. Acta Metall.,1961,9:917-927.
    [173]Nichols F A, Mullins W W. Surface (Interface) and volume diffusion contributions to morphological changes driven by capillarity [J]. Trans. AIME, 1965,233:1840-1848.
    [174]Cline H E. Shape instabilities of eutectic composites at elevated temperatures[J]. Acta Metall.,1971,19(6):481-490.
    [175]Mullins W W. The effect of thermal grooving on grain boundary motion[J]. Acta Metall.,1958,6(6):414-427.
    [176]Cheng C Q, Zhao J, Yang X. Effect of high magnetic field on the morphology of (Cu, Ni)6Sn5 at Sn0.3Ni/Cu interface[J]. Mater. Lett.,2009,63:1478-1480.
    [177]Ohtsuka H. Effects of a high magnetic field on bainitic transformation in Fe-based alloys[J]. Mater. Sci. Eng. A,2006,438-440:136-139.
    [178]Zhao J, Yang P, Zhu F, et al. The effect of high magnetic field on the growth behavior of Sn-3Ag-0.5Cu/Cu IMC layer[J]. Scripta Mater,2006,54: 1077-1080.
    [179]Zhang X, Wang D L, Zhang S X, et al. Effect of high magnetic field annealing on the microstructure and magnetic properties of Co-Fe layered double hydroxide[J]. J. Magnetism Magnetic Mater.,2010,322:3023-3027.
    [180]Molodov D A, Bhaumik S, Molodova X, et al. Annealing behaviour of cold rolled aluminum alloy in a high magnetic field[J]. Scripta Mater,2006,54: 2161-2164.
    [181]Fu H D, Zhang Z H, Jiang Y B, et al. Improvement of magnetic properties of an Fe-6.5wt.% Si alloy by directional solidification[J]. Mater. Lett.,2011,65: 1416-1419.
    [182]刘海霞.工艺因素对Al-4.5%Cu合金定向凝固组织及性能的影响[D].镇江:江苏大学,2009.
    [183]Hu R, Bi X Q, Li J S, et al. Interface morphology evolvement and microstructure characteristics of hypoeutectic Cu-1.0wt% Cr alloy during unidirectional solidification[J]. Sci. Techno. Adv. Mater.,2005,6:950-955.
    [184]Ding X F, Lin J P, Zhang L Q, et al. Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scripta Mater.,2011,65(1): 61-64.
    [185]Gunduz M, Cadili E. Directional solidification of aluminium-copper alloys[J]. Mater. Sci. Eng. A,2002,327:167-185.
    [186]Anatoly M O, Mariya S R. Modeling of directional solidification on an atomic scale[J]. Mater. Sci. Eng. A,2008,495:292-295.
    [187]Li X, Fautrelle Y, Ren Z M, et al. Effect of a high magnetic field on the Al-Al3Ni fiber eutectic during directional solidification[J]. Acta Mater.,2010, 58:2430-2441.
    [188]左小伟,王恩刚,屈磊,等.Cu-Fe合金的强磁场固溶时效行为[J].材料研究学报,2009,23(5):483-489.
    [189]Zuo X W, Wang E G, Han H, et al. Magnetic properties of Fe-49%Sn monotectic alloys solidified under a high magnetic field[J]. J. Alloys Compd, 2010,492:621-624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700