厚壁钛合金电子束焊接接头断裂安全评定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TC4-DT钛合金具有高比强度、高比刚度、良好的耐热性、抗腐蚀性和损伤容限性能,广泛应用于飞机重要承力框梁结构制造。钛合金材料的热物理性能和电子束高能密度焊接的特殊性,导致钛合金电子束焊接接头形成大梯度残余应力和大梯度组织和力学性能不均匀性等问题。这些问题对钛合金整体焊接结构的断裂行为有重要影响。本文分析了厚壁TC4-DT钛合金电子束焊接接头的显微组织、焊缝几何特征、接头力学性能不均匀性及断裂行为,揭示了焊缝几何和力学不均匀性对断裂行为和失效评定图的影响。同时,对实际接头进行了断裂评定,探讨了不同评定级别对断裂评定结果的影响。通过上述研究给出厚壁钛合金电子束焊接接头断裂安全评定的工程简化方法。
     对两种典型焊缝几何的焊接接头进行了显微组织观察和力学性能测试,发现厚壁钛合金电子束焊接接头沿横向和焊缝深度方向显微组织与力学性能不均匀。TC4-DT钛合金母材显微组织为等轴状初生α相和层片状(α+β)所构成的典型双态组织。根据焊接热循环作用下热影响区的β转变温度,热影响区显微组织可分为两部分:近焊缝热影响区为少量等轴初生α+针状马氏体组织;近母材热影响区为等轴初生α+含针状α的转变β组织。焊缝区组织为粗大β柱状晶和分布在柱状晶内呈网篮状排列的针状马氏体。钛马氏体的形成使焊缝金属和热影响区的显微硬度、屈服强度和抗拉强度高于母材,塑性低于母材,焊接接头为高匹配。沿焊缝深度方向,焊缝区β柱状晶和马氏体晶粒尺寸变小,导致焊缝金属的硬度和强度增大。沿焊缝深度方向焊缝宽度变化较小的I形焊缝的力学不均匀性小于焊缝宽度变化较大的Y形焊缝。加入纯钛填充金属使厚壁TC4-DT电子束焊接接头焊缝区的显微组织和力学性能发生明显变化。焊缝中心区强化合金元素Al和V的含量明显降低,显微组织主要由塑性和韧性较好的针状α相组成,避免了马氏体组织生成。焊缝金属的屈服强度和抗拉强度均低于母材,焊接接头为焊缝强度低匹配。
     对母材、无填充金属接头和填充纯钛金属接头的断裂韧性进行测试,研究了接头不均匀对断裂韧性的影响,并分析断口形貌,揭示了接头的断裂性质。发现母材韧性较好,断裂韧性大于100MPa·m1/2。高匹配接头的断裂韧性降低,而填充纯钛金属后低匹配接头的断裂韧性明显改善,接近母材断裂韧性。这表明钛合金电子束焊接接头的断裂韧性主要取决于其显微组织形态,接头不均匀性对断裂韧性的影响主要表现为组织不均匀性的影响。另外,母材、无填充金属接头和加入填充金属接头在断裂韧性测试中均发生延性断裂。
     根据TC4-DT钛合金母材和电子束全焊缝金属拉伸试验结果,研究了母材和焊缝金属硬度与拉伸性能的关系。发现TC4-DT钛合金及其电子束焊缝的显微硬度与强度线性相关;应变硬化系数与屈强比线性相关。通过回归分析,建立了显微硬度与强度以及应变硬化系数和屈强比之间的工程经验关系式。当拉伸性能未知时,可以根据焊接接头的显微硬度估算出接头各区域的拉伸性能。这解决了钛合金电子束焊接接头拉伸性能数据测试困难的问题,为钛合金结构断裂评定提供了性能预测关系。
     通过有限元模拟和理论分析,研究了平面应力和平面应变状态单边裂纹焊接板的极限载荷,提出了相应的极限载荷解法。考虑到电子束焊接接头的尺寸特征,给出平面应变和平面应力状态下估算单边裂纹电子束焊接板极限载荷的简化方法:平面应变状态下,高匹配和轻微低匹配接头的极限载荷可以用母材的极限载荷替代;对严重低匹配接头而言,只有ψ大于10时,焊接接头的极限载荷可以用母材的极限载荷替代。平面应力状态下,高匹配焊接接头的极限载荷可以用母材的极限载荷替代;低匹配接头的极限载荷可用焊缝金属的极限载荷近似替代。另外,将实际厚壁钛合金电子束焊接接头焊缝几何表征为Y形,通过研究焊缝几何参量对接头极限载荷的影响,建立了电子束焊接接头焊缝几何简化方法:实际焊接接头断裂安全评定时,可将Y形焊缝几何简化为宽度2Heq的等效矩形。如果裂纹尖端位于倒梯形段,对高匹配焊接接头,Heq取最小焊缝半宽Hmin,对低匹配接头,Heq取最大焊缝半宽Hmax;当裂纹尖端位于矩形段时,对高匹配接头和低匹配接头,Heq均取最小焊缝半宽Hmin。
     研究了IIW FFS方法对钛合金电子束焊接接头断裂安全评定的适用性,讨论了厚壁TC4-DT电子束焊接接头用第1级评定的可能性和边界条件。发现IIW FFS方法中依据经验公式确定失效评定线的标准评定级别适用于钛合金电子束焊接接头的断裂评定。电子束焊接接头焊缝较窄,当强度失配程度不超过30%时,用母材性能进行评价仍能得到合理的结果。与传统熔焊相比,电子束焊接接头用第1级评定的边界条件可从δM=10%扩宽到δM=30%。另外,用IIW FFS方法对实际接头进行断裂评定,发现电子束焊缝强度失配对断裂评定的影响很小,高的评定级别并没明显的优越性。因此,断裂评定时可将焊接接头看做均质结构,用第1级评定可得到足够准确的结果。
TC4-DT titanium alloy is widely applied in siginificant load bearing frame orgrider structues of aircraft due to its good properties, such as high specific strength,low specific gravity, high heat and corrosive resistance, and well damage tolerantproperties. Thermal physical properties of titanium alloy and characteristic of electronbeam welding as high energy density welding may result in some problems for thickelectron beam welded joints, such as large gradient residual stress, microstructure andmechanical heterogeneity. The problem may siginificantly affect fracture behavior ofthe overall titanium welded structures. In this work, microstructure, weld geometriccharacteristic, mechanical heterogeneity and fracture behavior of thick electron beamwelded TC4-DT joint were analyzed, and the effect of weld geometry and mechanicalheterogeity on fracture behavior and failure assessment diagram were revealed.Meanwhile, fracture assessment of actual thick electron beam welded TC4-DT jointwas performed. The effect of various options on assessment results was discussed.Based on the research results, engineering simplified recommendations were given forthe fracture assessment of electron beam welded thick-walled titanium alloy joints.
     Microstructure was observed and tensile peoperties were tested for electron beamwelded joint with two kinds of typical weld geometry. It is found that microstructureand mechanical properties of the thick electron beam welded TC4-DT joint areheterogeneous along weld transverse and weld depth. The microstructure of TC4-DTalloy has a typical bimodal structure, which consists of primary α phase and thelamellar (α+β) structures. Based on the β phase transus temperature during weldingthermal cycle, microstructure of heat affected zone can divide into two regions. Theheat affected zone near weld metal is composed of acicular martensite and a smallportion of primary α phase. The heat affected zone near base metal consists of primaryα phase and transformed β containing aciculate α. Microstructure of weld metal iscomposed of course β columnar grain and basketweave martensite distributed inside βcolumnar grain. The formation of titanium martensite makes the weld metal and heataffected zone exhibit increased yield strength, ultimate tensile strength andmicrohardness, while decreased ductility and toughness as compared with the basemetal. The joints are weld strength overmatching. In addition, the grain size of βcolumnar grain and martensite decreases along the weld depth, which result inincreased microhardness and strength of weld metal along the weld depth. Themechanical heterogeneity of I shaped welds with small weld width change along welddepth is smaller than Y shaped welds with high weld width change. The addition ofpure titanium filler metal makes microstructure and mechanical of weld metal change obviously. Thus, the content of strengthening alloy element Al and V of weld metaldecreases. Microstructure is changed to acicular α phase with high ductile andtoughness without the formation of martensite. Meanwhile,yiled strength andultimate tensile strength are lower than those of base metal, and the joints are strengthundermatching.
     Fracture toughness tests were carried out for base metal, electron beam weldedjoints and pure titanium added joints to study the effect of mechanical heterogeinityon the fracture toughness. Meanwhile, fractography was observed to reveal fracturefeature of the welded joint. The results indicate that the fracture toughness of the basemetal is relatively high, which is up to100MPa·m1/2. Fracture toughness ofovermatching electron beam welded joints decreases as compared with base metal.However, the fracture toughness of undermatching joints with pure titanium fillermetal is obviously improved approaching that of base metal. It is concluded thatfracture toughness of electron beam welded joint is much dependent on themicrostructure. The effect of joint heterogeneity on fracture toughness is mainlyheterogenous in microstructure. In addition, the ductile fracture for base metal,welded joint and pure titanium added welded joint are founded during fracturetoughness tests.
     Correlation between tensile properties and hardness of electron beam weldedtitanium joints was investigated according to the tensile tests results of TC4-DT basemetal and all weld metal. It is found that strength and microhardness are linear related,as well as the strain hardening coefficient and ratio of yield strength to ultimate tensilestrength is linear related. Base on the regression analysis, linear correlations amongthe yield strength, ultimate tensile strength and microhardness are established,meanwhile, an empirical correlation between strain hardening coefficient and ratio ofyield strength to ultimate tensile strength is proposed. Based on the correlations, thetensile properties of various region of welded joint can be predicted from themicrohardness measurement of welded joints when tensile properties are unknown.This work solves the difficulty of tensile properties testing of electron beam weldedtitanium joints, and gives the predicted correlations for fracture assessment oftitanium structure.
     The plain stain and plain stress mismatching limit loads for single-edged crackwelded plate in tension (SEC (T)) were investigated by finite element simulation andtheoretical analysis. Special limit load solutions were then proposed. Moreover,considering the dimension features of electron beam welded joints, simplifiedengineering recommendations were given for evaluating the plain strain and plainstress limit loads of electron beam welded structures with SEC (T). Under the plainstrain condition, the mismatch limit loads of overmatching and slightly undermatchingjoints can be obtained assuming that the components are wholly made of base metal, while the mismatch limit loads of extreme undermatching joint can be obtainedassuming that the components are wholly made of base metal only for the structure ofψ>10. Under the plain stress condition, the mismatch limit loads of overmatchingjoints can be obtained assuming that the components are wholly made of base metal,where the mismatch limit loads of undermatching joint can be obtained assuming thatthe components are wholly made of weld metal. In addition, the weld geometry ofactual electron beam welded joint was characterized as Y shaped, and then a methodfor simplifying weld shape method was established by studing the effect of weldgeometry related parameters on limit load. It is considered that weld geometry can besimplified as a rectangle with weld width as2Heqfor the fracture assessment of actualelectron beam welded joints. When the crack tip lies in the inverted trapezoid,minmum weld half-width Hminis chosen as Heqfor overmatching joint, and maxmumweld half-width Hmaxchosen for undermatching joint. When the crack tip lies in therectangle, minmum weld half-width Hminis chosen as Heqfor both overmatching andundermatching joint.
     The applicability of IIW FFS procedure for the thick electron beam weldedtitanium alloy joint was validated, and the possibility and critical condition δMofoption1for the fracture assessment of thick electron beam welded TC4-DT joint assdiscussed. It is found that for the standard options of IIW FFS procedure, the failureassessment lines eatabilished by empirical equation, are suitable for the fractureassessment of electeon beam welded titanium joints. As the weld width is rathernarrow for electron beam welded joint, the welded joint can be assessed to achievereasonable results by the base metal properties when the weld strength mismatching isno more than30%. Compared to convetional fusion welded joints, the criticalcondition using option1is expanded from δM=10%to δM=30%for electron beamwelded joint. In addition, fracture assessment of actual thick electron beam weldedtitanium joint using the IIW FFS procedure was performed. It is found that the effectof strength mismatching of electron beam welded joint on fracture assement isrelatively small. There are no potential advantages of applying higher options ormismatch options. Thus, the present welded joints can be treated as homogeneousstructure during the fracture assessment, and standard option1can be used to achieveaccurate enough results.
引文
[1]孙聪,王向明.现代战斗机机体结构特征分析[M].北京:航空工业出版社,2007.
    [2] J Arrieta, A J Striz. Optimal design of aircraft structures with damage tolerancerequirements[J]. Structural and Multidisciplinary Optimization,2005,30:155-163.
    [3]黄旭,朱知寿,王红红.先进航空钛合金材料与应用[M].北京:国防工业出版社,2012.
    [4]王向明,刘文珽.飞机钛合金结构的设计与应用[M].北京:国防工业出版社,2010.
    [5]李亚江.轻金属焊接技术[M].北京:国防工业出版社,2011.
    [6]张翥.钛的金属学和热处理[M].北京:冶金工业出版社,2009.
    [7] M Ivasishin, R V Teliovieh. Potential of rapid heat treatment of titanium alloys and steels.International Aeademic Publishers,1999:301-326.
    [8] B Hussey, J Wilson. Light alloys-directory and databook[M]. Published by Chapman&Hall. London, UK,1998:320-342.
    [9]房卫萍,陈沦,史耀武等.损伤容限钛合金的研究进展及应用现状[J].材料工程,2010,(9):95-98.
    [10] Y L Qi, J Deng, Q Hong, et al. Electron beam welding, laser beam welding and gastungsten arc welding of titanium sheet[J]. Materials Science and Engineering A,2000:280,177–181.
    [11]毛智勇.电子束焊接技术在大飞机中的应用分析[J].航空制造技术,2009,(2):92~94.
    [12]李晓延,巩水利,关桥等.大厚度钛合金结构电子束焊接制造基础研究[J].焊接学报,2010,2(2):107-112.
    [13]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000:1-30.
    [14]张彦华.焊接力学与结构完整性原理[M].北京:北京航空航天大学出版社,2007.
    [15]郦正能.应用断裂力学[M].北京:北京航空大学出版社,2012.
    [16] M Ko ak. Weld mismatch effect. Proceeding of the second intermediate meeting of IIWsub committee X-F[C]. GKSS research center,1995.
    [17] J X Zhang, Y W Shi, M J Tu. Factors affecting the estimation of fracture mechanicsparameters of center-cracked weldment[J]. Engineering Fracture Mechanics,1995,50(4):537-543.
    [18]范瑞祥.宏观力学非均值焊接接头的断裂行为研究[D].哈尔滨:哈尔滨工业大学,1995.
    [19] M Ko ak. Structural integrity of welded structures: process-property-performancerelationship.63rd Annual Assembly&International Conference of the InternationalInstitute of Welding July11-17,2010[C]. Turkey,2010.
    [20] K H Schwalbe, M Ko ak. Proceedings of the international conference on Mis-matchingof interfaces and welds[C]. Germany: GKSS Research Center,1997.
    [21] R W尼柯尔斯主编,李泽震,周海成译.压力容器技术进展: I.缺陷分析[M].北京:机械工业出版社,1991.
    [22]李志安,金志浩,宫殿民.压力容器断裂理论与缺陷评定[M].大连:大连理工大学出版社,1985.
    [23] V库默, M D杰曼, C F施.弹塑性断裂分析工程方法[M].北京:国防工业出版社,1985.
    [24]齐敏,王月英,余华金等.基于“适用性”原则的缺陷评定技术及其进展[J].原子能科学技术,2008,42S(12):656-660.
    [25]张玉凤,霍立兴,姜亮.基于合于使用原则的安全评定[J].石油化工设备,2000,29(3):5-8.
    [26] R5. Assessment procedure for the high temperature response of structures[S]. ProcedureR5Issue3, British Energy, Gloucester, UK,2003.
    [27] R6. Assessment of the integrity of structures containing defects[S]. British energygeneration, report R/H/R6, Revision4;2001.
    [28] British Standard BS7910. Guide on methods for assessing the acceptability of flaws inmetallic structures[S]. London: BSi,2000.
    [29] API579. Recommended practice for fitness for service[S]. Draft Issue4, AmericanPetroleum Institute,1996.
    [30] ASME. Boiler and Pressure Vessel Code. Section XI, Rules for in-service inspection ofnuclear power plant components[S]. The American Society of Mechanical Engineers,1995.
    [31] K H Schwalbe, U Zerbst, Y J Kim, et al. EFAM ETM97: The ETM method for assessingthe significance of crack-like defects in engineering structures[S]. GKSS/98/E/6.Germany: GKSS Research Centre,1997.
    [32] M Bergman, B Brickstad, L Dahlberg. A procedure for safety assessment of componentswith cracks-handbook[S]. SAQ/FoU report,91/01, AB Svensk Anl ggningsprovning,Swedish Plant Inspection Ltd.,1991.
    [33] JSME. Codes for nuclear power generation facilities-rules on design and construction fornuclear power plants[S]. JSME S NC1,2001.
    [34]压力容器缺陷评定规范编制组.压力容器缺陷评定规范CVDA-1984[J].压力容器,1984,2(l):2-10.
    [35]国家标准局. GB/T19624-2004《在用含缺陷压力容器安全评定》[S].北京:中国标准出版社,2004.
    [36] K H Schwalbe, Y J Kim, S Hao, et al. EFAM ETM-MM96: The ETM method forassessing the significance of crack-like defects in joints with mechanical heterogeneity(strength mis-match), GKSS/97/E/9[S]. Germany: GKSS Research Centre,1996.
    [37] Appendix16in R/H/R6-Revision3: Allowance of strength mis-match effect[S]. BritishEnergy,1997.
    [38] P Gilles, C Franco. A new J estimation scheme for cracks in mis-matched welds theARAMIS method[J]//K H Schwalbe, M Koc ak. Mis-matching of welds. MechanicalEngineering Publications,1994:661-683.
    [39] Final procedure: structural integrity assessment procedures for European industry[S].Project number BE-1426, Contract number BRPR-CT95-0024,1999.
    [40] R A Ainsworth, S F Gutierrez, O J Ruiz. Analysis levels within the SINTAP defectassessment procedures[J]. Engineering Fracture Mechanical,2000,67:515-527.
    [41] FITNET FFS Procedure. Final Draft MK7[S]. European Fitness for Servic NetworkFITNET,2006.
    [42] F G Solana, S Cicero. FITNET FFS procedure: A unified european procedure forstructural integrity assessment[J]. Engineering Failure Analysis,2009,16:559-577.
    [43] M Ko ak, S E Eren.I Hadley, et al. IIW FFS recommendations for fracture assessment ofweld flaws, Doc. X-1637-08[S]. Prepared by Commission X Members and ExternalExperts,2008.
    [44] I Hadley, L W Wei. Validation of the european fitnet fitness-for-service fractureassessment procedure, Proceedings of PVP20082008ASME Pressure Vessels and PipingDivision Conference July27-31,2008[C]. Chicago, c2008:1-8.
    [45] U Zerbst, M Sch del, S Webster. Fitness-for-service fracture assessment of structurescontaining cracks[M]. Oxford: Elsevier,2007.
    [46] P M S T Castro. Fitness-for-Service fracture assessment of structures containing cracks: aworkbook based on the european sintap/fitnet procedure[J]. Engineering Failure Analysis,2010,17(5):1260-1261.
    [47] S Cicero, R Lacalle, R Cicero. Estimation of the maximum allowable lack of penetrationdefects in circumferential butt welds of structural tubular towers[J]. EngineeringStructures,2009,31(9):2123-2131.
    [48]王炳英. X80管线钢焊接管道应力腐蚀和断裂安全评定研究[D].天津:天津大学,2007.
    [49] E Gaganidze, J Aktaa. Use of the failure assessment diagram to deduce ductile fracturetoughness of the RAFM steel EUROFER97[J]. International Journal of Pressure Vesselsand Piping,2009,86:345-350.
    [50] E Seib. Residual strength analysis of LB and FSW aluminium panels for aerospaceapplications[D]. Technology University TUHH,2005.
    [51] S Cicero1, Yeni and M KO AK. Fracture analysis of strength undermatched Al-Alloywelds in edge cracked tensile panels using FITNET procedure[J]. Fatigue&Fracture ofEngineering Materials&Structures,2007,31:738-753.
    [52] I Dzioba, A Neimitz. Application of the standard options of the FITNET procedure tothe structural integrity assessment of welded specimens containing cracks[J].International Journal of Pressure Vessels and Piping,2007,81(8):475-486.
    [53] C Yenia, M Ko ak. Fracture analysis of laser beam welded superalloys Inconel718and625using the FITNET procedure[J]. International Journal of Pressure Vessels and Piping,2008,85:532-539.
    [54] Y J Kim, M Ko ak, R A Ainsworth. SINTAP defect assessment procedure for strengthmismatched structures[J]. Engineering Fracture Mechanics,2000,67:529-546.
    [55]赵大伟.热处理对TC4/TA15焊接接头组织和力学性能影响的研究[D].大连:大连交通大学,2008.
    [56]刘昕.钛合金电子束焊接接头力学不均匀性与疲劳性能研究[D].北京:北京工业大学,2012.
    [57] O Jinkeun, J K Nack, L Sunghak, et al. Correlation of fatigue properties andmicrostructure in investment cast ti-6al-4v welds[J]. Materials Science and Engineering A,2003,340:232-242.
    [58]吴会强,冯吉才,何景山,等.电子束焊接Ti-6Al-4V接头断裂行为机制[J].焊接学报,2004,25(4):59-62.
    [59]张建勋.金属焊接性能的不均匀性及其尺度效应研究[J].电焊机,2009,39(1):24-29.
    [60]陈国庆,张秉刚,冯吉才等.电子束焊接在航空航天工业中的应用[J].航空制造技术,2011,(2):42-45.
    [61] Y J Lee, S C Wu, J L Chang, et al. Effect of stress relief coupled with reduced EBWenergy on flow formed maraging steel weldment[J]. Science Technology Welding andJoining,2008,(13):462-466.
    [62] T Mohandas, D Banerjee, Y R Mahajan, et al. Studies on fusion zone fracture behavior ofelectron beam welds of an α+β titanium alloy[J]. Journal of Materials Science,1996,31:3769-3775.
    [63] N Saresh, M G Pillai, J Mathewa, et al. Investigations into the effects of electron beamwelding on thick Ti-6Al-4V titanium alloy[J]. Journal of Materials Processing Technology,2007,192-193:83-88.
    [64] T S Balasubramanian, M Balakrishnan, V Balasubramanian, et al. Effect of weldingprocesses on joint characteristics of Ti–6Al–4V alloy[J]. Science Technology Weldingand Joining,2011,16(8):702-708.
    [65] G Thomas, V Ramachandra, R Ganeshan. Effect of pre-and post-weld heat treatments onthe mechanical properties of electron beam welded Ti-6AI-4V alloy[J]. Journal ofMaterials Science,1993,28:4892-4899.
    [66] K P Rao, K Angamuthu, P B Srinivasan. Fracture toughness of electron beam weldedTi6Al4V[J]. Journal of Materials Processing and Technology,2008,199:185-192.
    [67] J L Barreda, F Santamaria, X Azpiroz, et al. Electron beam welded high thicknessTi6Al4V plates using filler metal of similar and different composition to the base plate[J].Vacuum,2001,(62):143-150.
    [68] A M Irisarri, J L Barreda, X Azpiroz. Influence of the filler metal on the properties ofTi-6Al-4V electron beam weldments. Part I: Welding procedures and microstructuralcharacterization[J].Vacuum,2010,84:393-399.
    [69] J L Barreda, X Azpiroz and A M Irisarri. Influence of the filler metal on the mechanicalproperties of Ti–6Al–4V electron beam weldments[J]. Vacuum,2010,85:10-15.
    [70]袁鸿,余槐,王金雪等. TC4-DT钛合金电子束焊接接头的损伤容限性能[J].材料工程,2007,(8):17-19.
    [71]许鸿吉,尹丽香,李晋炜等. TC4钛合金电子束焊接接头组织和性能[J].焊接学报,2005,26(11):43-46.
    [72]胡美娟,刘金合,康文军等.电子束局部热处理对TC4钛合金焊接接头组织和性能的影响[J].焊接学报,2008,29(2):104-107.
    [73]刘昕,巩水利,雷永平. TC4钛合金电子束焊接接头相变的热力学特征[J].焊接学报,2010,31(2):57-59.
    [74]赵大伟,赵秀娟,罗宇等. TC4钛合金电子束焊接接头中值疲劳寿命研究[J].航空制造技术,2009,(14):88~90.
    [75]付鹏飞,刘方军,毛智勇等.电子束局部热处理对TC4合金接头疲劳性能影响[J].材料热处理学报,2007,28(2):60-63.
    [76]顾宝兰,丁大伟,王丽等.热处理对TC4钛合金电子束焊接件组织性能的影响[J].焊接学报,2007,28(10):85-68.
    [77]王亚军,付鹏飞,关永军. TC4钛合金电子束焊缝形状特征分类研究[J].航空材料学报,2010,(29):253–256.
    [78]卢志军,王亚军.钛合金电子束焊缝熔凝区形状的人工神经网络模型[J].焊接学报,2009,30(5):29-32.
    [79]卢志军.钛合金电子束焊接焊缝形状预测模型研究[D].北京:中航工业北京航空制造工程研究所,2008:37~55.
    [80]宫平,罗宇,王亚军等. TC4钛合金电子束焊接工艺参数对焊缝形状的影响[J].航空制造技术,2008,(6):72~75.
    [81]李清华,胡树兵,李行等. TC4钛合金焊接接头组织不均匀性与疲劳性能[J].材料工程,2010,(1):62-68.
    [82]李晋伟,吴冰,唐振云.厚壁钛合金电子束焊缝的成分均匀性控制,第13届特种加工学术会议论文集[C].哈尔滨:哈尔滨工业大学出版社,2009.
    [83]中国航空总公司. HB5484-91《钛及钛合金电子束焊接质量检验》[S].北京:航空标准出版社,1991.
    [84] ASTM. E384-11: Standard test method for knoop and vickers hardness of materials[S].ASTM,2012.
    [85]国家标准局. GB/T228.1-2010《金属材料拉伸试验第1部分:室温试验方法》[S].北京:中国标准出版社,2010.
    [86]国家标准局. GB/T4161-2007《金属材料平面应变断裂韧度KIC试验方法》[S].北京:中国标准出版社,2007.
    [87] J R Cahoon. An improved equation relating hardness to ultimate strength[J]. MetallurgyTransaction,1972,3:3040.
    [88] J R Rice, G R Rosengren. Plane strain deformation near a crack tip in a power-lawhardening materials[J]. Physics Solides,1968,16:1-12.
    [89] S D Meshram, T Mohandas. A comparative evaluation of friction and electron beamwelds of near a titanium alloy[J]. Materials and Design,2010,31:2245-2252.
    [90] B D Venkatesh, D L Chen, S D Bhole. Effect of heat treatment on mechanical propertiesof Ti-6Al-4V ELI alloy[J]. Materials Science and Engineering A,2009,506:117-124.
    [91] R R Boyer. Overview on the use of titanium in the aerospace industry[J]. MaterialsScience and Engineering A,2009,213(1-2):103-114.
    [92] Y Zhang, Y S Sato, H Kokawa, et al. Microstructural characteristics and mechanicalproperties of Ti-6Al-4V friction stir welds[J]. Materials Science and Engineering A,2008,485:448-455.
    [93] J R Cahoon, W H Broughton, A R Kuzak. The Determination of yield strength fromhardness measurements[J]. Metallurgy Transaction,1986,141-143:518-522.
    [94] S H Hashemi. Strength-hardness statistical correlation in API X65steel[J]. MaterialScience and Engineering A,2011,520:1648-1655.
    [95] E J Pavlina, C J V Tyne. Correlation of yield strength and tensile strength with hardnessfor steels. Journal of Materials Engineering and Performance,2008,17:888-893.
    [96] Y Itoh, Study on post-yield brittle fracture of structural steels and welded joints with acrack[D]. Osaka University,1979.
    [97] M L Zhu, F Z.Xuan. Correlation between microhardness, hardness and strength in HAZof dissimilar welds of rotor steels[J]. Material Science and Engineering A,2010,527,4035-4042.
    [98] M T Kirk, R H Dodds. J And ctod estimation equations for shallow cracks in single edgenotch bend specimens[J]. Journal of Testing and Evaluation,1993,21:1-12.
    [99]李辉.损伤容限型TC4-DT钛合金疲劳裂纹扩展速率研究[D].西安:西北工业大学,2006.
    [100] L Cui, K Muneharua, S Takao, et al. Fiber laser-GMA hybrid welding of commerciallypure titanium[J]. Materials and Design,2009:109-114.
    [101] N Poondla, T S Srivatsanb, A Patnaik. A study of the microstructure and hardness of twotitanium alloys: Commercially pure and Ti-6Al-4V[J]. Journal of Alloys and Compounds,2009,486:162-167.
    [102] J Q Fu, Y W Shi. Mechanical heterogeneity and validity of J-dominance in weldedjoints[J]. International Journal of Fracture,2000,106:311-320.
    [103] J Q Fu, Y W Shi. Effect of cracked weld joint and yield strength dissimilarity on crack tipstress triaxiality[J]. Theoretical and Applied Fracture Mechanics,1996,25:51-57.
    [104] K P Rao, K Angamuthu P B Srinivasan. Fracture toughness of electron beam weldedTi6Al4V[J]. Journal of Matererials Processing and Technolonogy,2008,199:185-192.
    [105] V Kumar, M D German, C F Shih. An engineering approach for elastic-plastic fractureanalysis[R]. Germany: EPRI1931.
    [106] A G Miller. Review of limit loads of structures containing defects[J]. InternationalJournal of Pressure Vessels and Piping,1988,32:191-327.
    [107] S Hao, A Cornec, K H Schwalbe. Plastic stress and strain fields and limit loads of a planestrain centre cracked tensile panel with a mis-matched welded joint[J]. InternationalJournal of Solids and Structure,1997,34:297-326.
    [108] S Hao, K H Schwalbe, A Cornec. The effect of yield strength mis-match on the limit loadof welded joints: slip line field solutions for pure bending[J]. International Journal ofSolids and Structures,2000,37:5385-5477.
    [109] J Joch, R A Ainsworth, T H Hyde. Limit load and J estimates for idealised problems ofdeeply cracked welded joints in plane strain bending and tension[J]. Fatigue FractureEngineering Materials Structure,1993,16:1061-1079.
    [110] P Hornet, C Eripret. Experimental J evaluation from a load-displacement curve forhomogeneous and over-matched SENB or M(T) specimens[J]. Fatigue FractureEngineering Materials Structure,1995,26:679-692.
    [111] Y J Kim, K H Schwalbe, R A Ainsworth. Simplified J-estimations based on theengineering treatment model for homogeneous and mismatched structures[J]. EngineeringFracture Mechanics,2001,68:9-27.
    [112] Y J Kim, K H Schwalbe. Mis-match effect on plastic yield loads in idealised weldments:part I, weld centre cracks[J]. Engineering Fracture Mechanics,2001,68:163-182.
    [113] Y J Kim, K H Schwalbe. Mis-match effect on plastic yield loads in idealised weldments:part II, HAZ cracks[J]. Engineering Fracture Mechanics,2001,68:183-199.
    [114] Y J Kim, K H Schwalbe. Compendium of yield load solutions for strength mis-matchedDE(T), SE(B) and C(T) specimens[J]. Engineering Fracture Mechanics,2001,68:1137-1151.
    [115] D Kozak, N Gubeljak, P Konjatic, et al. Yield load solutions of heterogeneous weldedjoints[J]. International Journal of Pressure Vessels and Piping,2009,86:807-812.
    [116] J S Kim, T K Song, Y J Kim. Strength mis-match effect on limit loads for circumferentialsurface cracked pipes[J]. Engineering Fracture Mechanics,2009,76:1074-1086.
    [117] E Junghans, D Dobi. Application laserspeckleinterferometry to fracture mechanicalinvestigations of bonds and non homogeneous materials[J]. Kzltet,1999,33(6):443-449.
    [118]邢淑清,陈重毅,麻永林等.60mm厚16Mn特厚板焊接接头组织及力学性能研究[J].金属铸锻焊技术,2009,38(19):21-24.
    [119]杨剑赟,邢丽,黄春平等. TC4-DT钛合金厚板潜弧焊接头的显微组织[J].机械工程材料,2011,35(12):81-84.
    [120]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700