不同水分和氮素形态对郑麦9023蛋白质形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2007~2009年在河南科技大学试验场进行,以郑麦9023为材料,采用裂区试验设计,设置水分(三个水平W1:拔节期灌水一次;W2:拔节期和孕穗期各灌水一次;W3:拔节期、孕穗期和灌浆期各灌水一次。)和氮素形态(三种形态N1:酰胺态氮;N2:硝态氮;N3:铵态氮)两种因素,研究了不同水分和氮素形态对强筋小麦郑麦9023蛋白质形成、氮素和干物质积累、分配、转运、氮代谢相关酶活性和产量性状的影响。主要研究结果如下:
     1.不同水分和氮素形态对郑麦9023籽粒蛋白质形成的影响具有明显规律。随着灌水的增加,郑麦9023籽粒总蛋白质含量呈下降趋势,籽粒清蛋白含量和球蛋白含量增加,醇溶蛋白含量和麦谷蛋白含量降低。整个灌浆过程中,在W1处理情况下,清蛋白含量花后7~14 d N3处理最高,在W2和W3处理情况下,清蛋白含量花后7~28 d N1处理最高。球蛋白含量以N2处理最高。在W2和W3处理情况下,籽粒醇溶蛋白含量表现为:N2>N3>N1。郑麦9023籽粒灌浆过程中花后21 d籽粒谷蛋白大聚合体(GMP)含量逐渐增加,成熟期达到峰值。郑麦9023籽粒GMP含量在同一氮素形态处理条件下均表现为:W1>W2>W3,而在W3处理条件下郑麦9023籽粒谷蛋白大聚合体含量变化为:N3>N2>N1。
     2.不同水分和氮素形态对郑麦9023氮素和干物质积累、分配、转运的影响不同。开花期不同器官氮素积累量表现为旗叶>其它叶>穗部营养体>鞘>茎。不同水分处理之间比较可以看出,随着灌水的增加,小麦开花期各器官氮素积累量呈增加趋势,从氮素积累总量来看,在W1处理条件下,N1最高,N2最低;在W2处理条件下,N3最高;在W3处理条件下,N3最高, N1最低。
     开花期干物质在各器官的分配量表现为:茎>穗部营养体>鞘>其它叶>旗叶。花后生产的干物质主要积累在籽粒,花前干物质转移对籽粒的贡献率在14.59%~26.16%之间,花后积累干物质对籽粒的贡献率在48.85%~82.14%之间。各营养器官花前干物质的转运量表现为其它叶和茎>鞘和旗叶。各营养器官花前干物质转移量、转运率、对籽粒的贡献率W1和W2处理较高,W3处理较低。
     3.不同水分和氮素形态对郑麦9023氮代谢的影响不同。在同一氮素形态下,随着灌水的增加,小麦旗叶可溶性蛋白质含量、游离氨基酸含量和GS活性增加,而旗叶内肽酶活性降低。在W1处理条件下,N2处理可以提高小麦旗叶可溶性蛋白质的含量。花后14~21 d籽粒可溶性蛋白质的含量变化为:N1>N2>N3。郑麦9023灌浆过程中,旗叶游离氨基酸含量总体上变化呈下降趋势,尤其是只在拔节期灌一水的情况下,N2处理花后0~28 d呈直线下降。花后0~35 d旗叶NR活性逐渐降低,在同一氮素水平下随着水分的增加,前期小麦旗叶NR较高。在W1处理下,NR在N2的活性高。郑麦9023旗叶和籽粒GS活性随籽粒灌浆进程的推进呈逐渐下降的趋势,前期下降幅度小,后期下降幅度大。不同处理之间比较,在W1处理条件下开花期籽粒GS活性较高。不同水分和氮素形态对小麦旗叶内肽酶活性的影响具有明显规律:在W2处理条件下,整个灌浆期小麦旗叶内肽酶活性以N3最高,N2最低。
     4.不同水分和氮素形态对郑麦9023的产量及其构成因素的影响具有明显规律。穗粒数随着灌水的增加而增加,有效穗数和千粒重在W2处理条件下最高,分别比W3和W1处理提高了29.9%和8%,产量在相同氮素处理情况下以W3处理最高,从互作效应看,产量以W3N3处理最高。
The experiment with Zhengmai 9023 and two factors including different irrigation times (three levels W1: irrigation one time at jointing stage; W2: irrigation two times at jointing and booting stage; W3: irrigation three times at jointing, booting and filling stage)and nitrogen forms (three forms N_1:NH_2CONH_2, N_2: NaNO_3, N_3:NH_4HCO_3 ) was conducted at the experimental farm of Henan University of Science and Technology during 2007 to 2009. The influence of different irrigation times and nitrogen forms on protein formation, accumulation, distribution and transport of nitrogen and dry matter, enzymes activity related to nitrogenous metabolism, yield traits in strong gluten Zhengmai 9023 were studied. The main results were as follows:
     1.The effects of different irrigation times and nitrogen forms on formation of grain protein were significant. The grain contents of total protein, gliadin and glutenin were decreasing and contents of albumin and globulin were increasing with the increase of irrigation times. During the grouting process, in the W1 treatment, albumin content of N3 treatment was the highest in 7~14 d after flowering. In W2 and W3 treatment, albumin content of N1 treatment was the highest in 7~28 d after flowering. The content of globulin was highest in N2 treatment. In W2 and W3 treatment the content of gliadin was N2>N3>N1. The content of glutenin macropolymer in Zhengmai9023 during grain filling was gradually increased in 21 d after flowering and reached maximum at grain maturity. In the same nitrogen form, the content of GMP showed: W1>W2>W3; In W3 treatment conditions, the content of glutenin macropolymer showed: N3>N2>N1.
     2.The effects of different irrigation times and nitrogen forms on the accumulation, distribution and transport of nitrogen and dry matter were different.Nitrogen accumulation in different organs showed flag leaf> other leaves > spike vegetative > sheath > stem in anthesis. The accumulations of different organs in anthesis were increasing with the increase of irrigation times. In W1 treatment, the nitrogen accumulation amounts of N1 were the highest and N2 were the lowest. In W2 treatment, the nitrogen accumulation amounts of N3 were the highest. In W3 treatment, the nitrogen accumulation amounts of N3 were the highest and N1 were the lowest.
     The distribution amounts of dry matters in different organs showed stem>spike vegetative>sheath> other leaves> flag leaf. After flowering, dry matters were mainly accumulated in the grain, the contribution rate of dry matter accumulation to grains was 14.59%~26.16% before anthesis and 48.85%~82.14% after anthesis. The translocation amounts of dry matter of vegetative organs showed that other leaves and stem> sheath and flag leaf. The translocation amounts, rate and the contribution rate to grains of dry matter of vegetative organs showed W1 and W2 higher than W3.
     3.The effects of different irrigation times and nitrogen forms on nitrogen metabolism were different. In the conditions of the same nitrogen form, the content of soluble protein, free amino acid and GS activity of flag leaf was increasing and the endopeptidases activity of flag leaf was decreasing with the increase of irrigation times. In W1 treatment, N2 treatment could enhance the soluble protein content of flag leaf. In 14~21 d after flowering, the soluble protein content in grain showed N1>N2> N3. During the grouting process of Zhengmai 9023, the free amino acid content of flag leaf was keeping falling down, particularly in W1 treatment and in N2 treatment the content was decreased linearly in 0~28 d after flowering. NR activity of flag leaf was decreased gradually in 0~35 d after flowering. In the same nitrogen form treatment, NR activity of flag leaf was in a relatively high point in the early grain filling stage as the increase of irrigation times. In W1 treatment, NR activity was the highest in N2 treatment. GS activity in flag leaf and grain was showed gradually down trend with promoting of grain filling process. In W1 treatment, GS activity of grain was relatively higher in flowering stage. In W2 treatment, the endopeptidase activity of flag leaf was the highest in N3 treatment and was the lowest in N2 treatment during the whole grain filling stage.
     4.The effects of different irrigation times and nitrogen forms on the yield and its components of Zhengmai9023 were significant. Grain numbers per ear were increasing with the increase of irrigation times. The ear numbers and grain weight were the highest in W2 treatment, respectively higher by 29.9% and 8% than that in W3 and W1. The yield of W3 was the highest in the conditions of same nitrogen form and from the treatments interaction, the yield of W3 N3 was the highest.
引文
[1]李友军,王志和,陈明灿,等.优质专用小麦保优调肥理论与技术[M].北京:科学出版社,2008,36-193.
    [2]荆奇,曹卫星,戴廷波.小麦籽粒品质形成及其调控研究进展[J].麦类作物,1999,19(4):46-50.
    [3]郑伟.小麦品质性状及其调优技术研究进展[J].耕作与栽培,2001,1:10-12.
    [4]刘广田.中国小麦品质问题与科研主攻方向[J].农业信息探索,2000,2:9-11.
    [5]赵广才,何中虎,刘利华,等.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学,2004,37(3):351-356.
    [6]赵广才,何中虎,王德森,等.栽培措施对面包小麦产量及烘焙品质的调控效应[J].作物学报,2002,28(6):797-802.
    [7]于振文.优质专用小麦品种及栽培[M].北京:中国农业出版社,2001,45-80.
    [8]金善宝.中国小麦学[M].北京:中国农业山版社,1996,2-5.
    [9]王宏广.我国农业可持续发展的对策-中国的可持续发展研究[M].北京:中国环境科学出版社,1995,35-38.
    [10]山仑.加速发展我国节水农业[J].求是杂志,2005,22:42-43.
    [11]丁洪,蔡贵信,王跃思,等.华北平原几种主要类型土壤的硝化及反硝化活性[J].农业环境保护,2001,20(6):390-393.
    [12]林性粹.我国北方旱区发展节水灌溉农业刍议[J].干旱地区农业研究,1994,12(1):79-83.
    [13]张俊英,赵同科,许永利.氮肥施用与环境质量[J].华北农学报,2002,17(增刊):223-229.
    [14]王朝辉,李生秀.蔬菜不同器官的硝态氮含量与水分、全氮、全磷含量的关系[J].植物营养与施肥学报,1996,2(2):144-152.
    [15]李生秀.植物营养与肥料科学的现状与展望[J].植物营养与肥料科学,1999,5(3):193-205.
    [16]李世清,卜彤英,李生秀.石灰性土壤中NH4+-N的硝化与NH4+-N的粘土矿物固定[J].干旱地区农业研究,1993/S1:99-107.
    [17]李庆逵,朱兆良,于天仁,等.中国农业持续发展中的肥料问题[M].江西:江西科学技术出版社,1997,16-17.
    [18]王绍中,郑天存,郭天财,等.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社,2007,6:48-58.
    [19] Mooney H, Wada E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications[J]. Ecology,1988,69:340-349.
    [20]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,2001,6.
    [21]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社,1992,5.
    [22]王忠.植物生理学[M].北京:中国农业科技出版社,2000,5.
    [23]樊明寿,孙亚卿,邵金旺,等.不同形态氮素对燕麦营养生长和磷素利用的影响[J].作物学报,2005,31(1):114-118.
    [24]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
    [25] Miguel G Guerrero, Jose M. Vega, Manuel Losada.The assimilatory nitrate-reducing system and its regulation[J]. Annual Review of Plant Physiology,1981,32:169-204.
    [26]王宪泽,张树芹.不同蛋白质含量品种叶片NRA与蛋白质积累的关系研究[J].西北植物学报,1999,19(2):315-320.
    [27] Muhammad Aslam, and Ray C. Huffaker. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings[J]. Plant Physiology,1989,9l:1152-1156.
    [28] H. M. Lam, K. T. Coschigano, I. C. Oliveiva, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:569-593.
    [29] Lea PJ, Miflin BJ. Alternative route for nitrogen assimilation in higher plants[J]. Nature, 1974,251:614-616.
    [30]王小燕,于振文.不同小麦品种主要品质性状及相关酶活性研究[J].中国农业科学,2005,38(10):1980-1988.
    [31] Abrol YP, Kumar PA, Nair TVR. Nitrate uptake and assimilation and grain nitrogen accu- mulation[J]. Advances Cereal Science and tech.l984,6:1048.
    [32] CJ Brady. A coordinated decline in the synthesis of subunits of ribulosebisphosphate carbox- ylase in aging wheat leaves. I.Analysis of isolated protein,subunits and ribosomes[J]. Australian Journal of Plant Physiology.1981,8(6):591-602.
    [33] MJ Dalling, G Boland and JH Wilson. Relation between acid proteinase activity and redistri- bution of nitrogen during grain development in wheat[J]. Australian Journal of plant Physiology.1976, 3:721-730.
    [34] Dalling MJ. The physiological basis of nitrogen redistribution during grain filling in [J]. American Society of Plant Physiologists,1985,55-7l.
    [35]卢良恕.中国小麦栽培研究新进展[M].北京:中国农业出版社,1993,241-244.
    [36] R.C.Huffaker. Proteolytic activity during senscence of plant[J]. New Phytologist,1990, 116:119-123.
    [37] Lauriere,C. Enzymes and leaf senescence[J]. Physiol.Veg,1983,21:1159-1177.
    [38] Lauriere,C,Daussand,J. Identification of the ammonium-dependent isoenzyme of glutamate dehydrogenase as the form induced by senescence or darkness stress in the first leaf of wheat[J].Plant Physiology,1983,58:89-92.
    [39] Richard Storey and Leonard Beevers. Proteolytic activity in relationship to senescence and cotyledonary development in Pisum sativum L.[J]. Plants,1977,137:37-44.
    [40] Richard Storey and Leonard Beevers. Enzymology of glutamine metabolism related to senescence and seed development in the pea (Pisum sativum L.)[J]. Plant Physiology, 1978,61:494-500.
    [41] Streit L, Feller U. Changing activities of nitrogen-assimilating enzymes during growth and senescence of dwarf beans(Phaseolus vulgar L.)[J]. Z Pflanzenphysiol.1982,108:273-28l.
    [42]宋建民,田纪春,赵世杰.植物光合氮和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,34(3):230-238.
    [43] Tadahiko Mae and Koji Ohira. The remobilization of nitrogen related to leaf growth and senescence in Rice Plants (Oryza sativa L.)[J]. Plant and Cell Physiology,1981,22(6):1067-1074.
    [44] Barrett AJ. The many forms and functions of celluler proteinases[J].Fed Proc.1980,39:9-14.
    [45] J Callis.Regulation of Plant degradation[J]. The Plant Cell,1995(7):845-857.
    [46]高玲,叶茂炳,张荣铣,等.小麦旗叶衰老期间的内肽酶[J].植物生理学报,1998,24(2):183-188.
    [47]沈成国,余松烈,于振文.一次结实植物的衰老与氮再分配[J].植物生理学通讯,1998,34(4):288-296.
    [48]吴光南,刘宝仁,张金渝.水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系[J].江苏农业学报,1985,1(1):1-10.
    [49] Vicky Buchanan-Wollaston. The molecular biology of leaf senescence[J].Journal of Expere- mental Botany,1997,48(2):181-199.
    [50] Chen GH, Huang LT, Yap MN, et al. Molecular characterization of a senescence-associated gene encoding cysteine proteinase and its gene expression during leaf senescence in sweet potato[J]. Plant Cell Physiology,2002,43(9):984-991.
    [51]杨根海,张启刚,陈佑良.15N示踪研究小麦品质.I:后期肥对冬小麦产量和蛋白质含量的影响[J].北京农业大学学报,1986,12(1):39-46.
    [52]陈佑良,张启刚,梁振兴.应用富集15N研究小麦对氮素的吸收规律及其对器官建成的影响[J].作物学报,1986,12(2):101-108.
    [53]张庆江.春小麦品种氮的吸收积累的运转特征及籽粒蛋白质含量的关系[J].作物学报,1997,27(6):712-718.
    [54]赵万春.小麦组织氮的积累与分配及其相关性研究[J].西北农业大学学报,1999,27(6):38-43.
    [55]杜金哲,李文雄,胡尚连,等.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报,2001,27(2):254-260.
    [56]朱新开,郭文善,封超年,等.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报,2005,11(2):148-154.
    [57]张林生,蒋纪云,张保军.小麦籽粒发育过程游离氨基酸的变化[J].作物学报,1998,24(4):459-463.
    [58]王月福,于振文,李尚霞.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2003,23(3):417-421.
    [59]王月福,于振文,李尚霞,等.土壤肥力对小麦开花后各器官游离氨基酸和籽粒蛋白质含量变化的影响[J].麦类作物学报,2003,23(1):41-43.
    [60]吴金芝.不同筋力小麦蛋白质形成机理及施肥调控的研究.河南农业大学硕士学位论文(D)2004,5-19.
    [61]张惠叶,徐兆飞.冬小麦灌浆期蛋白质积累动态研究[J].国外农学—麦类作物,1995,1:47-49.
    [62]王宪泽,田纪春,张忠义.不同品种小麦籽粒蛋白质及其组分积累规律的研究[J].山东农业大学学报,1994,(4):394-398.
    [63]朱新开,周君良,封超年,等.不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析[J].作物学报,2005,31(3):342-347.
    [64]严美玲,般岩.氮肥对小麦品质的影响研究进展[J].河北农业科学,2009,13(10):1-3,5.
    [65]赵文明,朱新产,文树基.小麦种子发育期谷蛋白的积累[J].西北农业大学学报,1991,19(3):8-13.
    [66]潘庆民,于振文.追肥时期对冬小麦子粒品质和产量的影响[J].麦类作物学报,2002,22(2):65-69.
    [67]范雪梅,姜东,戴廷波,等.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77.
    [68] Hueber,F.R.Wall,J.S. Fractionation and quantitative differences of glutenin from wheat varirties varying in baking quality[J]. Cereal Chemistry,1976,53(2):258-269.
    [69] H.D Sapirstein,Fu B X. Intercultivar variation in the quantity of monomeric protiens, solubeand in soluble glutenin, and residue protein in wheat flour and relationships to bread making quality[J]. Cereal Chemistry,1998,75(4):500-507.
    [70]孙辉,姚大年,李保云,等.普通小麦谷蛋白大聚合体的含量与烘烤品质的相关关系[J].中国粮油学报,1998,13(6):13-16.
    [71]赵惠贤,胡胜武,吉万全,等.小麦谷蛋自聚合体粒度分布与面粉揉面特性关系的研究[J].中国农业科学,2001,34(5):465-468.
    [72] Farrand E.A. Potentioal milling and baking value of homegrown wheat[J]. Journal National Institute of Agricultural Botany,1972,12:464-470.
    [73] T. R. Sinclair, P. J. Pinter, B. A. Kimball, et al . Leaf nitrogen concentration of wheat subjected to elevated [CO2 ] and either water or N deficits [J]. Agric. Ecosyst. Environ. ,2000,79:53-60.
    [74]林琪,侯立白,韩伟,等.限量控制灌水对小麦光合作用及产量构成的影响[J].莱阳农学院学报,2004,2l(3):199-202.
    [75] J. S. Barber, R. S. Tessop. Factors affecting yield and quality in irrigated wheat[J].Agric.Sci. Camb, 1987,109:19-26.
    [76]许振柱,于振文,王东,等.灌溉量对小麦氮素吸收和运转的影响[J].作物学报,2004,30(10):1002-1007.
    [77]王月福,陈建华,曲健磊,等.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报,2002,19(1):7-9.
    [78]李光忠,王明友,薛玉剑,等.灌水对冬小麦品质和产量的影响[J].麦类作物学报,2006,26(4):158-160.
    [79]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501.
    [80]李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响[J].核农学报,2002,16(5):315-319.
    [81]张永丽,于振文.灌水对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报,2007,21(5):155-158.
    [82]王立秋,靳占忠,曹敬山,等.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997,30(3):67-73.
    [83]郑成岩,于振文,王西芝,等.灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响[J].植物营养与肥料学报,2009,15(6):1324-1332.
    [84]王晓英,贺明荣.水氮耦合对济麦20籽粒蛋白质组分及品质的影响[J].作物学报,2007,33(1):126-131.
    [85]王晨阳,郭天财,彭羽,等.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031-1035.
    [86]王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响[J].中国农业科学,2008,41(10):3015-3024.
    [87]杜金哲,李文雄,白祥和,等.春小麦子粒蛋白质积累和产量形成规律及施氮的调节作用[J].东北农业大学学报,1999,30(1):1-9.
    [88]于振文,潘庆民,姜东,等.9000㎏/公顷小麦施氮量与生理特性分析[J].作物学报,2003,29(1):37-43.
    [89]张宝军,樊虎玲.环境条件对小麦蛋白质的影响研究进展[J].水土保持研究,2002,9(2):61-63.
    [90]石书兵,马林,石庆华,等.不同施氮时期对冬小麦子粒蛋白质组分及其动态变化的影响[J].植物营养与肥料学报,2005,11(4):456-460.
    [91]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦氮素吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449-454.
    [92]马新明,王志强,王小纯,等.不同形态氮肥对不同专用小麦叶片氮代谢及籽粒蛋白质的影响[J].中国农业科学,2004,37(7):1076-1080.
    [93]孙霞,吴秀菊,胡尚连,等.氮肥形态对不同HMW-GS类型春小麦高分子量谷蛋白聚合体积累的效应[J].作物学报,2005,31(4):463-468.
    [94]王小纯,熊淑萍,马新明,等.不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响[J].生态学报,2005,25(4):802-807.
    [95]赵广才,张艳,刘利华,等.不同施肥处理对冬小麦产量、蛋白组分和加工品质的影响[J].作物学报,2005,31(6):772-776.
    [96]王东,于振文.施氮水平对强筋小麦氮素同化及籽粒蛋白质组分积累的影响[J].水土保持学报,2007,21(5):146-150.
    [97]贺明荣,杨雯玉,王晓英,等.不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响[J].作物学报,2005,31(8):1047-1051.
    [98]王月福,姜东,于振文,等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    [99]王晓英,贺明荣,李飞,等.水氮耦合对强筋冬小麦子粒蛋白质和淀粉品质的影响[J].植物营养与肥料学报,2007,13(3):361-367.
    [100]王小燕,于振文.水氮互作对小麦籽粒蛋白质组分和品质的影响[J].麦类作物学报,2009,29(4):632-638.
    [101]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,264-268.
    [102]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,62-65.
    [103]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社,1985,57-60.
    [104] P. I. Weegels , A. M. Pijpekamp, G.A. Vande. Depolymerisation and repolymerisation ofwheat glutenin during macropolymer content and quality Parameters[J]. Cereal Sci ,1996,23:103-111.
    [105] F.P.加德纳,R.B.皮尔斯,RL米切尔,等.作物生理学[M].北京:农业出版社,1993,262.
    [106]赵世杰.植物生理学实验指导[M].北京:中国农业出版社,2002,98-99.
    [107]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,185-189.
    [108] Toshihiko Hayakawa, Kazunari Kamachi. Response of glutamine synthetase and glutamate synthase isoforms to nitrogen sources in rice Cell Cultures[J].Plant and Cell physiology,1990.31(8):1071-1077.
    [109] Vernon A. Wittenbach. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence [J].Plant Physiology,1979,64:884-887.
    [110]吴光南.水稻叶片衰老过程中氨肽酶活性变化[J].植物生理学报,1987,13(1):58-63.
    [111]范雪梅,姜东,戴廷波,等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志,2006,25(2):149-154.
    [112]许振柱,于振文,王东,等.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报,2003,29(5):682-687.
    [113]曹宏鑫,王世敬,戴晓华.土壤基础肥力和肥水运筹对春小麦产量和品质及植株氮素代谢状况的影响[J].麦类作物学报,2003,23(2):52-56.
    [114]付雪丽,王晨阳,郭天财,等.水氮交互对弱筋小麦蔗糖含量和籽粒淀粉积累及品质的影响[J].麦类作物学报,2005,25(4):67-71.
    [115]曹卫星,郭文善,王龙俊,等.小麦品质生理生态及调优技术[M].北京:中国农业出版社,2005,4:120-139.
    [116]王月福,于振文,李尚霞,等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078.
    [117]吴秀菊,李文雄,胡尚连.春小麦醇溶蛋白α-,β-,γ-,ω-组分积累规律及氮素调节效应[J].中国农业科学,2005,38(2):277-282.
    [118]胡新中,张国权,张正茂,等.小麦面粉、面条色泽与蛋白质组分的关系[J].作物学报,2005,31(4):515-518.
    [119]赵乃新,顾小红.小麦品质性状与蛋白质组分含量关系的研究[J].麦类作物,1998,18(4):44-47.
    [120]孙辉,姚大年,李宝云,等.小麦谷蛋白大聚合体含量的影响因素[J].麦类作物学报,2000,20(2):23-27.
    [121] C. Don, G. Mann, F. Bekes, et al. HMW-GS affects the properties of glutenin particles in GMP and thus flour quality[J]. Journal of Cereal Science,2006,44(2):127-136.
    [122]岳鸿伟,秦晓东,戴廷波,等.施氮量对小麦籽粒HMW-GS及GMP含量动态的影响[J].作物学报,2006,32(11):1678-1683.
    [123] Z.Z.Xu, Z.W.Yu,D.Wang,et al. Nitrogen Accumulation and Translocation for Winter Wheat under Different Irrigation Regimes[J].Journal of Agronomy and Crop Science.2005,191(6):439-449.
    [124]王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报,2003,14(11):1868-1872.
    [125]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运转的影响[J].核农学报,1998,12(1):21-27.
    [126]黄明,吴金芝,李友军,等.不同耕作方式对旱作区冬小麦生产和产量的影响[J].农业工程学报,2009,25(1):50-54.
    [127]荆奇,戴廷波,姜东,等.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征[J].南京农业大学学报,2004,27(1):1-5.
    [128]尹飞,陈明灿,刘君瑞,等.氮素形态对小麦花后干物质积累与分配的影响[J].中国农学通报,2009,25(13):78-81.
    [129]王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    [130]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响[J].土壤学报,2005,42(5):875-879.
    [131]郭战玲,沈阿林,寇长林,等.不同小麦品种开花后硝酸还原酶活性与氮效率的关系[J].中国农学通报,2008,24(5):219-223.
    [132]王月福,于振文,李尚霞,等.小麦开花后不同器官中硝酸还原酶和谷氨酰胺合成酶的活性比较[J].植物生理学通讯,2003,39(3):209-210.
    [133]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-114l.
    [134]王小燕,于振文.灌水时期和灌水量对小麦氮代谢相关酶活性和籽粒蛋白质品质的影响[J].西北植物学报,2009,29(7):1415-1420.
    [135]刘克礼,高聚林,张永平,等.旱作春小麦籽粒形成与灌浆特性[J].麦类作物学报,2003,23(4):71-74.
    [136] K.D.Subedi,B.L.Ma,A.G.Xue.Planting Date and Nitrogen Effects on Grain Yield and Protein Content of Spring Wheat[J].Corp science,2007,47(1):36-44.
    [137]赵长星,马东辉,王月福,等.施氮量和花后土壤含水量对优质强筋小麦产量和品质的影响[J].生态学报,2008,28(9):4396-4404.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700