转录辅激活子MED1在小鼠脂肪肝形成中的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非酒精性脂肪肝疾病是一种无过量饮酒史,以肝细胞脂肪变性和脂肪贮积为特征的临床病理综合征。肝脏脂肪代谢长期紊乱,最终会发展为非酒精性肝炎、肝硬化和肝癌。严重影响人类健康。因而,探索调控肝脏脂肪代谢和系统能量平衡的作用机制成为全球科研工作者面临的挑战和关注热点。近年来,研究表明,肝脏脂肪代谢主要受PPARs核受体超家族的调控。PPARα和PPARβ/δ主要参与脂肪酸氧化代谢。而PPARγ主要参与脂肪细胞分化和成熟脂肪细胞脂肪的贮存,掌控着脂肪肝的形成和肝脏脂肪代谢。PPARγ调控的生脂靶基因的转录需要一些辅激活子和辅激活子相关蛋白,如MED1、SRC/p160蛋白家族、PRIP、PIMT、和PRIC285等。研究发现,MED1是Mediator复合物的一个关键成员,在RNA聚合酶II依赖型转录调控中发挥重要作用。周身敲除MED1导致小鼠在胚胎期11.5 d死亡。MED1对PPARα调控的转录活性以及PPARα配体诱导的肝脏肿瘤的形成是必不可少的。而且,MED1在PPARγ诱导的小鼠胚胎成纤维细胞向脂肪细胞分化过程中具有关键作用。然而,目前有关MED1及其他辅激活子在PPARγ功能发挥中的调控作用尚不清楚。
     本研究中,我们以周身基因敲除鼠和肝脏特异性敲除鼠为实验动物模型,运用腺病毒扩繁及纯化技术、H&E染色、油红O染色、免疫组织化学染色、免疫荧光染色、激光共聚焦技术、甘油三酯和胆固醇酶试剂盒检测、快速蛋白液相色谱分析、原代肝细胞分离和培养、Real-time PCR、Northern Blot、Western Blot、ChIP分析和基因芯片等生物化学、细胞及分子生物学技术,深入探索了转录辅激活子MED1在高脂日粮和PPARγ诱导脂肪肝形成中的调控作用。获得的主要研究结果:
     1.在体实验表明,MED1是PPARγ介导脂肪肝形成的必需辅激活子。MED1~(ΔLiv)和MED1~(fl/fl)鼠经尾静脉注射Ad/PPARγ6 d,MED1~(fl/fl)鼠在PPARγ诱导下呈现出严重的脂肪肝,而MED1~(ΔLiv)鼠却能够抵抗PPARγ刺激的脂肪肝生成。基因表达谱分析和Northern Blot检测表明,高表达PPARγ的MED1~(ΔLiv)鼠肝脏不能有效表达生脂标志基因aP2、adipsin和adiponectin以及脂滴相关蛋白caveolin-1、CideA和S3-12等,而这些基因在PPARγ高表达的MED1~(fl/fl)鼠脂肪肝中强烈表达。基因芯片分析结果发现,肝脏MED1特异性敲除,PPARγ调控的生脂信号通路,如脂肪生成、贮存、运输和氧化等通路处于失活状态,提示PPARγ信号通路的激活需要完整的MED1。而且,外源表达MED1能够挽救Ad/PPARγ刺激的脂肪肝形成及脂肪相关基因诱导表达。ChIP分析表明,高表达PPARγ的肝脏MED1敲除鼠aP2启动子区无MED1募集,PPARγ的募集显著减少,转录辅激活子PRIP和PIMT的募集能力略微减弱。
     2.离体实验表明,MED1是PPARγ诱导肝细胞发生脂肪变的必需辅激活子。从MED1~(ΔLiv)和MED1~(fl/fl)鼠分离获得的原代肝细胞感染Ad/PPARγ12 h,油红O染色检测发现,MED1阳性肝细胞能够向脂肪细胞转化,而MED1缺失的肝细胞却不能发生脂肪变。Q-PCR检测结果表明,MED1缺失的肝细胞能够抵抗PPARγ诱导的脂肪标志基因aP2以及PPARγ靶基因S3-12和CideA的表达。
     3.其他转录辅激活子SRC-1、PRIC285、PRIP和PIMT对PPARγ刺激的脂肪肝形成无影响。SRC-1周身敲除(SRC-1~(-/-))、PRIC285周身敲除(PRIC285~(-/-))、肝脏PRIP特异性敲除(PRIP~(ΔLiv))和肝脏PIMT特异性敲除(PIMT~(ΔLiv))鼠及其相应的对照鼠经尾静脉注射Ad/PPARγ5 d后,组织学和Northern Blot检测结果发现,SRC-1~(-/-)、PRIC285~(-/-)、PRIP~(ΔLiv)和PIMT~(ΔLiv)鼠及其相应的对照鼠都形成严重的脂肪肝,并强烈表达脂肪生成标志基因和PPARγ靶基因。因而,转录辅激活子MED1在PPARγ诱导的脂肪肝形成中是必需的。
     4. MED1是高脂日粮诱导脂肪肝形成的必需调控子。MED1~(ΔLiv)和MED1~(fl/fl)鼠饲喂高脂日粮(60% kCal脂肪) 0、1、2、4、8和16 w,组织学检测发现,MED1~(ΔLiv)鼠能够抵抗高脂日粮诱导的脂肪肝形成,而MED1~(fl/fl)鼠肝细胞中有大量脂滴积聚,呈明显的脂肪肝状,但并不表达PPARγ的靶基因aP2,提示MED1通过PPARγ非依赖性通路调控肝脏脂肪生成。而且,短期高脂日粮饲喂,MED1~(ΔLiv)鼠血浆胆固醇含量显著上升。此外,GTT和ITT分析揭示,肝脏MED1特异性敲除鼠葡萄糖耐受性和胰岛素敏感性增加。
     5.禁食状态下肝脏MED1特异性敲除鼠呈现高脂血症。长期禁食(72 h),MED1~(ΔLiv)鼠不发生肝脏脂肪变性。禁食24、48和72 h,与MED1~(fl/fl)鼠相比,MED1~(ΔLiv)鼠血浆甘油三酯和胆固醇水平显著升高,呈高脂血症。FPLC检测结果表明,正常饲喂条件下,MED1~(ΔLiv)鼠和MED1~(fl/fl)鼠血浆脂蛋白峰相似,而禁食24 h,MED1~(ΔLiv)鼠血浆携带甘油三酯和胆固醇的VLDL峰严重积聚,提示MED1可能调控VLDL。
     本文运用肝脏MED1特异性敲除鼠模型,体内和体外研究证实,转录辅激活子MED1在脂肪肝形成过程中发挥关键作用。MED1肝脏特异性敲除鼠能够抵抗高脂日粮和PPARγ诱导的脂肪肝形成和生脂基因表达。而其他转录辅激活子SRC-1、PRIC285、PRIP和PIMT敲除缺对PPARγ调控的肝脏脂肪变性无影响。因而,MED1是脂肪肝形成的正调控基因,是PPARγ功能发挥的必需辅激活子。本研究为理解脂肪肝调控的复杂性开辟了一个崭新的局面,为脂肪肝的预防和治疗提供了新的研究思路和靶点。
Nonalcoholic fatty liver disease (NAFLD), one of metabolic syndrome, is a burgeoning common chronic liver disorder with a morphological spectrum of liver pathology commencing with hepatic steatosis and steatohepatitis which may progress toward the development of cirrhosis and liver cancer, and NAFLD has become a major health concern worldwide. Identification of NAFLD in recent years raises new challenges about its effective precaution and therapy in basic and clinic research. Since the key aspects of lipid metabolism including lipogenesis, fatty acid oxidation, lipoprotein uptake and secretion are regulated by the liver, an understanding of the regulatory mechanisms that influence hepatic lipid homeostasis and systemic energy balance is of paramount importance in gaining insights that might be useful in the management of fatty liver disease. In recent years, increasing attention is being focused on certain transcription factors/nuclear receptors that are known to serve as key regulatory molecules to influence hepatic lipid synthesis, storage and oxidation. In particular, the three members of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors, namely PPARα, PPARβ/δ, and PPARγ, govern the regulation of liver lipid metabolism and thus influence the development of hepatic steatosis and fatty liver disease. Of the three members of PPAR subfamily, PPARγis critical for conserving energy as it contributes to adipogenesis, whereas both PPARαand PPARβparticipate in energy expenditure. Overexpression of PPARγin mouse liver leads to adipogenic hepatic steatosis (“hepatic adiposis”) and induces the expression of adipocyte-specific and lipogenesis-related genes. In contrast, liver-specific disruption of PPARγ, exerts an opposite effect in that it dramatically reduces fatty liver. Thus, PPARγplays an important role in liver lipid metabolism and contributes to hepatic steatosis.
     In the nucleus, PPARs heterodimerize with retinoid X receptorα(RXRα) and bind to peroxisome proliferator response elements (PPREs) in the promoter region of target genes. Transcriptional activity of nuclear receptors and other transcription factors requires certain coactivators and coactivator-associated proteins that include MED1, SRC/p160 family of proteins, CBP/p300, PRIP, PIMT, CARM1, PRIC285, PRIC295, PRIC320, PGC-1αand others. Coactivator MED1 is a key component of Mediator complex, and is required for RNA polymerase II dependent gene transcription. Evidence indicates that MED1 is required for PPARα-mediated transcriptional activity in vivo and PPARαligand induced liver tumor. Invitro experiment displays that MED1 plays an important role in PPARγstimulated adipogenic differentiation. However, the in vivo role of MED1 and other coactivators in liver with regards to PPARγfunction remains unknown.
     To delineate the in vivo function of coactivator molecules in PPARγ-stimulated adipogenic hepatic steatosis, we used in this study genetically altered mouse lineages, and cellular and molecular biotechnology, including amplification and purification of adenovirus, H&E staining, Oil Red O staining, immunohistochemistry, immunofluorescence, confocal microscopy, biochemical assays of triglyceride and cholesterol, fast protein liquid chromatography (FPLC), primary hepatocyte isolation and culture, Real-time PCR, Northern Blot, Western Blot, Chromatin immunoprecipitation (ChIP) assay and microarray analysis. The reulsts demonstrate that deletion of MED1 in mouse liver impairs high fat diet and PPARγ-stimulated adipogenic steatosis, whereas deficiency of coactivators such as SRC-1, PRIC285, PRIP, and PIMT had no effect. The specific results are as follows:
     1. MED1 is required for PPARγ-stimulated hepatic steatosis and the expression of adipogenic genes in vivo. MED1Δliv mice injected with adenovirus-PPARγ(Ad/PPARγ) by tail vein for 6 days did not develop fatty liver, whereas MED1~(fl/fl) mice injected with Ad/PPARγdeveloped severe hepatic steatosis. Gene expression profiling and Northern blot analyses of Ad/PPARγinjected mouse livers showed impaired induction in MED1Δliv mouse liver of adipogenic markers, such as aP2, adipsin, adiponectin and lipid droplet-associated genes, including caveolin-1, CideA, S3-12 and others. These adipocyte-specific and lipogenesis-related genes are strongly induced in MED1~(fl/fl) mouse liver in response to Ad/PPARγ. cDNA microarray analysis showed that upregulation of lipogenesis related gene networks by PPARγrequires intact MED1 gene, and in the absence of MED1 in liver the levels of expression of these genes were markedly subdued, which clearly establish that MED1 plays a key role in facilitating the transcriptional regulation of PPARγtarget genes. Furthermore, re-expression of MED1 using Ad/MED1 in MED1~(ΔLiv) mouse liver restored PPARγ-stimulated hepatic adipogenic response. In addition, ChIP reveals no recruitment of MED1 and slightly reduced association in MED1Δliv mouse liver of PRIP and PIMT with aP2 gene promoter, suggesting that MED1 is required for the transcriptional activation of target genes of PPARγby its ability to stabilize Mediator complex necessary for RNA polymerase II dependent transcription.
     2. MED1 is required for PPARγ-induced transdifferentiation of hepatocytes toward adipocytes and the expression of adipogenic genes in vitro. Primary hepatocytes isolated from MED1~(ΔLiv) mouse were infected with Ad/PPARγfor 12 hours. Histology and Real time PCR showed that hepatocytes from MED1~(ΔLiv) mouse are failed to PPARγ-stimulated hepatic adiposis and expression of adipocyte mark genes aP2 and PPARγtarget genes S3-12 and CideA.
     3. Other transcription coactivators SRC-1, PRIP, PIMT, and PRIC285 are dispensable for PPARγ-stimulated fatty liver development while MED1 is necessary for PPARγdependent transcription of downstream target genes and the development of hepatic steatosis. Other PPARs coactivators germ-line knockout SRC-1 (SRC-1~(-/-)) and PRIC285 (PRIC285~(-/-)) mice and liver conditional null (PRIP~(ΔLiv)) and (PIMT~(ΔLiv)) mice and their corresponding control mice were injected with Ad/PPARγand killed 5 days later. Fatty liver developed in mice lacking SRC-1, PRIC285, PRIP, and PIMT and their corresponding intact floxed controls after Ad/PPARγadministration. Northern Blot analysis revealed similar levels of increases in hepatic mRNA levels of adipogenesis genes in knockout and control mice following PPARγoverexpression.
     4. MED1 is required for high fat diet induced fatty liver. MED1~(ΔLiv) and MED1~(fl/fl) mice were fed high fat diet (60% kcal fat) for 0, 1, 2, 3, 4, 8 and 16 weeks. Histolocial test revealed that MED1Δliv mice when fed a high fat diet for up to 16 weeks failed to develop fatty liver, whereas MED1~(fl/fl) fed a high-fat diet developed severe hepatic steatosis, which was not associated with induction of PPARγtarget gene aP2. These results suggest that MED1 has significant PPARγ-independent effects on hepatic steatosis. On the other hand, PPARγ-stimulated hepatic steatosis is dependent upon MED1. Glucose and insulin tolerance tests revealed that MED1~(ΔLiv) mice fed a high fat diet for 4 or 16 weeks displayed lower glucose levels and exhibited greater insulin sensitivity than MED1~(fl/fl) mice. These results suggest that MED1 deficiency increases glucose tolerance and insulin sensitivity. In addition, MED1~(ΔLiv) mice showed significant elevated plasma cholesterol under short term high fat diet.
     5. Hepatic MED1 deficient mice showed hyperlipidemia in response to fasting. There was no fat accumulation in livers of MED1~(ΔLiv) mice compared to MED1~(fl/fl) and PPARα~(-/-) control mice after 72 hours of fasting. Compared with MED1~(fl/fl) mice, plasma triglycerides and cholesterol in MED1~(ΔLiv) mice were significantly increased after 24, 48 and 72 hours of fasting. FPLC showed that lipoprotein profiles were similar in fed MED1~(fl/fl) and MED1~(ΔLiv) mice. However, VLDL was significantly increased in MED1~(ΔLiv) mice after 24 hours of fasting, which suggests MED1 may regulate VLDL and plays a pivotal role in triglyceride and cholesterol metabolism.
     We conclude that transcription coactivator MED1 is required for high-fat diet-induced and PPARγ-stimulated fatty liver development in vivo, which points to a new layer of regulatory complexity in the development of hepatic steatosis and suggests that MED1 may be considered a potential therapeutic target for hepatic steatosis.
引文
A I J, Jeannin E, Wahli W, Desvergne B. 1997. Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem, 272(32): 20108-20117
    Adiels M, Olofsson S O, Taskinen M R, Boren J. 2008. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol, 28(7): 1225-1236
    Anderson N, Borlak J. 2008. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev, 60(3): 311-357
    Anderson N G. 1953. The mass isolation of whole cells from rat liver. Science, 117(3049): 627-628
    Angulo P. 2002. Nonalcoholic fatty liver disease. N Engl J Med, 346(16): 1221-1231
    Antonson P, Schuster G U, Wang L, Rozell B, Holter E, Flodby P, Treuter E, Holmgren L, Gustafsson J A. 2003. Inactivation of the nuclear receptor coactivator RAP250 in mice results in placental vascular dysfunction. Mol Cell Biol, 23(4): 1260-1268
    Anzick S L, Kononen J, Walker R L, Azorsa D O, Tanner M M, Guan X Y, Sauter G, Kallioniemi O P, Trent J M, Meltzer P S. 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science, 277(5328): 965-968
    Badman M K, Koester A, Flier J S, Kharitonenkov A, Maratos-Flier E. 2009. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology, 150(11): 4931-4940
    Bai L, Jia Y, Viswakarma N, Huang J, Vluggens A, Wolins N E, Jafari N, Rao M S, Borensztajn J, Yang G, Reddy J K. 2011. Transcription coactivator mediator subunit MED1 Is required for the development of fatty liver in the mouse. Hepatology, 53(4): 1164-1174
    Barak Y, Nelson M C, Ong E S, Jones Y Z, Ruiz-Lozano P, Chien K R, Koder A, Evans R M. 1999. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 4(4): 585-595
    Barbier O, Torra I P, Duguay Y, Blanquart C, Fruchart J C, Glineur C, Staels B. 2002. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol, 22(5): 717-726
    Belakavadi M, Fondell J D. 2006. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol, 156: 23-43
    Belakavadi M, Pandey P K, Vijayvargia R, Fondell J D. 2008. MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol Cell Biol, 28(12): 3932-3942
    Bensinger S J, Tontonoz P. 2008. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454(7203): 470-477
    Boelsterli U A, Bedoucha M. 2002. Toxicological consequences of altered peroxisome proliferator-activated receptor gamma (PPARgamma) expression in the liver: insights from models of obesity and type 2 diabetes. Biochem Pharmacol, 63(1): 1-10
    Bookout A L, Jeong Y, Downes M, Yu R T, Evans R M, Mangelsdorf D J. 2006. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 126(4): 789-799
    Boppidi H, Daram S R. 2008. Nonalcoholic fatty liver disease: hepatic manifestation of obesity and the metabolic syndrome. Postgrad Med, 120(2): E01-07
    Brenna J T, Kothapalli K S, Park W J. 2010. Alternative transcripts of fatty acid desaturase (FADS) genes. Prostaglandins Leukot Essent Fatty Acids, 82(4-6): 281-285
    Bugge A, Grontved L, Aagaard M M, Borup R, Mandrup S. 2009. The PPARgamma2 A/B-domain plays a gene-specific role in transactivation and cofactor recruitment. Mol Endocrinol, 23(6): 794-808
    Caira F, Antonson P, Pelto-Huikko M, Treuter E, Gustafsson J A. 2000. Cloning and characterization of RAP250, a novel nuclear receptor coactivator. J Biol Chem, 275(8): 5308-5317
    Chakravarti D, LaMorte V J, Nelson M C, Nakajima T, Schulman I G, Juguilon H, Montminy M, Evans R M. 1996. Role of CBP/P300 in nuclear receptor signalling. Nature, 383(6595): 99-103
    Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris T P, Rastinejad F. 2008. Structure of the intact PPAR-gamma-RXR-alpha nuclear receptor complex on DNA. Nature: 350-356
    Chawla A, Repa J J, Evans R M, Mangelsdorf D J. 2001. Nuclear receptors and lipid physiology: opening the X-files. Science, 294(5548): 1866-1870
    Chen D, Ma H, Hong H, Koh S S, Huang S M, Schurter B T, Aswad D W, Stallcup M R. 1999. Regulation of transcription by a protein methyltransferase. Science, 284(5423): 2174-2177
    Chen W, Roeder R G. 2007. The Mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation. Nucleic Acids Res, 35(18): 6161-6169
    Chen W, Yang Q, Roeder R G. 2009. Dynamic interactions and cooperative functions of PGC-1alpha and MED1 in TRalpha-mediated activation of the brown-fat-specific UCP-1 gene. Mol Cell, 35(6): 755-768
    Chen W, Zhang X, Birsoy K, Roeder R G. 2010. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism. Proc Natl Acad Sci U S A, 107(22): 10196-10201
    Chopra A R, Louet J F, Saha P, An J, Demayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard C B, O'Malley B W. 2008. Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke's disease. Science, 322(5906): 1395-1399
    Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 365(6449): 855-859
    Clark E L, Coulson A, Dalgliesh C, Rajan P, Nicol S M, Fleming S, Heer R, Gaughan L, Leung H Y, Elliott D J, Fuller-Pace F V, Robson C N. 2008. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res, 68(19): 7938-7946
    Conaway R C, Sato S, Tomomori-Sato C, Yao T, Conaway J W. 2005. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem Sci, 30(5): 250-255
    Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T. 1998. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem, 273(45): 29577-29585
    Crawford S E, Qi C, Misra P, Stellmach V, Rao M S, Engel J D, Zhu Y, Reddy J K. 2002. Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J Biol Chem, 277(5): 3585-3592
    Danielian P S, White R, Lees J A, Parker M G. 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. Embo J, 11(3): 1025-1033
    Desvergne B, Wahli W. 1999. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev, 20(5): 649-688
    DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro M H, Ricote M, Ingrey S, Horlein A, Rosenfeld M G, Glass C K. 1997. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol, 17(4): 2166-2176
    Drane P, Barel M, Balbo M, Frade R. 1997. Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53. Oncogene, 15(25): 3013-3024
    Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W. 1992. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell, 68(5): 879-887
    Eckner R, Ewen M E, Newsome D, Gerdes M, DeCaprio J A, Lawrence J B, Livingston D M. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 8(8): 869-884
    Enunlu I, Papai G, Cserpan I, Udvardy A, Jeang K T, Boros I. 2003. Different isoforms of PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase localizes to the cytoplasm and nucleus. Biochem Biophys Res Commun, 309(1): 44-51
    Gavrilova O, Haluzik M, Matsusue K, Cutson J J, Johnson L, Dietz K R, Nicol C J, Vinson C, Gonzalez F J, Reitman M L. 2003. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem, 278(36): 34268-34276
    Ge K, Cho Y W, Guo H, Hong T B, Guermah M, Ito M, Yu H, Kalkum M, Roeder R G. 2008. Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression. Mol Cell Biol, 28(3): 1081-1091
    Ge K, Guermah M, Yuan C X, Ito M, Wallberg A E, Spiegelman B M, Roeder R G. 2002. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature, 417(6888): 563-567
    Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P. 2002. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol, 22(16): 5923-5937
    Glass C K, Rosenfeld M G. 2000. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev, 14(2): 121-141
    Goo Y H, Sohn Y C, Kim D H, Kim S W, Kang M J, Jung D J, Kwak E, Barlev N A, Berger S L, Chow V T, Roeder R G, Azorsa D O, Meltzer P S, Suh P G, Song E J, Lee K J, Lee Y C, Lee J W. 2003.
    Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol Cell Biol, 23(1): 140-149
    Gordon D F, Tucker E A, Tundwal K, Hall H, Wood W M, Ridgway E C. 2006. MED220/thyroid receptor-associated protein 220 functions as a transcriptional coactivator with Pit-1 and GATA-2 on the thyrotropin-beta promoter in thyrotropes. Mol Endocrinol, 20(5): 1073-1089
    Graham F L, Prevec L. 1992. Adenovirus-based expression vectors and recombinant vaccines. Biotechnology, 20: 363-390
    Graham F L, Smiley J, Russell W C, Nairn R. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol, 36(1): 59-74
    Greene M E, Blumberg B, McBride O W, Yi H F, Kronquist K, Kwan K, Hsieh L, Greene G, Nimer S D. 1995. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr, 4(4-5): 281-299
    Grundy S M. 2004. Atherosclerosis imaging and the future of lipid management. Circulation, 110(23): 3509-3511
    Grundy S M. 2004. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab, 89(6): 2595-2600
    Gu H, Marth J D, Orban P C, Mossmann H, Rajewsky K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 265(5168): 103-106
    Guo D, Sarkar J, Ahmed M R, Viswakarma N, Jia Y, Yu S, Sambasiva Rao M, Reddy J K. 2006.
    Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver. Biochem Biophys Res Commun, 347(2): 485-495
    Hall A M, Brunt E M, Chen Z, Viswakarma N, Reddy J K, Wolins N E, Finck B N. 2010. Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice. J Lipid Res, 51(3): 554-563
    Hashimoto T, Cook W S, Qi C, Yeldandi A V, Reddy J K, Rao M S. 2000. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem, 275(37): 28918-28928
    Heery D M, Kalkhoven E, Hoare S, Parker M G. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature, 387(6634): 733-736
    Hermanson O, Glass C K, Rosenfeld M G. 2002. Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab, 13(2): 55-60
    Hittelman A B, Burakov D, Iniguez-Lluhi J A, Freedman L P, Garabedian M J. 1999. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. Embo J, 18(19): 5380-5388
    Hong H, Kohli K, Trivedi A, Johnson D L, Stallcup M R. 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci U S A, 93(10): 4948-4952
    Hoofnagle A N, Heinecke J W. 2009. Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins. J Lipid Res, 50(10): 1967-1975
    Horton J D, Goldstein J L, Brown M S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109(9): 1125-1131
    Huang J, Borensztajn J, Reddy JK. 2010. Hepatic lipid metabolism. Molecular Pathology of Liver Diseases. S. P. S. Monga. Molecular Pathology Library 5, DOI 10.1007/978-1-4419-7107_10
    Huang J, Borensztajn J, Reddy J K. 2010. Hepatic lipid metabolism. Molecular Pathology of Liver Diseases
    Hunt C R, Ro J H, Dobson D E, Min H Y, Spiegelman B M. 1986. Adipocyte P2 gene: developmental expression and homology of 5'-flanking sequences among fat cell-specific genes. Proc Natl Acad SciU S A, 83(11): 3786-3790
    Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. 2005. Increased expression of PPARgamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun, 336(1): 215-222
    Ip E, Farrell G, Hall P, Robertson G, Leclercq I. 2004. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology, 39(5): 1286-1296
    Ip E, Farrell G C, Robertson G, Hall P, Kirsch R, Leclercq I. 2003. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology, 38(1): 123-132
    Issemann I, Green S. 1990. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347(6294): 645-650
    Ito M, Yuan C X, Okano H J, Darnell R B, Roeder R G. 2000. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol Cell, 5(4): 683-693
    Jain S, Pulikuri S, Zhu Y, Qi C, Kanwar Y S, Yeldandi A V, Rao M S, Reddy J K. 1998. Differential expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) and its coactivators steroid receptor coactivator-1 and PPAR-binding protein PBP in the brown fat, urinary bladder, colon, and breast of the mouse. Am J Pathol, 153(2): 349-354
    Jeong J W, Kwak I, Lee K Y, White L D, Wang X P, Brunicardi F C, O'Malley B W, DeMayo F J. 2006. The genomic analysis of the impact of steroid receptor coactivators ablation on hepatic metabolism. Mol Endocrinol, 20(5): 1138-1152
    Jia Y, Guo G L, Surapureddi S, Sarkar J, Qi C, Guo D, Xia J, Kashireddi P, Yu S, Cho Y W, Rao M S, Kemper B, Ge K, Gonzalez F J, Reddy J K. 2005. Transcription coactivator peroxisome proliferator-activated receptor-binding protein/mediator 1 deficiency abrogates acetaminophen hepatotoxicity. Proc Natl Acad Sci U S A, 102(35): 12531-12536
    Jia Y, Qi C, Kashireddi P, Surapureddi S, Zhu Y J, Rao M S, Le Roith D, Chambon P, Gonzalez F J, Reddy J K. 2004. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver. J Biol Chem, 279(23): 24427-24434
    Jia Y, Qi C, Zhang Z, Zhu Y T, Rao S M, Zhu Y J. 2005. Peroxisome proliferator-activated receptor-binding protein null mutation results in defective mammary gland development. J Biol Chem, 280(11): 10766-10773
    Jia Y, Viswakarma N, Fu T, Yu S, Rao M S, Borensztajn J, Reddy J K. 2009. Conditional ablation of mediator subunit MED1 (MED1/PPARBP) gene in mouse liver attenuates glucocorticoid receptor agonist dexamethasone-induced hepatic steatosis. Gene Expr, 14(5): 291-306
    Jia Y, Viswakarma N, Matsumoto K, Pyper S R, Rao M S, Reddy J K. 2009. Early Embryonic Lethality of Mice with Disrupted Transcription Cofactor PIMT/NCoA6IP Gene FASEB J., 23(739.6 )
    Jones P S, Savory R, Barratt P, Bell A R, Gray T J, Jenkins N A, Gilbert D J, Copeland N G, Bell D R. 1995. Chromosomal localisation, inducibility, tissue-specific expression and strain differences in three murine peroxisome-proliferator-activated-receptor genes. Eur J Biochem, 233(1): 219-226
    Karagianni P, Wong J. 2007. HDAC3: taking the SMRT-N-CoRrect road to repression. Oncogene, 26(37): 5439-5449
    Kashireddy P V, Rao M S. 2004. Lack of peroxisome proliferator-activated receptor alpha in mice enhances methionine and choline deficient diet-induced steatohepatitis. Hepatol Res, 30(2): 104-110
    Kim S W, Park K, Kwak E, Choi E, Lee S, Ham J, Kang H, Kim J M, Hwang S Y, Kong Y Y, Lee K, Lee J W. 2003. Activating signal cointegrator 2 required for liver lipid metabolism mediated by liver X receptors in mice. Mol Cell Biol, 23(10): 3583-3592
    Kimmel A R, Brasaemle D L, McAndrews-Hill M, Sztalryd C, Londos C. 2010. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res, 51(3): 468-471
    Kliewer S A, Forman B M, Blumberg B, Ong E S, Borgmeyer U, Mangelsdorf D J, Umesono K, Evans R M. 1994. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A, 91(15): 7355-7359
    Ko L, Cardona G R, Chin W W. 2000. Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A, 97(11): 6212-6217
    Komonyi O, Papai G, Enunlu I, Muratoglu S, Pankotai T, Kopitova D, Maroy P, Udvardy A, Boros I. 2005. DTL, the Drosophila homolog of PIMT/Tgs1 nuclear receptor coactivator-interacting protein/RNA methyltransferase, has an essential role in development. J Biol Chem, 280(13): 12397-12404
    Kornberg R D. 2005. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci, 30(5): 235-239
    Kornberg R D. 2007. The molecular basis of eukaryotic transcription. Proc Natl Acad Sci U S A, 104(32): 12955-12961
    Kourtidis A, Jain R, Carkner R D, Eifert C, Brosnan M J, Conklin D S. 2010. An RNA interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast cancer cells with the ERBB2 signature. Cancer Res, 70(5): 1783-1792
    Kuang S Q, Liao L, Zhang H, Pereira F A, Yuan Y, DeMayo F J, Ko L, Xu J. 2002. Deletion of the cancer-amplified coactivator AIB3 results in defective placentation and embryonic lethality. J Biol Chem, 277(47): 45356-45360
    Kwok R P, Lundblad J R, Chrivia J C, Richards J P, Bachinger H P, Brennan R G, Roberts S G, Green M R, Goodman R H. 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature, 370(6486): 223-226
    Kwon H, Imbalzano A N, Khavari P A, Kingston R E, Green M R. 1994. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489): 477-481
    Landles C, Chalk S, Steel J H, Rosewell I, Spencer-Dene B, Lalani el N, Parker M G. 2003. The thyroid hormone receptor-associated protein TRAP220 is required at distinct embryonic stages in placental, cardiac, and hepatic development. Mol Endocrinol, 17(12): 2418-2435
    Lee S K, Anzick S L, Choi J E, Bubendorf L, Guan X Y, Jung Y K, Kallioniemi O P, Kononen J, Trent J M, Azorsa D, Jhun B H, Cheong J H, Lee Y C, Meltzer P S, Lee J W. 1999. A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J Biol Chem, 274(48): 34283-34293
    Lee S S, Pineau T, Drago J, Lee E J, Owens J W, Kroetz D L, Fernandez-Salguero P M, Westphal H, Gonzalez F J. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activatedreceptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol, 15(6): 3012-3022
    Lewis B A, Reinberg D. 2003. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci, 116(Pt 18): 3667-3675
    Li H, Gade P, Nallar S C, Raha A, Roy S K, Karra S, Reddy J K, Reddy S P, Kalvakolanu D V. 2008. The Med1 subunit of transcriptional mediator plays a central role in regulating CCAAT/enhancer-binding protein-beta-driven transcription in response to interferon-gamma. J Biol Chem, 283(19): 13077-13086
    Li H, Gomes P J, Chen J D. 1997. RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A, 94(16): 8479-8484
    Li Q, Chu M J, Xu J. 2007. Tissue- and nuclear receptor-specific function of the C-terminal LXXLL motif of coactivator NCoA6/AIB3 in mice. Mol Cell Biol, 27(23): 8073-8086
    Lottin-Divoux S, Barel M, Frade R. 2005. RB18A enhances expression of mutant p53 protein in human cells. FEBS Lett, 579(11): 2323-2326
    Louet J F, Coste A, Amazit L, Tannour-Louet M, Wu R C, Tsai S Y, Tsai M J, Auwerx J, O'Malley B W. 2006. Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proc Natl Acad Sci U S A, 103(47): 17868-17873
    Louet J F, O'Malley B W. 2007. Coregulators in adipogenesis: what could we learn from the SRC (p160) coactivator family? Cell Cycle, 6(20): 2448-2452
    Lowell B B. 1999. PPARgamma: an essential regulator of adipogenesis and modulator of fat cell function. Cell, 99(3): 239-242
    Luo J, Deng Z L, Luo X, Tang N, Song W X, Chen J, Sharff K A, Luu H H, Haydon R C, Kinzler K W, Vogelstein B, He T C. 2007. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc, 2(5): 1236-1247
    Mahajan M A, Samuels H H. 2000. A new family of nuclear receptor coregulators that integrate nuclear receptor signaling through CREB-binding protein. Mol Cell Biol, 20(14): 5048-5063
    Mahajan M A, Samuels H H. 2005. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development. Endocr Rev, 26(4): 583-597
    Mahajan M A, Samuels H H. 2008. Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development. Nucl Recept Signal, 6: e002
    Malik S, Roeder R G. 2005. Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem Sci, 30(5): 256-263
    Malik S, Wallberg A E, Kang Y K, Roeder R G. 2002. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol, 22(15): 5626-5637
    Mangelsdorf D J, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans R M. 1995. The nuclear receptor superfamily: the second decade. Cell, 83(6): 835-839
    Mark M, Yoshida-Komiya H, Gehin M, Liao L, Tsai M J, O'Malley B W, Chambon P, Xu J. 2004. Partially redundant functions of SRC-1 and TIF2 in postnatal survival and male reproduction. ProcNatl Acad Sci U S A, 101(13): 4453-4458
    Matsumoto K, Huang J, Viswakarma N, Bai L, Jia Y, Zhu Y T, Yang G, Borensztajn J, Rao M S, Zhu Y J, Reddy J K. 2010. Transcription coactivator PBP/MED1-deficient hepatocytes are not susceptible to diethylnitrosamine-induced hepatocarcinogenesis in the mouse. Carcinogenesis, 31(2): 318-325
    Matsumoto K, Yu S, Jia Y, Ahmed M R, Viswakarma N, Sarkar J, Kashireddy P V, Rao M S, Karpus W, Gonzalez F J, Reddy J K. 2007. Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development. J Biol Chem, 282(23): 17053-17060
    Matsusue K, Haluzik M, Lambert G, Yim S H, Gavrilova O, Ward J M, Brewer B, Jr., Reitman M L, Gonzalez F J. 2003. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest, 111(5): 737-747
    McCue M D. 2010. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol, 156(1): 1-18
    McKenna N J, O'Malley B W. 2002. Minireview: nuclear receptor coactivators--an update. Endocrinology, 143(7): 2461-2465
    Memon R A, Tecott L H, Nonogaki K, Beigneux A, Moser A H, Grunfeld C, Feingold K R. 2000. Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology, 141(11): 4021-4031
    Misra P, Owuor E D, Li W, Yu S, Qi C, Meyer K, Zhu Y J, Rao M S, Kong A N, Reddy J K. 2002. Phosphorylation of transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP). Stimulation of transcriptional regulation by mitogen-activated protein kinase. J Biol Chem, 277(50): 48745-48754
    Misra P, Qi C, Yu S, Shah S H, Cao W Q, Rao M S, Thimmapaya B, Zhu Y, Reddy J K. 2002. Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation. J Biol Chem, 277(22): 20011-20019
    Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonne R. 2002. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell, 9(4): 891-901
    Mouillet J F, Chu T, Nelson D M, Mishima T, Sadovsky Y. 2010. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J, 24(6): 2030-2039
    Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, Hauser S, Rosen E D, Ge K, Roeder R G, Spiegelman B M. 2002. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem, 277(44): 41925-41930
    Naar A M, Beaurang P A, Zhou S, Abraham S, Solomon W, Tjian R. 1999. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature, 398(6730): 828-832
    Nagy L, Kao H Y, Chakravarti D, Lin R J, Hassig C A, Ayer D E, Schreiber S L, Evans R M. 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89(3): 373-380
    Ndong Jde L, Jean D, Rousselet N, Frade R. 2009. Down-regulation of the expression of RB18A/MED1, acofactor of transcription, triggers strong tumorigenic phenotype of human melanoma cells. Int J Cancer, 124(11): 2597-2606
    Onate S A, Tsai S Y, Tsai M J, O'Malley B W. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science, 270(5240): 1354-1357
    Picard F, Gehin M, Annicotte J, Rocchi S, Champy M F, O'Malley B W, Chambon P, Auwerx J. 2002. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell, 111(7): 931-941
    Pineda Torra I, Freedman L P, Garabedian M J. 2004. Identification of DRIP205 as a coactivator for the Farnesoid X receptor. J Biol Chem, 279(35): 36184-36191
    Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman B M. 1999. Activation of PPARgamma coactivator-1 through transcription factor docking. Science, 286(5443): 1368-1371
    Puigserver P, Wu Z, Park C W, Graves R, Wright M, Spiegelman B M. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92(6): 829-839
    Puri V, Czech M P. 2008. Lipid droplets: FSP27 knockout enhances their sizzle. J Clin Invest, 118(8): 2693-2696
    Puri V, Ranjit S, Konda S, Nicoloro S M, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugini R A, Czech M P. 2008. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A, 105(22): 7833-7838
    Pyper S R, Viswakarma N, Jia Y, Zhu Y J, Fondell J D, Reddy J K. 2010. PRIC295, a Nuclear Receptor Coactivator, Identified from PPARalpha-Interacting Cofactor Complex. PPAR Res, 2010
    Pyper S R, Viswakarma N, Yu S, Reddy J K. 2010. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal, 8: e002
    Qi C, Kashireddy P, Zhu Y T, Rao S M, Zhu Y J. 2004. Null mutation of peroxisome proliferator-activated receptor-interacting protein in mammary glands causes defective mammopoiesis. J Biol Chem, 279(32): 33696-33701
    Qi C, Surapureddi S, Zhu Y J, Yu S, Kashireddy P, Rao M S, Reddy J K. 2003. Transcriptional coactivator PRIP, the peroxisome proliferator-activated receptor gamma (PPARgamma)-interacting protein, is required for PPARgamma-mediated adipogenesis. J Biol Chem, 278(28): 25281-25284
    Qi C, Zhu Y, Pan J, Yeldandi A V, Rao M S, Maeda N, Subbarao V, Pulikuri S, Hashimoto T, Reddy J K. 1999. Mouse steroid receptor coactivator-1 is not essential for peroxisome proliferator-activated receptor alpha-regulated gene expression. Proc Natl Acad Sci U S A, 96(4): 1585-1590
    Rachez C, Lemon B D, Suldan Z, Bromleigh V, Gamble M, Naar A M, Erdjument-Bromage H, Tempst P, Freedman L P. 1999. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature, 398(6730): 824-828
    Rao M S, Papreddy K, Musunuri S, Okonkwo A. 2002. Prevention/reversal of choline deficiency-induced steatohepatitis by a peroxisome proliferator-activated receptor alpha ligand in rats. In Vivo, 16(2): 145-152
    Rao M S, Reddy J K. 2004. PPARalpha in the pathogenesis of fatty liver disease. Hepatology, 40(4): 783-786
    Reddy J K. 2004. Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing. Am J Pathol, 164(6): 2305-2321
    Reddy J K, Azarnoff D L, Hignite C E. 1980. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature, 283(5745): 397-398
    Reddy J K, Guo D, Jia Y, Yu S, Rao M S. 2006. Nuclear receptor transcriptional coactivators in development and metabolism. Adv. Dev. Biol., 16: 389-420
    Reddy J K, Hashimoto T. 2001. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr, 21: 193-230
    Reddy J K, Krishnakantha T P. 1975. Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science, 190(4216): 787-789
    Reddy J K, Lalwai N D. 1983. Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit Rev Toxicol, 12(1): 1-58
    Reddy J K, Rao M S. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol, 290(5): G852-858
    Reddy J K, Rao S, Moody D E. 1976. Hepatocellular carcinomas in acatalasemic mice treated with nafenopin, a hypolipidemic peroxisome proliferator. Cancer Res, 36(4): 1211-1217
    Roeder R G. 2005. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett, 579(4): 909-915
    Rosen E D, Sarraf P, Troy A E, Bradwin G, Moore K, Milstone D S, Spiegelman B M, Mortensen R M. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell, 4(4): 611-617
    Sarkar J, Qi C, Guo D, Ahmed M R, Jia Y, Usuda N, Viswakarma N, Rao M S, Reddy J K. 2007.
    Transcription coactivator PRIP, the peroxisome proliferator-activated receptor (PPAR)-interacting protein, is redundant for the function of nuclear receptors PParalpha and CAR, the constitutive androstane receptor, in mouse liver. Gene Expr, 13(4-5): 255-269
    Schuler M, Ali F, Chambon C, Duteil D, Bornert J M, Tardivel A, Desvergne B, Wahli W, Chambon P, Metzger D. 2006. PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab, 4(5): 407-414
    Seglen P O. 1976. Preparation of isolated rat liver cells. Methods Cell Biol, 13: 29-83
    Seitz H J, Muller M J, Krone W, Tarnowski W. 1977. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP. Arch Biochem Biophys, 183(2): 647-663
    Sher T, Yi H F, McBride O W, Gonzalez F J. 1993. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry, 32(21): 5598-5604
    Surapureddi S, Viswakarma N, Yu S, Guo D, Rao M S, Reddy J K. 2006. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex. Biochem Biophys Res Commun, 343(2): 535-543
    Surapureddi S, Yu S, Bu H, Hashimoto T, Yeldandi A V, Kashireddy P, Cherkaoui-Malki M, Qi C, Zhu Y J, Rao M S, Reddy J K. 2002. Identification of a transcriptionally active peroxisome proliferator-activated receptor alpha -interacting cofactor complex in rat liver and characterization of PRIC285 as a coactivator. Proc Natl Acad Sci U S A, 99(18): 11836-11841
    Takano H, Komuro I. 2009. Peroxisome proliferator-activated receptor gamma and cardiovascular diseases.Circ J, 73(2): 214-220
    Teichmann W, Klemm G, Bettzieche H, Schmidt G. 1958. [Gout & hyperlipoidemia]. Dtsch Z Verdau Stoffwechselkr, 18(1-2): 35-48
    Thomas K R, Capecchi M R. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51(3): 503-512
    Tomaru T, Satoh T, Yoshino S, Ishizuka T, Hashimoto K, Monden T, Yamada M, Mori M. 2006. Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. Endocrinology, 147(1): 377-388
    Tontonoz P, Hu E, Graves R A, Budavari A I, Spiegelman B M. 1994. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev, 8(10): 1224-1234
    Tontonoz P, Hu E, Spiegelman B M. 1994. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 79(7): 1147-1156
    Vidal-Puig A, Jimenez-Linan M, Lowell B B, Hamann A, Hu E, Spiegelman B, Flier J S, Moller D E. 1996. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest, 97(11): 2553-2561
    Vijayvargia R, May M S, Fondell J D. 2007. A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res, 67(9): 4034-4041
    Viswakarma N, Jia Y, Bai L, Vluggens A, Borensztajn J, Xu J, Reddy J K. 2010. Coactivators in PPAR-Regulated Gene Expression. PPAR Res, 2010
    Viswakarma N, Matsumoto K, Jia Y, Rao M S, Reddy J K. 2009. Mice lacking transcription cofactor PRIC285 reveal attenuation of liver regeneration but are viable and develop normally FASEB J., 23(117.6 )
    Viswakarma N, Yu S, Naik S, Kashireddy P, Matsumoto K, Sarkar J, Surapureddi S, Jia Y, Rao M S, Reddy J K. 2007. Transcriptional regulation of Cidea, mitochondrial cell death-inducing DNA fragmentation factor alpha-like effector A, in mouse liver by peroxisome proliferator-activated receptor alpha and gamma. J Biol Chem, 282(25): 18613-18624
    Wang W, Cote J, Xue Y, Zhou S, Khavari P A, Biggar S R, Muchardt C, Kalpana G V, Goff S P, Yaniv M, Workman J L, Crabtree G R. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. Embo J, 15(19): 5370-5382
    Wang Y X. 2010. PPARs: diverse regulators in energy metabolism and metabolic diseases. Cell Res, 20(2): 124-137
    Wang Y X, Lee C H, Tiep S, Yu R T, Ham J, Kang H, Evans R M. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell, 113(2): 159-170
    Wang Z, Qi C, Krones A, Woodring P, Zhu X, Reddy J K, Evans R M, Rosenfeld M G, Hunter T. 2006. Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metab, 3(2): 111-122
    Wei L N, Hu X, Chandra D, Seto E, Farooqui M. 2000. Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem, 275(52): 40782-40787
    Weiss R E, Xu J, Ning G, Pohlenz J, O'Malley B W, Refetoff S. 1999. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. Embo J, 18(7): 1900-1904
    Wolins N E, Quaynor B K, Skinner J R, Schoenfish M J, Tzekov A, Bickel P E. 2005. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J Biol Chem, 280(19): 19146-19155
    Wolins N E, Quaynor B K, Skinner J R, Tzekov A, Croce M A, Gropler M C, Varma V, Yao-Borengasser A, Rasouli N, Kern P A, Finck B N, Bickel P E. 2006. OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes, 55(12): 3418-3428
    Wolins N E, Skinner J R, Schoenfish M J, Tzekov A, Bensch K G, Bickel P E. 2003. Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem, 278(39): 37713-37721
    Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley B W. 2000. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A, 97(12): 6379-6384
    Xu J, Lloyd D J, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li Y S, Lindberg R A, Chen J L, Jung D Y, Zhang Z, Ko H J, Kim J K, Veniant M M. 2009. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes, 58(1): 250-259
    Xu J, Qiu Y, DeMayo F J, Tsai S Y, Tsai M J, O'Malley B W. 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science, 279(5358): 1922-1925
    Xu J, Wu R C, O'Malley B W. 2009. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer, 9(9): 615-630
    Xu L, Glass C K, Rosenfeld M G. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev, 9(2): 140-147
    Yadav N, Cheng D, Richard S, Morel M, Iyer V R, Aldaz C M, Bedford M T. 2008. CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep, 9(2): 193-198
    Yao T P, Oh S P, Fuchs M, Zhou N D, Ch'ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361-372
    Yeom S Y, Kim G H, Kim C H, Jung H D, Kim S Y, Park J Y, Pak Y K, Rhee D K, Kuang S Q, Xu J, Han D J, Song D K, Lee J W, Lee K U, Kim S W. 2006. Regulation of insulin secretion and beta-cell mass
    by activating signal cointegrator 2. Mol Cell Biol, 26(12): 4553-4563 Yoshikawa T, Brkanac Z, Dupont B R, Xing G Q, Leach R J, Detera-Wadleigh S D. 1996. Assignment of the human nuclear hormone receptor, NUC1 (PPARD), to chromosome 6p21.1-p21.2. Genomics, 35(3): 637-638
    Yu S, Matsusue K, Kashireddy P, Cao W Q, Yeldandi V, Yeldandi A V, Rao M S, Gonzalez F J, Reddy J K. 2003. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem, 278(1): 498-505
    Yu S, Reddy J K. 2007. Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta, 1771(8): 936-951
    Yu S, Viswakarma N, Batra S K, Sambasiva Rao M, Reddy J K. 2004. Identification of promethin and PGLP as two novel up-regulated genes in PPARgamma1-induced adipogenic mouse liver. Biochimie, 86(11): 743-761
    Yuan C X, Ito M, Fondell J D, Fu Z Y, Roeder R G. 1998. The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A, 95(14): 7939-7944
    Zhang H, Kuang S Q, Liao L, Zhou S, Xu J. 2004. Haploid inactivation of the amplified-in-breast cancer 3 coactivator reduces the inhibitory effect of peroxisome proliferator-activated receptor gamma and retinoid X receptor on cell proliferation and accelerates polyoma middle-T antigen-induced mammary tumorigenesis in mice. Cancer Res, 64(19): 7169-7177
    Zhang H, Liao L, Kuang S Q, Xu J. 2003. Spatial distribution of the messenger ribonucleic acid and protein of the nuclear receptor coactivator, amplified in breast cancer-3, in mice. Endocrinology, 144(4): 1435-1443
    Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H, Wang D, Wu G, Shang Y. 2004. Differential gene regulation by the SRC family of coactivators. Genes Dev, 18(14): 1753-1765
    Zhang X, Krutchinsky A, Fukuda A, Chen W, Yamamura S, Chait B T, Roeder R G. 2005. MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol Cell, 19(1): 89-100
    Zhu Y, Alvares K, Huang Q, Rao M S, Reddy J K. 1993. Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem, 268(36): 26817-26820
    Zhu Y, Kan L, Qi C, Kanwar Y S, Yeldandi A V, Rao M S, Reddy J K. 2000. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J Biol Chem, 275(18): 13510-13516
    Zhu Y, Qi C, Calandra C, Rao M S, Reddy J K. 1996. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr, 6(3): 185-195
    Zhu Y, Qi C, Cao W Q, Yeldandi A V, Rao M S, Reddy J K. 2001. Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function. Proc Natl Acad Sci U S A, 98(18): 10380-10385
    Zhu Y, Qi C, Jain S, Le Beau M M, Espinosa R, 3rd, Atkins G B, Lazar M A, Yeldandi A V, Rao M S, Reddy J K. 1999. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc Natl Acad Sci U S A, 96(19): 10848-10853
    Zhu Y, Qi C, Jain S, Rao M S, Reddy J K. 1997. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem, 272(41): 25500-25506
    Zhu Y, Qi C, Jia Y, Nye J S, Rao M S, Reddy J K. 2000. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem, 275(20): 14779-14782
    Zhu Y, Qi C, Korenberg J R, Chen X N, Noya D, Rao M S, Reddy J K. 1995. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A, 92(17): 7921-7925
    Zhu Y J, Crawford S E, Stellmach V, Dwivedi R S, Rao M S, Gonzalez F J, Qi C, Reddy J K. 2003. Coactivator PRIP, the peroxisome proliferator-activated receptor-interacting protein, is a modulator ofplacental, cardiac, hepatic, and embryonic development. J Biol Chem, 278(3): 1986-1990
    Zhu Y T, Hu L, Qi C, Zhu Y J. 2009. PRIP promotes tumor formation through enhancing serum-responsive factor-mediated FOS expression. J Biol Chem, 284(21): 14485-14492
    Zhu Y T, Jia Y, Hu L, Qi C, Prasad M K, McCallion A S, Zhu Y J. 2010. Peroxisome-proliferator-activated receptor-binding protein (PBP) is essential for the growth of active Notch4-immortalized mammary epithelial cells by activating SOX10 expression. Biochem J, 425(2): 435-444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700