利用成骨细胞特异性基因敲除小鼠模型研究Pten和Gab1在骨稳态过程中的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坚硬的骨骼能够支撑机体、保护内脏。骨的强度取决于骨量和骨的结构。骨骼是一个动态的、处于新陈代谢的组织——骨重建过程中破骨细胞不断吸收旧骨、成骨细胞不断形成新骨,成年机体通过骨吸收和骨形成的动态平衡维持骨量的稳态。骨重建是由破骨细胞、成骨细胞、骨细胞共同精确调节的动态过程,它们之间相互耦联使骨吸收和骨形成保持动态平衡。成骨细胞和破骨细胞的活性受到生长因子、细胞因子、激素和力学刺激等多种因素的调控。加强成骨细胞的基础研究,对于促进骨形成类药物的研发和骨代谢疾病的防治有重要意义。
     磷脂酰肌醇3-激酶(phosphoinositide 3 kinase,PI3K)/AKT信号通路通过调节细胞的增殖、分化、迁移和凋亡而具有广泛的生物学效应。但是,PI3K/AKT信号通路在成骨细胞及骨稳态维持中的功能还缺乏足够的体内证据。本研究利用组织特异性条件基因敲除技术,探讨了能影响PI3K/AKT信号通路的两个分子Pten和Gab1基因在成骨细胞中的功能及其对骨代谢的调控。
     10号染色体缺失的磷酸酶及张力蛋白同源物(Phosphatase and Tensin homolog deleted from chromosome 10,Pten)是一个重要的抑癌分子,它通过负向调控PI3K/AKT信号通路来影响细胞的生物学功能。在本研究中,我们基于Cre-LoxP系统获得了成骨细胞特异性Pten基因敲除小鼠,发现Pten基因敲除小鼠发生骨质硬化症。我们从影像学、组织学、细胞和分子水平研究了Pten基因在骨稳态维持中的功能,并分析了成骨细胞中Pten基因影响骨重建的可能机制。
     我们利用本室研制的骨钙素启动子指导的Cre重组酶转基因小鼠同Pten条件基因打靶小鼠交配,获得了成骨细胞特异性Pten基因敲除小鼠(Ptenflox/flox; OC-Cre)。检测4月龄小鼠股骨的骨密度,发现无论是雄性还是雌性Pten基因敲除小鼠比同窝同性别对照小鼠的骨密度明显升高。我们用μCT对4月龄小鼠股骨进行了扫描和三维重建,股骨的纵向扫描图显示Pten基因敲除小鼠骨小梁体积增加,靠近膝关节侧松质骨三维重建图显示Pten基因敲除后骨小梁增多变厚,横断面扫描发现Pten基因敲除后皮质骨增厚、骨髓腔变小。接着,我们对小鼠胫骨的骨重建进行了组织和细胞的骨形态计量分析。胫骨塑料切片Von Kossa染色显示,Pten基因敲除后骨小梁增加。骨计量结果显示,与对照小鼠相比Pten基因敲除小鼠骨体积、骨小梁厚度,成骨细胞数量均明显增加。体内钙黄绿素标记显示Pten基因敲除小鼠骨形成率(BFR/BS)和骨矿化率(MAR)较对照小鼠明显提高。这些结果显示Pten基因敲除导致骨形成增加。我们分离原代成骨细胞诱导培养,茜素红染色结果显示矿化结节增多。在前成骨细胞系干涉Pten基因,Westernblot结果显示AKT通路激活,前成骨细胞分化加快。接着我们用抗酒石酸酸性磷酸酶(TRAP)染色鉴定破骨细胞,骨计量结果显示Pten基因敲除小鼠破骨细胞数量(N.Oc/B.Pm)增加。荧光定量PCR结果显示,Pten基因敲除后破骨细胞的功能分子TRAP和组织蛋白酶K(CathK)的表达都明显升高。这些结果表明Pten基因敲除小鼠骨吸收增加。但是,小鼠血清ELISA分析结果显示耦联调控破骨细胞分化的OPG、RANKL没有明显变化,提示成骨细胞Pten基因缺失可能通过别的机制调节破骨细胞分化。荧光定量PCR结果显示,Pten基因敲除小鼠骨组织中单核细胞趋化因子(MCP-2、MCP-5、SDF-1)表达明显升高,提示成骨细胞Pten基因缺失可能通过增加趋化因子的表达招募更多的破骨细胞前体至骨微环境中发育为破骨细胞。
     Gab1(Grb2-associated binder 1)是一个锚定蛋白,能被多种酪氨酸激酶受体激活,主要通过PI3K/AKT和Ras/MAPK向下传递胞外多种生长因子、细胞因子的刺激。我们首次建立了成骨细胞特异性Gab1基因敲除小鼠(Gab1flox/flox; OC-Cre)模型,发现Gab1基因敲除小鼠发生骨质疏松。本研究通过影像学、组织形态计量、细胞和分子多层面分析证实Gab1基因在维持骨稳态过程中的重要作用,并用三点弯曲力学实验证明Gab1基因敲除小鼠股骨生物力学性能下降。我们检测分析了2月龄和6.5月龄雄性小鼠的骨密度。与同窝对照相比,Gab1基因敲除小鼠的骨密度明显下降。软X线相片显示6.5月龄Gab1基因敲除小鼠椎骨、股骨的骨密度明显加少。μCT扫描和三维重建的结果显示,Gab1基因敲除小鼠骨小梁减少、皮质骨变薄。我们对2月龄小鼠的骨形成和骨吸收进行了细致分析,发现Gab1基因敲除小鼠骨体积明显下降、成骨细胞数量和破骨细胞数量减少,体内钙黄绿素标记显示Gab1基因敲除小鼠骨形成率(BFR/BS)和骨矿化率(MAR)明显降低。这些结果表明Gab1基因敲除小鼠发生低转换率的骨质疏松。通过Gab1基因敲除小鼠原代成骨细胞的研究,发现Gab1基因敲除后成骨细胞矿化减少、凋亡增加、表达RANKL较少从而支持破骨细胞分化的能力减弱。前成骨细胞干涉Gab1基因,也证实Gab1表达下降的细胞矿化减少、凋亡增加。Gab1基因敲除的成骨细胞在IGF-1和insulin刺激时不同时间点p-AKT和p-ERK的水平较野生型明显降低,表明Gab1基因参与IGF-1和insulin对成骨细胞AKT和ERK的激活。
     综上所述,本研究揭示了能够正、负调控PI3K/AKT信号通路的两个分子Gab1和Pten在骨代谢调控和骨稳态维持中的生理功能。研制成功的Pten基因敲除导致骨质硬化症小鼠,以及Gab1基因敲除导致骨质疏松小鼠为进一步深入研究骨稳态维持的分子机制提供了新的实验动物模型。
A rigid skeleton makes it possible to support weight and ensures protection for the organs. Bone strength is determined by bone mass and structure. Bone is a dynamic structure with a continuous tissue renewal called remodeling in which osteoclasts responsible for bone resorption and osteoblasts responsible for bone formation, and the maintenance of bone mass is determined by the coupling of bone resorption to bone formation. Bone remodeling is a danymic process performed by the coordinated activities of osteoclasts, osteoblasts and osteocytes, and tightly controlled by the interaction of these cells. The activation of osteoblasts and osteoclasts is regulated by growth factors, cytokines, hormones and mechanical forces. Further understanding of osteoblastic bone formation is critical for the development of bone anabolic agents and the treatment for osteoporosis.
     PI3K (phosphoinositide 3 kinase)/AKT signaling regulate a number of biological processes such as proliferation, differentiation, migration and survival. However, the function of PI3K/AKT signaling on osteoblasts and bone homeostasis in vivo is poorly understood. In the current study, we explored the function of Pten and Gab1 genes which are involved in the regulation of PI3K/AKT signaling in osteoblasts and bone metabolism,.
     Pten (phosphatase and tensin homolog deleted from chromosome 10) is an important tumor suppressor, participating in the regulation of diverse cellular biological process by suppressing PI3K/AKT signaling. In this study, we created osteoblast-specific Pten knockout mice (Ptenflox/flox;OC-Cre) using the Cre–LoxP system. We found that Pten mutant mice exhibited osteopetrosis phynotype. We studied the function of Pten in osteoblasts and bone homeostasis and explored the underlying molecular mechanism by combining radiological, histological, cellular and molecular methods.
     Osteoblast-specific Pten mutant mice were obtained by breeding OC-Cre transgenic mice created by ourselves previously with Ptenflox/flox mice. Femurs from Pten mutant mice of both sexes displayed significant increases in bone mineral density (BMD) relative to their wild-type controls at 4 month of age. We performed three-dimensional micro computed tomography (μCT) analysis on femurs from 4-month-old mice. Pten mutant femurs showed pronounced increases in trabecular bone volume in longitudinal section and distal femur region. Trabeculae from mutant femurs were increased and became thicker compared with those of controls. Cortical thickness in the midshaft femurs was increased while bone cavity was decreased significantly. Furthermore, we performed bone histomorphometric analyses of the proximal tibias. Von Kossa staining showed a significantly increased bone volume in the mutant mice. The trabecular bone volume/tissue volume ratio (BV/TV) in tibias of Pten deficient mice was increased relative to that of controls at the age of 4 months. In addition, trabecular thickness (Tb.th) and number of osteoblasts/bone perimeter (N.Ob/B.Pm) were significantly increased in Pten mutants. Double calcein labeling revealed a dramatically increased bone formation rate (BFR) and mineral appositional rate (MAR) in 4-month-old mutant mice compared with controls. These results showed that disruption of Pten in osteoblasts leads to increased bone formation. Additionally, primary calvarial osteoblasts culture exhibited increased bone nodules in Pten mutants compared with controls. We also found that interference of Pten in preosteoblasts increased activation of AKT and accelerated osteoblast differentiation. We next analyzed the osteoclasts using tartrate-resistant acid phosphatase (TRAP) staining. Bone histomorphometric analyses revealed that the number of mature osteoclasts (OcN/BPm) was significantly increased in Pten mutant mice. Real-time PCR analyses displayed that the expression of TRAP and cathepsin K (CathK), which are lysosomal enzymes essential for osteoclastic bone resorption, were markedly increased in femoral bones of Pten mutant mice. These results indicated that disruption of Pten in osteoblasts leads to increased bone resorption. However, the expression levels of osteoprotegerin (OPG) and the ligand receptor activator of NF-κB (RANKL) in serum were comparable between control and Pten mutant mice, indicating that increased osteoclast numbers in Pten mutant mice is driven by other regulator but not by RANKL or OPG. Real time PCR showed that Pten muant bone enhanced expression of the monocyte chemoattractants (MCP-2, MCP-5, SDF-1), which may recruit osteoclast precursors to bone and influence osteoclastogenesis.
     The Grb2-associated binder 1 (Gab1), which serves as a scaffolding adaptor protein, is phosphorylated by diverse receptor tyrosine kinases, and subsequently activate PI3K/AKT and Ras/MAPK (mitogen activated protein kinase) pathways transmitting key signals from cytokine and growth factor. We generated osteoblast-specific Gab1 mutant mice (Gab1flox/flox;OC-Cre) and provided the first evidence that Gab1mutant mice developed osteoporosis. In this study, we showed that the molecular scaffold Gab1 was critical for normal postnatal bone homeostasis verified by combined radiological, histological, cellular and molecular methods. Three-point bending test demonstrated that femurs from Gab1 deficiency mice exhibited decreased biomechanical properties. Bone mineral density (BMD) from femurs of mutant mice is significant decreases relative to that of controls at 2 months and 6.5 months old. Soft x-ray analyses of vertebrae and femora revealed that Gab1 mutant mice exhibited lower bone mineral density than their wild-type littermates at 6.5 months of age.μCT analysis revealed that decreased trabecular bone volume and cortical thickness from Gab1 mutant femurs compared with controls. We also performed analyses about bone formation and bone resorption at 2-month-old proximal tibias. Bone histomorphometric analyses revealed that both bone formation and bone resorption parameters, the trabecular bone volume/tissue volume ratio, the number of osteoblasts/bone perimeter (N.Ob/B.Pm and the percentage of bone surface covered by mature osteoclasts (OcS/BS), were significantly decreased in in Gab1 mutant mice compared with controls. Double calcein labeling revealed a dramatically declined bone formation rate/bone surface (BFR/BS) and mineral appositional rate (MAR) in 2-month-old mutant mice compared with controls. These data showed that Gab1 mutant mice developed low turnover osteoporosis. In vitro primary osteoblasts culture systems showed that Gab1 deficiency in osteoblasts caused three cell autonomous abnormalities: suppressed osteoblast mineralization, increased susceptibility to apoptosis and decreased RANKL expression to support osteoclastogenesis. We also found that interference of Gab1 in preosteoblasts increased susceptibility to apoptosis and decreased osteoblast mineralization. In addition, we found that phosphorylation of AKT and ERK was significantly decreased in mutant osteoblasts under stimulation by IGF-1 and insulin, suggesting that Gab1 has a critical role in mediating insulin and IGF-1 stimulated activation of AKT and ERK in osteoblasts.
     In conclusion, we revealed the physiological functions of Pten and Gab1 genes, which are able to regulate PI3K/AKT pathway by a negative or positive way, in the maintenance of bone homeostasis. The osteoblast-specific Pten knockout mice which developed osteopetrosis and osteoblast-specific Gab1 knockout mice which exhibited osteoporosis will serve as new animal models for further investigation on molecular mechanisms underlying the maintenance of bone homeostasis.
引文
[1] Hernandez, C.J., S.J. Hazelwood, and R.B. Martin, The relationship between basic multicellular unit activation and origination in cancellous bone. Bone, 1999. 25(5): p. 585-7.
    [2] Hauge, E.M., et al., Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res, 2001. 16(9): p. 1575-82.
    [3] Everts, V., et al., The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res, 2002. 17(1): p. 77-90.
    [4] Seeman, E. and P.D. Delmas, Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med, 2006. 354(21): p. 2250-61.
    [5] Tondravi, M.M., et al., Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature, 1997. 386(6620): p. 81-4.
    [6] Winslow, M.M., et al., Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell, 2006. 10(6): p. 771-82.
    [7] Matsuo, K., et al., Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat Genet, 2000. 24(2): p. 184-7.
    [8] Lomaga, M.A., et al., TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999. 13(8): p. 1015-24.
    [9] Mashiba, T., et al., The effects of suppressed bone remodeling by bisphosphonates on microdamage accumulation and degree of mineralization in the cortical bone of dog rib. J Bone Miner Metab, 2005. 23 Suppl: p. 36-42.
    [10] Spurney, R.F., et al., Anabolic effects of a G protein-coupled receptor kinase inhibitor expressed in osteoblasts. J Clin Invest, 2002. 109(10): p. 1361-71.
    [11] Han, Y., et al., Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A, 2004. 101(47): p. 16689-94.
    [12] Mashiba, T., et al., Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res, 2000. 15(4): p. 613-20.
    [13] Aguirre, J.I., et al., Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res, 2006. 21(4): p. 605-15.
    [14] Tatsumi, S., et al., Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab, 2007. 5(6): p. 464-75.
    [15] Balemans, W., et al., Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet, 2001. 10(5): p. 537-43.
    [16] Li, X., et al., Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res, 2008. 23(6): p. 860-9.
    [17] Ellies, D.L., et al., Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res, 2006.21(11): p. 1738-49.
    [18] Li, X., et al., Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res, 2009. 24(4): p. 578-88.
    [19] Komori, T., Regulation of bone development and maintenance by Runx2. Front Biosci, 2008. 13: p. 898-903.
    [20] Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-54.
    [21] Komori, T., et al., Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997. 89(5): p. 755-64.
    [22] Liu, W., et al., Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol, 2001. 155(1): p. 157-66.
    [23] Lee, M.H., et al., Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem, 1999. 73(1): p. 114-25.
    [24] Nakashima, K., et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002. 108(1): p. 17-29.
    [25] D'Alonzo, R.C., et al., Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 2002. 277(1): p. 816-22.
    [26] Tsuboi, M., et al., Tumor necrosis factor-alpha and interleukin-1beta increase the Fas-mediated apoptosis of human osteoblasts. J Lab Clin Med, 1999. 134(3): p. 222-31.
    [27] Xing, L. and B.F. Boyce, Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun, 2005. 328(3): p. 709-20.
    [28] Kawakami, A., et al., Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J Bone Miner Res, 1997. 12(10): p. 1637-46.
    [29] Hill, P.A., A. Tumber, and M.C. Meikle, Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology, 1997. 138(9): p. 3849-58.
    [30] Garcia-Moreno, C., et al., Modulation of survival in osteoblasts from postmenopausal women. Bone, 2004. 35(1): p. 170-7.
    [31] Jilka, R.L., et al., Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res, 1998. 13(5): p. 793-802.
    [32] Bellido, T., et al., Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem, 1998. 273(33): p. 21137-44.
    [33] Hay, E., et al., Bone morphogenetic protein-2 promotes osteoblast apoptosisthrough a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem, 2001. 276(31): p. 29028-36.
    [34] Borton, A.J., et al., The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res, 2001. 16(10): p. 1754-64.
    [35] Zhao, W., et al., Osteocyte and osteoblast apoptosis and excessive bone deposition accompany failure of collagenase cleavage of collagen. J Clin Invest, 2000. 106(8): p. 941-9.
    [36] Jilka, R.L., et al., Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest, 1999. 104(4): p. 439-46.
    [37] Calvi, L.M., et al., Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest, 2001. 107(3): p. 277-86.
    [38] Kameda, T., et al., Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med, 1997. 186(4): p. 489-95.
    [39] Gong, Y., et al., LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 2001. 107(4): p. 513-23.
    [40] Weinstein, R.S., et al., Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest, 1998. 102(2): p. 274-82.
    [41] Ducy, P., et al., Increased bone formation in osteocalcin-deficient mice. Nature, 1996. 382(6590): p. 448-52.
    [42] Delany, A.M., et al., Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology, 2003. 144(6): p. 2588-96.
    [43] Rodan, G.A. and T.J. Martin, Role of osteoblasts in hormonal control of bone resorption--a hypothesis. Calcif Tissue Int, 1981. 33(4): p. 349-51.
    [44] Matsuo, K. and N. Irie, Osteoclast-osteoblast communication. Arch Biochem Biophys, 2008. 473(2): p. 201-9.
    [45] Simonet, W.S., et al., Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997. 89(2): p. 309-19.
    [46] Yasuda, H., et al., Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998. 139(3): p. 1329-37.
    [47] Yasuda, H., et al., Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3597-602.
    [48] Lacey, D.L., et al., Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): p. 165-76.
    [49] Anderson, D.M., et al., A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997. 390(6656): p. 175-9.
    [50] Khosla, S., Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001.142(12): p. 5050-5.
    [51] Hofbauer, L.C. and M. Schoppet, Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. Jama, 2004. 292(4): p. 490-5.
    [52] Glass, D.A., 2nd, et al., Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell, 2005. 8(5): p. 751-64.
    [53] Boyce, B.F., L. Xing, and D. Chen, Osteoprotegerin, the bone protector, is a surprising target for beta-catenin signaling. Cell Metab, 2005. 2(6): p. 344-5.
    [54] Mak, K.K., et al., Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev Cell, 2008. 14(5): p. 674-88.
    [55] Tan, X., et al., Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci, 2007. 120(Pt 13): p. 2162-70.
    [56] Zhao, C., et al., Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab, 2006. 4(2): p. 111-21.
    [57] Boyce, B.F. and L. Xing, Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther, 2007. 9 Suppl 1: p. S1.
    [58] Zhang, J., et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003. 425(6960): p. 836-41.
    [59] Calvi, L.M., et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003. 425(6960): p. 841-6.
    [60] Visnjic, D., et al., Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood, 2004. 103(9): p. 3258-64.
    [61] Lymperi, S., et al., Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood, 2008. 111(3): p. 1173-81.
    [62] Yin, T. and L. Li, The stem cell niches in bone. J Clin Invest, 2006. 116(5): p. 1195-201.
    [63] Arai, F., et al., Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004. 118(2): p. 149-61.
    [64] Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003. 113(6): p. 685-700.
    [65] Schmierer, B. and C.S. Hill, TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol, 2007. 8(12): p. 970-82.
    [66] Geiser, A.G., et al., Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone, 1998. 23(2): p. 87-93.
    [67] Roelen, B.A. and P. Dijke, Controlling mesenchymal stem cell differentiation by TGFBeta family members. J Orthop Sci, 2003. 8(5): p. 740-8.
    [68] Centrella, M., et al., Transforming growth factor-beta gene family members and bone. Endocr Rev, 1994. 15(1): p. 27-39.
    [69] Langdahl, B.L., et al., Polymorphisms in the transforming growth factor beta 1 gene and osteoporosis. Bone, 2003. 32(3): p. 297-310.
    [70] Erlebacher, A. and R. Derynck, Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol, 1996.132(1-2): p. 195-210.
    [71] Rosen, D., et al., Systemic administration of recombinant transforming growth factor beta 2 (rTGF-beta 2) stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone, 1994. 15(3): p. 355-9.
    [72] Lee, K.S., et al., Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol, 2000. 20(23): p. 8783-92.
    [73] Selvamurugan, N., S. Kwok, and N.C. Partridge, Smad3 interacts with JunB and Cbfa1/Runx2 for transforming growth factor-beta1-stimulated collagenase-3 expression in human breast cancer cells. J Biol Chem, 2004. 279(26): p. 27764-73.
    [74] Zhao, M., et al., Bone morphogenetic protein receptor signaling is necessary for normal murine postnatal bone formation. J Cell Biol, 2002. 157(6): p. 1049-60.
    [75] Wu, X.B., et al., Impaired osteoblastic differentiation, reduced bone formation, and severe osteoporosis in noggin-overexpressing mice. J Clin Invest, 2003. 112(6): p. 924-34.
    [76] Kubota, T., T. Michigami, and K. Ozono, Wnt signaling in bone metabolism. J Bone Miner Metab, 2009. 27(3): p. 265-71.
    [77] Huang, H. and X. He, Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol, 2008. 20(2): p. 119-25.
    [78] Richards, J.B., et al., Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet, 2008. 371(9623): p. 1505-12.
    [79] van Meurs, J.B., et al., Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. Jama, 2008. 299(11): p. 1277-90.
    [80] Sawakami, K., et al., The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem, 2006. 281(33): p. 23698-711.
    [81] Babij, P., et al., High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res, 2003. 18(6): p. 960-74.
    [82] Tu, X., et al., Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell, 2007. 12(1): p. 113-27.
    [83] Bennett, C.N., et al., Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res, 2007. 22(12): p. 1924-32.
    [84] Bodine, P.V., et al., The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol, 2004. 18(5): p. 1222-37.
    [85] Li, J., et al., Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone, 2006. 39(4): p. 754-66.
    [86] Li, X., et al., Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet, 2005. 37(9): p. 945-52.
    [87] Day, T.F., et al., Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell, 2005. 8(5): p. 739-50.
    [88] Roux, P.P. and J. Blenis, ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004. 68(2): p. 320-44.
    [89] Xiao, G., et al., Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem, 2002. 277(39): p. 36181-7.
    [90] Xiao, G., et al., Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res, 2002. 17(1): p. 101-10.
    [91] Kwok, S., et al., Mitogen activated protein kinase-dependent inhibition of osteocalcin gene expression by transforming growth factor-beta1. J Cell Biochem, 2009. 106(1): p. 161-9.
    [92] Osyczka, A.M. and P.S. Leboy, Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology, 2005. 146(8): p. 3428-37.
    [93] Chen, C., et al., Impact of the mitogen-activated protein kinase pathway on parathyroid hormone-related protein actions in osteoblasts. J Biol Chem, 2004. 279(28): p. 29121-9.
    [94] Shukla, V., et al., RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet, 2007. 39(9): p. 1145-50.
    [95] Ge, C., et al., Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol, 2007. 176(5): p. 709-18.
    [96] Akiyama, T., et al., Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. Embo J, 2003. 22(24): p. 6653-64.
    [97] Liang, M., G. Russell, and P.A. Hulley, Bim, Bak, and Bax regulate osteoblast survival. J Bone Miner Res, 2008. 23(5): p. 610-20.
    [98] Andrysik, Z., et al., Activation of ERK1/2 and p38 kinases by polycyclic aromatic hydrocarbons in rat liver epithelial cells is associated with induction of apoptosis. Toxicol Appl Pharmacol, 2006. 211(3): p. 198-208.
    [99] Fruman, D.A., R.E. Meyers, and L.C. Cantley, Phosphoinositide kinases. Annu Rev Biochem, 1998. 67: p. 481-507.
    [100] Franke, T.F., et al., Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science, 1997. 275(5300): p. 665-8.
    [101] Waite, K.A. and C. Eng, Protean PTEN: form and function. Am J Hum Genet, 2002. 70(4): p. 829-44.
    [102] Fujita, T., et al., Runx2 induces osteoblast and chondrocyte differentiation andenhances their migration by coupling with PI3K-Akt signaling. J Cell Biol, 2004. 166(1): p. 85-95.
    [103] Zhang, Y., et al., Stimulatory effect of puerarin on bone formation through activation of PI3K/Akt pathway in rat calvaria osteoblasts. Planta Med, 2007. 73(4): p. 341-7.
    [104] Yamamoto, T., et al., Parathyroid hormone activates phosphoinositide 3-kinase-Akt-Bad cascade in osteoblast-like cells. Bone, 2007. 40(2): p. 354-9.
    [105] Bhattacharjee, R., et al., The steady-state expression of connexin43 is maintained by the PI3K/Akt in osteoblasts. Biochem Biophys Res Commun, 2009. 382(2): p. 440-4.
    [106] Chen, W.S., et al., Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev, 2001. 15(17): p. 2203-8.
    [107] Kawamura, N., et al., Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE, 2007. 2(10): p. e1058.
    [108] Yang, G., et al., PTEN deficiency causes dyschondroplasia in mice by enhanced hypoxia-inducible factor 1alpha signaling and endoplasmic reticulum stress. Development, 2008. 135(21): p. 3587-97.
    [109] Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7.
    [110] Cantley, L.C. and B.G. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A, 1999. 96(8): p. 4240-5.
    [111] Ali, I.U., L.M. Schriml, and M. Dean, Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst, 1999. 91(22): p. 1922-32.
    [112] Di Cristofano, A., et al., Pten is essential for embryonic development and tumour suppression. Nat Genet, 1998. 19(4): p. 348-55.
    [113] Chow, L.M. and S.J. Baker, PTEN function in normal and neoplastic growth. Cancer Lett, 2006. 241(2): p. 184-96.
    [114] Gu, H. and B.G. Neel, The "Gab" in signal transduction. Trends Cell Biol, 2003. 13(3): p. 122-30.
    [115] Weidner, K.M., et al., Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature, 1996. 384(6605): p. 173-6.
    [116] Maroun, C.R., et al., The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol, 1999. 19(3): p. 1784-99.
    [117] Liu, Y. and L.R. Rohrschneider, The gift of Gab. FEBS Lett, 2002. 515(1-3): p. 1-7.
    [118] Songyang, Z., et al., SH2 domains recognize specific phosphopeptide sequences. Cell, 1993. 72(5): p. 767-78.
    [119] Mood, K., et al., Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic met receptor. Mol Biol Cell, 2006. 17(9): p. 3717-28.
    [120] Itoh, M., et al., Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol, 2000. 20(10): p. 3695-704.
    [121] Bard-Chapeau, E.A., et al., Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med, 2005. 11(5): p. 567-71.
    [122] Jin, Z.G., et al., Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem, 2005. 280(13): p. 12305-9.
    [123] Nakaoka, Y., et al., Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. J Clin Invest, 2007. 117(7): p. 1771-81.
    [124] Gu, H., et al., Essential role for Gab2 in the allergic response. Nature, 2001. 412(6843): p. 186-90.
    [125] Nishida, K., et al., Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood, 2002. 99(5): p. 1866-9.
    [126] Wada, T., et al., The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med, 2005. 11(4): p. 394-9.
    [127] Boyce, B.F., et al., Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest, 1992. 90(4): p. 1622-7.
    [128] Scheid, M.P. and J.R. Woodgett, PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol, 2001. 2(10): p. 760-8.
    [129] Ghosh-Choudhury, N., et al., Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem, 2002. 277(36): p. 33361-8.
    [130] Peng, X.D., et al., Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev, 2003. 17(11): p. 1352-65.
    [131] Liu, X., et al., Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc Natl Acad Sci U S A, 2007. 104(7): p. 2259-64.
    [132] Kearns, A.E., S. Khosla, and P.J. Kostenuik, Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev, 2008. 29(2): p. 155-92.
    [133] Votta, B.J., et al., CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues. J Cell Physiol, 2000. 183(2): p. 196-207.
    [134] Sarafi, M.N., et al., Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J Exp Med, 1997. 185(1): p. 99-109.
    [135] Itoh, S., et al., Gab2 plays distinct roles in bone homeostasis at different time points. J Bone Miner Metab, 2007. 25(2): p. 81-5.
    [136] Holgado-Madruga, M., et al., Grb2-associated binder-1 mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12419-24.
    [137] Korhonen, J.M., et al., Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells. J Biol Chem, 1999. 274(52): p. 37307-14.
    [138] Yang, W., et al., An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell, 2006. 10(3): p. 317-27.
    [139] Kiyatkin, A., et al., Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem, 2006. 281(29): p. 19925-38.
    [140] Holmen, S.L., et al., Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem, 2005. 280(22): p. 21162-8.
    [141] Hofbauer, L.C., et al., Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun, 1998. 250(3): p. 776-81.
    [142] Okamoto, M., et al., Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res, 2006. 21(7): p. 1022-33.
    [143] Canalis, E., Insulin like growth factors and the local regulation of bone formation. Bone, 1993. 14(3): p. 273-6.
    [144] Fulzele, K., et al., Disruption of the insulin-like growth factor type 1 receptor in osteoblasts enhances insulin signaling and action. J Biol Chem, 2007. 282(35): p. 25649-58.
    [145] Miyakoshi, N., et al., Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology, 2001. 142(10): p. 4349-56.
    [146] Zhang, M., et al., Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem, 2002. 277(46): p. 44005-12.
    [147] Ogata, N., et al., Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest, 2000. 105(7): p. 935-43.
    [148] Niu, T. and C.J. Rosen, The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene, 2005. 361: p. 38-56.
    1. Roux, P.P. and J. Blenis, ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004. 68(2): p. 320-44.
    2. Franceschi, R.T., et al., Transcriptional regulation of osteoblasts. Cells Tissues Organs, 2009. 189(1-4): p. 144-52.
    3. Matsuo, K. and N. Irie, Osteoclast-osteoblast communication. Arch Biochem Biophys, 2008. 473(2): p. 201-9.
    4. Civitelli, R., Cell-cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys, 2008. 473(2): p. 188-92.
    5. Hurley, M.M., et al., Signal transduction by basic fibroblast growth factor in rat osteoblastic Py1a cells. J Bone Miner Res, 1996. 11(9): p. 1256-63.
    6. Xiao, G., et al., Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem, 2002. 277(39): p. 36181-7.
    7. Chen, C., et al., Impact of the mitogen-activated protein kinase pathway on parathyroid hormone-related protein actions in osteoblasts. J Biol Chem, 2004. 279(28): p. 29121-9.
    8. Xiao, G., et al., Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res, 2002. 17(1): p. 101-10.
    9. You, J., et al., Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem, 2001. 276(16): p. 13365-71.
    10. Schindeler, A. and D.G. Little, Ras-MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res, 2006. 21(9): p. 1331-8.
    11. Kwok, S., et al., Mitogen activated protein kinase-dependent inhibition of osteocalcin gene expression by transforming growth factor-beta1. J Cell Biochem, 2009. 106(1): p. 161-9.
    12. Chaudhary, L.R. and L.V. Avioli, Extracellular-signal regulated kinase signaling pathway mediates downregulation of type I procollagen gene expression by FGF-2, PDGF-BB, and okadaic acid in osteoblastic cells. J Cell Biochem, 2000. 76(3): p. 354-9.
    13. Bai, X.C., et al., Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun, 2004. 314(1): p. 197-207.
    14. Osyczka, A.M. and P.S. Leboy, Bone morphogenetic protein regulation of early osteoblast genes in human marrow stromal cells is mediated by extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling. Endocrinology, 2005. 146(8): p. 3428-37.
    15. Rodriguez, J.P., et al., Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporoticpostmenopausal women. J Cell Biochem, 2004. 92(4): p. 745-54.
    16. Nakayama, K., et al., Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J Bone Miner Res, 2003. 18(5): p. 827-35.
    17. Higuchi, C., et al., Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res, 2002. 17(10): p. 1785-94.
    18. Hu, Y., et al., Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology, 2003. 144(5): p. 2068-74.
    19. Lai, C.F., et al., Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem, 2001. 276(17): p. 14443-50.
    20. Khatiwala, C.B., et al., ECM Compliance Regulates Osteogenesis by Influencing MAPK Signaling Downstream of RhoA and ROCK. J Bone Miner Res, 2008.
    21. Bokui, N., et al., Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett, 2008. 582(2): p. 365-71.
    22. Naganawa, T., et al., Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem, 2008. 103(6): p. 1975-88.
    23. Lee, S.W., et al., TGF-beta2 stimulates cranial suture closure through activation of the Erk-MAPK pathway. J Cell Biochem, 2006. 98(4): p. 981-91.
    24. Shukla, V., et al., RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet, 2007. 39(9): p. 1145-50.
    25. Fu, L., et al., Stimulation of osteogenic differentiation and inhibition of adipogenic differentiation in bone marrow stromal cells by alendronate via ERK and JNK activation. Bone, 2008. 43(1): p. 40-7.
    26. Yasutomi, C., et al., [Anti-osteopenic effect of taurine: possible involvement of activated MEK-ERK-Cbfa1 signaling]. Nippon Yakurigaku Zasshi, 2002. 120(1): p. 114P-115P.
    27. Chen, T.H., et al., Sodium butyrate activates ERK to regulate differentiation of mesenchymal stem cells. Biochem Biophys Res Commun, 2007. 355(4): p. 913-8.
    28. Ducy, P., et al., Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-54.
    29. Franceschi, R.T., et al., Transcriptional regulation of osteoblasts. Ann N Y Acad Sci, 2007. 1116: p. 196-207.
    30. Xiao, G., et al., MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem, 2000. 275(6): p. 4453-9.
    31. Suzawa, M., et al., Stimulation of Smad1 transcriptional activity by Ras-extracellular signal-regulated kinase pathway: a possible mechanism forcollagen-dependent osteoblastic differentiation. J Bone Miner Res, 2002. 17(2): p. 240-8.
    32. Ge, C., et al., Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol, 2007. 176(5): p. 709-18.
    33. Akiyama, T., et al., Regulation of osteoclast apoptosis by ubiquitylation of proapoptotic BH3-only Bcl-2 family member Bim. Embo J, 2003. 22(24): p. 6653-64.
    34. Weston, C.R., et al., Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene, 2003. 22(9): p. 1281-93.
    35. Yang, W., et al., An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell, 2006. 10(3): p. 317-27.
    36. Liang, M., G. Russell, and P.A. Hulley, Bim, Bak, and Bax regulate osteoblast survival. J Bone Miner Res, 2008. 23(5): p. 610-20.
    37. Uzan, B., et al., Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J Cell Physiol, 2008. 215(1): p. 122-8.
    38. Zhuang, S. and R.G. Schnellmann, A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 2006. 319(3): p. 991-7.
    39. Kim, S.H., et al., Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol, 2006. 215(2): p. 198-207.
    40. Nam, T.W., et al., The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts. J Bone Miner Metab, 2008. 26(6): p. 551-60.
    41. Hatton, J.P., et al., A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway. J Bone Miner Res, 2003. 18(1): p. 58-66.
    42. Li, C.F. and M. Hughes-Fulford, Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells. J Bone Miner Res, 2006. 21(6): p. 946-55.
    43. Pan, Z., et al., Effects of hindlimb unloading on ex vivo growth and osteogenic/adipogenic potentials of bone marrow-derived mesenchymal stem cells in rats. Stem Cells Dev, 2008. 17(4): p. 795-804.
    44. Li, J.L., et al., NMDA enhances stretching-induced differentiation of osteoblasts through the ERK1/2 signaling pathway. Bone, 2008. 43(3): p. 469-75.
    45. Kim, S.H., et al., ERK 1/2 activation in enhanced osteogenesis of human mesenchymal stem cells in poly(lactic-glycolic acid) by cyclic hydrostatic pressure. J Biomed Mater Res A, 2007. 80(4): p. 826-36.
    46. Costessi, A., et al., Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanicalstress and osteoblasts' response. Bone, 2005. 36(3): p. 418-32.
    47. Shaul, Y.D. and R. Seger, The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 2007. 1773(8): p. 1213-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700