基于DTN的空间综合信息网络关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国航天事业进入飞速发展期,以往传统的空间信息传输方式已不能满足复杂空间操作的需求,因特网服务的全球拓展和向地球外层空间的延伸是网络技术发展的必然趋势。我国的空间信息传输网络建设发展滞后,主要表现在星上、星地和地面三部分传输协议尚未进行一体化设计,不同卫星与地面之间采用的传输协议各不相同,且大多都是专用协议,在开展空间任务时需要进行星地之间的协议转换,协议之间的互操作效率较低;造成系统的兼容性和可靠性较差,浪费了许多不必要的人力、物力资源。与此同时,由于缺少符合国际标准的空间信息传输协议,更不利于将来与国际航天机构进行合作交流。针对我国航天测控网的实际发展情况,研究建立一个空天地一体化的互联互通网络,可以为航天信息的获取、存储和分发提供统一的平台,促进航天信息的统一管理、高效共享和综合利用,对国防信息化建设将起到不可估量的促进作用,因此,空间信息网络已成为近年来网络领域的重要研究热点之一。
     空间信息网具有航天器节点高速运动、网络拓扑不断变化、信息传输的延时大、误码率高、链路频繁断开等不同于陆地网络的特点,给网络建设带来了新的挑战。为加快我国空间信息传输网络体系架构的建设,需要研究当前国际航天大国的空间信息系统的先进理论。容延迟网络(Delay-tolerant networks, DTN)是提供跨越间歇、中断、动态网络的可靠消息传递的网络协议,在受限网络条件下应用时具备良好的自然属性。为此,本论文研究基于DTN的空间综合信息网络的网络体系结构,研究符合我国实际情况的空间信息传输网络协议体系结构及其关键技术,为我国空间网络建设提供一定的技术支持。
     本文所做主要工作和贡献如下:
     1.提出了适于我国实际的基于DTN的空间信息网络协议体系结构。并利用规范说明与描述语言SDL对Bundle协议进行了详细描述与设计,给出了协议设计的系统图、模块图、进程图及过程图。然后在Telelogic Tau平台下使用SDL Suit对所实现的Bundle协议系统进行了仿真验证。最后使用TTCN Suite对协议系统进行了一致性测试,测试表明用SDL语言设计的Bundle协议系统与Bundle协议规范RFC5050是一致的。协议的实现与仿真验证结果证明,用SDL描述语言进行通信协议设计可以保证协议的逻辑正确性,有效地缩短协议开发周期。
     2.设计了DTN网关。在OPNET仿真平台下对空间DTN网关进行了建模,并对基于DTN网关的空间卫星网络进行仿真。仿真结果表明,DTN网关能够显著降低由于网络链路频繁中断导致的丢包率,增强通信的可靠性,表现出良好的适用性。为进一步验证星DTN网关对星地间信息传输的有效性,设计了半物理仿真方案,实验表明在极端的链路情况下(即不存在通信链路时),DTN网关可以对通信数据进行保管,并在通信链路出现时再将这些数据发送出去,从而大大降低了丢包率,提高了通信的可靠性,进一步证明了DTN网络在我国空间信息网络中应用的可行性与必要性。
     3.提出了多拷贝混合型最大吞吐量HMMT接触路由算法。
     CGR路由非常适合在链路可预测的空间DTN网络场景进行部署。但是,CGR路由中消息是按照单副本路由转发,同一时间网络中只有一个节点携带同一消息,算法降低了网络开销,但可靠性相对较低。同时,CGR中路由算法是逐跳路由,而且在路由中仅仅考虑本地节点的状态知识,搜索最小代价路由,未考虑链路的连通时序与吞吐量的关系。
     HMMT路由算法结合洪泛式路由策略与计算转发路由策略的思想,根据卫星运行规律可预知的特征建立时间图模型,由建立的时间图模型产生具有顶点和边的拓扑图,依据链路的连通时序与吞吐量,以增加消息转发的可靠性和最大化路径吞吐量为目标计算消息转发路由,并通过基于OPNET的多星组网仿真验证了算法的有效性。
     4.提出了空间信息系统传输控制协议初步配置建议。本文深入分析研究了目前各种主要的空间信息传输协议,比较检验这些传输协议在空间链路中的有效性。选取部分代表性协议Vegas、Cubic、Hybla、SCPS-TP和LTP,采用网络仿真器模拟星地链路、PC模拟飞行器和地面站终端,对这些传输协议的性能进行了分析,在此基础上提出了我国空间信息网传输层协议的初步配置建议,为后续协议的优化提供指导。
The traditional spatial information transmission cannot meet the needs of complex spatial operations due to the current rapid development of China's aerospace industry.Global expansion and extension of Internet services to the outer space is the inevitable trend of development of network technology. China's space information transmission network construction and development lags behind, owing to the lack of the integrated design of satellite, satellite-ground and ground transmission protocols. Transport protocols vary differently between different satellites and ground, and most of them are proprietary protocols,protocol conversion between the satellite and the ground are required in carrying out space missions. The interoperability between protocols shows low efficiency, resulting in the poor system compatibility and reliability and waste of unnecessary human and material resources.At the same time, the lack of spatial information transfer protocol in compliance with international standards impedes the future cooperation with international space agencies.In view of the actual development of Telemetry, Tracking&Command network, the establishment of an Space-Air-Ground interconnection network is necessary for providing a unified platform for aerospace information acquisition, storage and distribution and facilitating unified management of space information, efficient sharing and utilization, and playing an invaluable role in national defense information construction. Therefore, spatial information network has become an important field of research in recent years.
     Spatial Information Network is characterized by high speed motion of spacecraft, constantly changing network topology, long information transmission delay, large error rate and link frequent disconnection,which is different from terrestrial networks and has brought new challenges to network construction. To speed up the construction of space information transmission network architecture, it is necessary to study the current international space powers' advanced theory of spatial information systems.DTN is a new network architecture which can provide reliable messaging cross intermittent, interruption, dynamic network and have good natural attributes under challenged network conditions. To offer some technical support for the construction of China's space network, integrated information network architecture based on DTN and spatial information transmission network protocol architecture and key technologies that are in line with China's actual situation is studied in this paper. The primary work and contributions are as follows:
     1. Spatial information network protocol architecture based on DTN is proposed. Bundle protocol is described and designed in detail using specification and description language (SDL), and system diagram, block diagram, process diagram and process diagram of protocol design are provided.Then the accomplished bundle protocol is simulated and verified using the SDL Suit based on Telelogic Tau platform. Finally, consistency testing for the accomplished bundle protocol is conducted with the TTCN Suite and results have shown that the Bundle protocol system realized is consistent with the bundle protocol specification, RFC5050.Protocol implementation and simulation results have shown that using the SDL description language for communication protocol design can guarantee logical correctness of protocol and effectively shorten the protocol development cycle.
     2. DTN gateway is designed. Modeling of space DTN gateway and the simulation of space satellite network based on DTN gateway is done under the OPNET simulation platform. Simulation results have shown that DTN can significantly reduce packet loss rate due to the frequent interruption of network link, enhancing the reliability of communication and showing a good applicability. In order to verify the applicability of DTN gateway for the information transmission between the satellite and the ground, a semi-physical simulation program is implemented and experimental results have shown that the DTN gateway can keep the communication data the link in extreme circumstances (i.e. there is no communication link), and resend the data when the communication link appears, thus greatly reducing the dropout rate and improving the reliability of communication. Thus, feasibility and necessity of the DTN network in China's space information network are further validated.
     3.A hybrid multiple copies maximum throughput contact based routing algorithm-HMMT is presented.
     CGR routing is ideal for deployment DTN network scenarios where the links are predictable. However, messages are forwarded with a single copy in the CGR routing, at one time only one node in the network will carry the message. This algorithm reduces network overhead, but the reliability is relatively low. Meanwhile, CGR routing algorithm is a hop by hop route, and only considers the knowledge state in the local node, and searches least cost routing without considering the relationship between timing and throughput.
     HMMT routing algorithm integrates the idea of flooding routing and computing forwarding routing policy, and establishes a predictable time graph model based on the satellite operation rules, and generates a topology map of vertices and edges, calculates routes for the sake of promoting the reliability and maximizes path message forwarding throughput based on the time series and throughput, and validates the effectiveness of the algorithm based on multi-satellite network simulation using OPNET.
     4.Preliminary configuration recommendations for transport layer protocol of spatial information systems are presented. This paper deeply analyzed the current major spatial information transport protocols and compared their effectiveness in space links. Some representative transport protocols such as Vegas, Cubic, Hybla, SCPS-TP and LTP are analyzed using network simulator to simulate satellite link, PCs to simulate aircraft and ground station terminals. Preliminary configuration recommendations for spatial information network are proposed on this basis, providing guidance for the subsequent protocol optimization.
引文
[1]Fall K. A delay-tolerant network architecture for challenged Internets. In:Proc. of the ACM SIGCOMM. Karlsruhe:ACM Press,2003.27-34.
    [2]WRIGHT G R, STEVENS W R. TCP/IP详解:卷1协议.范建华,胥光辉,张涛,等译.北京:机械工业出版社,2000.
    [3]Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein AD. Energy-Efficient computing for wildlife tracking:design tradeoffs and early experiences with zebranet. ACM SIGOPS Operating Systems Review,2002,36(5):96-107.
    [4]Wu H, Fujimoto R, Hunter M, Guensler R. MDDV:A mobility-centric data dissemination algorithm for vehicular networks. In:Proc. of the ACM SIGCOMM Workshop on Vehicular Ad Hoc Networks (VANET 2004). Philadelphia:ACM Press,2004.47-56.
    [5]Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B, Scott K. Delay-Tolerant networking:An approach to interplanetary Internet. IEEE Communications Magazine, 2003,41(6):128-136.
    [6]Krishnan R, Basu P, Mikkelson JM, Small C, Ramanathan R. The SPINDLE disruption-tolerant networking system. In:Proc. of the MILCOM 2007. Orlando:IEEE Computer Society,2007.1-7.
    [7]Erramilli V, Chaintreau A, Crovella M, Christophe D. Diversity of forwarding paths in pocket switched networks. In:Proc. of the 7th ACM SIGCOMM Conf. on Internet Measurement (IMC). San Diego:ACM Press,2007.161-174.
    [8]Partan J, Kurose J, Levine BN. A survey of practical issues in underwater networks. SIGMOBILE Mobile Computing Communications Review,2007,11(4):23-33.
    [9]Nichols RA, Jr Hammons AR. Performance of DTN-based free-space optical networks with mobility. In:Proc. of the MILCOM. Orlando:IEEE Communications Society,2007.1-6.
    [10]Seth A, Kroeker D, Zaharia M, Guo S, Keshav S. Low-Cost communication for rural internet kiosks using mechanical backhaul. In:Proc. of the ACM MobiCom 2006. Los Angeles:ACM Press,2006.334-345.
    [11]Disruption tolerant networking (DTN).2008. http://www.darpa.mil/sto/solicitations /DTN/index.htm.
    [12]Fall K. A message-switched architecture for challenged Internets. Technical Report, IRB-TR-02-010, Intel Research at Berkeley,2002.
    [13]Farrell S, Cahill V, Geraghty D, Humphreys I, MrDonald P. When TCP breaks delay-and disruption-tolerant networking. Internet Computing,2006,10(4):72-78.
    [14]Sadagopan N, Bai F, Krishnamachari B, Helmy A. Paths:Analysis of path duration statistics and their impact on reactive manet routing protocols. In:Proc. of the ACM MOBIHOC 2003. Annapolis:ACM Press,2003.245-256.
    [15]Delay tolerant networking research group.2009. http://www.dtnrg.org.
    [16]Lin C, Lei L. Research on next generation Internet architecture. Chinese Journal of Computers,2007,30(5):693-711 (in Chinese with English abstract).
    [17]Braden R, Clark D, Shenker S. Developing a next generation Internet architecture.2002. http://www.isi.edu/newarch/DOCUMENTS/WhitePaper.pdf.
    [18]The networking and information technology research and development program -Supplement to the president's budget for fiscal year 2010.2009.http://www.nitrd.gov/pubs/IFY10Supp-FINALFormat-Web.pdf.
    [19]沈荣骏.我国天地一体化航天互联网构想.中国工程科学.2006.V01.8 No.10.19-30. [SHEN Rong-jun.Some thoughts of Chinese integrated space-ground network system[J]. Engineering Science,2006.8(10):19-30].
    [20]Levin, Robert E. (2003-12-04). "Space Acquisitions:Committing Prematurely to the Transformational Satellite Program Elevates Risks for Poor Cost, Schedule, and Performance Outcomes". U.S. Government Accountability Office. Retrieved 2011-01-01.
    [21]Ian F. Akyildiz, Ozgur B. Akan, Chao Chen, et al, "InterPlaNetary Internet:State-of-the-Art and Research Challenges", Computer Networks,2003,43(2):75-112.
    [22]Richard Schnur.NASA/GSFC Space Internet:Extending Internet Technology Into Space.
    [23]Rash, J., Hogie, K., Internet technology for future space missions, Computer Networks, VO1.47, No.5, Elsevier,2005.
    [24]James Noles, Keith Scott, Howard Weiss, Next-Generation Space Internet, ESTC Conference, August 2001, College Park, MD.
    [25]Tahboub, O. Y., Khan, J. L, A Critical Design Evaluation of the Next Generation Space Network Architectures, technical report TR-2007-09-01, Medianet Lab, July,2007.
    [26]"Space Communications and Navigation (SCaN) Integrated Network Architecture Definition Document (ADD) Volume 1:Executive Summary", NASA Report,2010.
    [27]石卫平.聚焦2001:世界航天系统发展综述.装备参考.2002.38.(6):1-7.
    [28]CCSDS, Consultative Committee for Space Data Systems:http://www.ccsds.org.
    [29]Robert Tye, Tara Wright, "Near Earth Network Support to Constellation Program Launch and Ascent", NASA Mars SpaceOps 2010 Conference, Alabama,2010.
    [30]T. Ryan, K. Lenhart, H. Hara, "Space Network Interoperability Panel (SNIP) Study", AIAA 30th Aerospace Sciences Meeting and Exhibit,1992.
    [31]C. Borden, Y. Yang, G. Fox, "Planning and Scheduling User Services for NASA's Deep Space Network",1997 International Conference on Planning and Scheduling for Space Exploration and Science,1997.
    [32]Bergamo M. AS., High-Throughput Distributed Spacecraft Network:architecture and multiple access technologies, Computer Networks, VO1.47, No.5, Elsevier,2005.
    [33]Omar Y. Tahboub, Javed I. Khan, Recent Developments in Space Communication Architectures, Media Communications and Networking Research Laboratory, Kent State University.
    [34]Cerf,V, Burleigh, S., Hooke, A., Delay-Tolerant Network Architecture, DTN Research Group Internet Draft, March 2003.
    [35]F. Warthman,Delay Tolerant Networks(DTNs),tech. report, Warthman Associates, Mar 2003.
    [36]Rajesh Krishnan, Prithwish Basu, Joanne M. Mikkelson, The SPINDLE Disruption-Tolerant Networking System, Proceedings of IEEE MILCOM 2007, Orlando, USA, October 2007.
    [37]Maurice J. Khabbaz, Chadi M. Assi, and Wissam F. Fawaz, Disruption-Tolerant Networking: A Comprehensive Survey on Recent Developments and Persisting Challenges, IEEE Communications Surveys & Tutorials, Vol.14, No.2, Second Quarter 2012.
    [38]Cerf V. et al.Delay-Tolerant Network Architecture,IETF RFC 4838,informational,April 2007.
    [39]Scott. K, Burleigh. S, Bundle Protocol Specification, IETF RFC 5050, experimental, November 2007.
    [40]Burleigh. S. et al., Licklider Transmission Protocol-Motivation, IETF RFC 5325, informational, September 2008.
    [41]Ramadas. M. et al., Licklider Transmission Protocol-Specification, IETF RFC 5326, experimental, September 2008.
    [42]Farrell. S. et al., Licklider Transmission Protocol-Security Extensions, IETF RFC 5327, experimental, September 2008.
    [43]W Ivancic, W Eddy, etc. Delay/Disruption-Tolerant Network Testing Using a LEO Satellite[C]. Eighth Annual NASA Earth Science Technology Conference (ESTC 2008), University of Maryland, June 2008.
    [44]W Ivancic, P Paulsen, etc. Large File Transfers from Space using Multiple Ground Terminals and Delay-Tolerant Networking[C], IEEE Global Communications Conference (Globecom 2010), Miami, Florida, December 2010.
    [45]J Wyatt, S Burleigh, etc. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission.1st Int. Conference on Advances in Satellite and Space Communications,2009.
    [46]A Jenkins, S Kuzminsky, etc. Delay/Disruption-Tolerant Networking:Flight test results from the international space station[C].2010 IEEE Aerospace Conference, Big Sky, MT,2010:1-8.
    [47]Jain S, Fall K, Patra R.Routing In A Delay Tolerant Network[C]//Proc of Sigcomm.. New York:ACM Press,2004:145-157.
    [48]Jones E, Ward P.Routing Strategies For Delay-Tolerant Networks[C]//Proc of International Conference On Wireless Communications And Mobile Computing.2006.
    [49]Spyropoulos T, Rais R, Turletti T, et al.Routing For Disruption Tolerant Networks:Taxonomy And Design [J]. Wireless Networks,2010,16(8):2349-2370.
    [50]Fall K, Farrell S.DTN:an architectural retrospective [J].IEEE Journal on Selected Areas in Communications,2008,26(5):828-836.
    [51]Brakmo L S, Peterson L L. TCP Vegas:End to end congestion avoidance on a global Internet[J]. Selected Areas in Communications, IEEE Journal on,1995,13(8):1465-1480.
    [52]Ha S, Rhee I, Xu L. CUBIC:a new TCP-friendly high-speed TCP variant[J]. ACM SIGOPS Operating Systems Review,2008,42(5):64-74.
    [53]Caini C, Firrincieli R. TCP Hybla:a TCP enhancement for heterogeneous networks[J]. International Journal of Satellite Communications and Networking,2004,22(5):547-566.
    [54]Stewart R, Xie Q, et al. Stream control transmission protocol IETF RFC2960[J].2007.
    [55]Henderson T R, Katz R H. Transport protocols for Internet-compatible satellite networks[J]. Selected Areas in Communications, IEEE Journal on,1999,17(2):326-344.
    [56]张民,罗光春,王俊峰等.空间信息网络可靠传输协议研究[J].通信学报,2008,29(6):63-68.
    [57]Burlacu M M, Kohlenberg J, Zidani H, et al. Performance Study of eXtended Satellite Transport Protocol over Satellite Networks[C]//Advances in Satellite and Space Communications (SPACOMM),2010 Second International Conference on. IEEE,2010:116-121.
    [58]Akyildiz I F, Morabito G, Palazzo S. TCP-Peach:a new congestion control scheme for satellite IP networks[J]. IEEE/ACM Transactions on Networking (TON),2001,9(3):307-321.
    [59]Akan O B, Fang J, Akyildiz I F. TP-Planet:a reliable transport protocol for InterPlaNetary Internet[J]. Selected Areas in Communications, IEEE Journal on,2004,22(2):348-361.
    [60]Obata H, Takeuchi S, Ishida K. A new TCP congestion control method considering adaptability over satellite Internet[C]//Distributed Computing Systems Workshops,2005.25th IEEE International Conference on. IEEE,2005:75-81.
    [61]Casetti C, Gerla M, Mascolo S, et al. TCP Westwood:end-to-end congestion control for wired/wireless networks[J]. Wireless Networks,2002,8(5):467-479.
    [62]Katabi D, Handley M, Rohrs C. Congestion control for high bandwidth-delay product networks[C]//ACM SIGCOMM Computer Communication Review. ACM,2002,32(4):89-102.
    [63]Kaiyu Zhou, Kwan L. Yeung,Victor O.K. Li. P-XCP:A Transport Layer Protocol for Satellite IP Networks[C]//Global Telecommunications Conference,2004. GLOBECOM'04. IEEE.2004,5:2707-2711.
    [64]Xia Y, Subramanian L, Stoica I, et al. One more bit is enough[C]//ACM SIGCOMM Computer Communication Review. ACM,2005,35(4):37-48.
    [65]Taleb T, Kato N, Nemoto Y. REFWA:an efficient and fair congestion control scheme for LEO satellite networks[J]. IEEE/ACM Transactions on Networking (TON),2006,14(5): 1031-1044.
    [66]Space Communication Protocol Specification Transport Protocol (SCPS-TP) [S]. CCSDS 713.0-B-1.2006.
    [67]Luglio M, Sanadidi M Y, Gerla M, et al. On-board satellite[J]. Selected Areas in Communications, IEEE Journal on,2004,22(2):362-370.
    [68]BORDER J, KOJO M, GRINER J. RFC3135[J]. Performance enhancing proxies intended to mitigate link-related degradations,2001.
    [69]Marchese M, Rossi M, Morabito G. PETRA:Performance enhancing transport architecture for satellite communications[J]. Selected Areas in Communications, IEEE Journal on,2004,22(2): 320-332.
    [70]Burleigh S, Ramadas M, Farrell S. Licklider Transmission Protocol-Motivation[J]. IETF Request for Comments RFC,2008,5325.
    [71]CCSDS File Delivery Protocol (CFDP)-partl:Introduction and Overview:Green Book[Z]. Washington, D. C, USA:Consultative Committee for Space Data System,2007.
    [72]王堃,于悦,张玉华,郭篁,王琳琳.DTN网络中的基于Bundle协议的数据包发算法.吉林大学学报(工学版)’Vol.42 Sup.1Sept.2012:285-289.
    [73]侯君婷.简析DTN网络与传统网络的区别[J].电信快报.2010年04期:44-46.
    [74]李向群,刘立祥,胡晓惠等.延迟中断可容忍网络研究进展[J].计算机研究发展.2009.1270-1277.
    [75]樊秀梅,单志广,张宝贤等.容迟网络体系结构及其关键技术研究[J].电子学报2008.01,Vol.36,NO.1:161-170.
    [76]苏金树,胡乔林,赵宝.容延容断网络路由技术[J].软件学报2010.01, Vol.21,No.1:119-132.
    [77]樊秀梅,李杨.容迟/容断网络路由技术研究[J].中兴通讯技术.2009年,第6期37-40.
    [78]郑炜,王澄.延迟容忍网络中的路由算法研究[J].信息技术.2007年,第7期68-70.
    [79]叶建设,宋世杰,沈荣骏.深空通信DTN应用研究[J].宇航学报.2010年,第4期:941-949.
    [80]陈宇,孟新,张磊.空间信息网络协议体系分析.计算机技术与发展Vol.22 No.6 2012:1-5.
    [81]于志坚.深空测控通信系统.北京:国防工业出版社,2009.5.
    [82]卢昱.空间信息对抗.北京:国防工业出版社,2009.1.
    [83]Keith Hogie,EdCriscuolo,RonParise.Usingstandard intemet protocols and applications in space[J].Computer Networks,2005.47(5):603-650.
    [84]Space Communications Protocol Standards(SCPS).http://www.seps.org.
    [85]Consultative Committee for Space Data Systems,TM Space Data Link Protocol[S].CCSDS 132.0-B-1,2003.
    [86]Consultative Committee for Space Data Systems.TC Space Data Link Protocol[S].CCSDS 232.0-B-1, September2003.
    [87]Consultative Committee for Space Data Systems, AOS Space Data Link Protocol[S].CCSDS 732.0-B-2, July 2006.
    [88]Consultative Committee for Space Data Systems, Proximity-1 Space Link Protocol-Data Link Layer[S].CCSDS211.0-B-4, July 2006.
    [89]IP OVER CCSDS SPACE LINKS[S]. CCSDS 702.1-R-3.2008.
    [90]Encapsulation Service.CCSDS133.1-B-2.2009.
    [91]CCITT建议Z.100功能规格和描述语言SDL[S]蓝皮书,1996.
    [92]http://stupid.domain.name/ietf/draft-irtf-dtnrg-tcp-clayer-02.xml.
    [93]SCHICKLER M,MAZER M,BROOKS C. Pan- browser support for annotations and other mem-information on the world wide web [A].Proceedings of fifth international World Wide Web Conference on Computer networks and ISDN systems[C].1996.1063-1074.
    [94]VOYIATZIS A. A Survey of Delay and Disruption-Tolerant Networking Applications[J]. Journal of Internet Engineering,2012,5(1):331-344.
    [95]NICHOLS K, HOLBROOK M, PITTS R, et al. DTN Implementation and Utilization Options
    on the International Space Station[A], SpaceOps 2010 Conference[C],2010.25-30.
    [96]MUKHERJEE J,RAMAMURTHY B. Communication Technologies and Architectures for Space Network and Interplanetary Internet[J]. IEEE Communications Surveys & Tutorials,2013, 15(2):881-883.
    [97]HE F X, YAO L, LIU Q. Research of Buddle Protocol of Deep Space Sensor Network Based on DTN [A].2012 Fourth International Conference on Multimedia Information Networking and Security[C],2012.604-607.
    [98]DEMMER M, BREWER E, et al. Implementing delay-tolerant Networking[EB/OL].2004.
    [99]陈敏.OPNET网络仿真.北京:清华大学出版社,2004.
    [100]Space Link Identifiers.CCSDS135.0-B-4.2009.
    [101]杨颖,王琦.STK在计算机仿真中的应用.北京:国防工业出版社,2005.
    [102]Wemer M. Del ucchi C. V ogel H.. ATM-based routing in LEO/MEO satellite networks with intersatellite links. I EEE Journal on Selected Areas i n Communications 1997,15(1):69-82.
    [103]Gounder V.,Prakash R.. Routing in LEO-based satellite networks. In Proceedings of IEEE Emerging Technologies Symposium on Wireless Communications and Systems,Richardson,1999, 91-96.
    [104]I.F.Akyildiz,E.Ekici,M.D.Bender,MLSR:a novel routing algorithm for multi·layered satellite IP networks,IEEE/ACM Transactions on Networking,2002.
    [105]C.Chen,E.Ekici, A routing protocol for hierarchical LEO/MEO satellite IP networks, ACM /Kluwer Wireless Networks Journal,vO1.11,July 2005,PP.507-521.
    [106]H.Uzunalioglu, Probabilistic routing protocol for Low Earth Orbit satellite networks,In Proc. of IEEE International Conference on Communications, June 1998.
    [107]Y.Hashimoto,B.Sarikaya,Design of IP-based routing in a LEO satellitenetwork,In Proc of the 3rd International Workshop on Satellite-Based InformationServices,October 1998.
    [108]H.Uzunalioglu, I.F.Akyildiz, M.D.Bender. A routing algorithm for LEO satellite networks with dynamic connectivity,ACM-Baltzer Journal of Wireless Networks(WlNET),June 2000.
    [109]张龙,周贤伟,王建萍,邓宇,吴启武.容迟与容断网络中的路由协议Journal of Softwa-re, Vol.21, No.10, October 2010, pp.2554-2572.
    [110]SPYROPOULOS T, PSOUNIS K, RAGHAVENDRA C.Efficient routing in intermittently connected mobile networks:the single-copy case [J].IEEE/ACM Trans on Networking,2008,16(1): 63-76.
    [111]MUSOLESI M, MASCOLO C.CAR:context-aware adaptive routing for delay-tolerant mobile networks [J].IEEE Trans on Mobile Computing,2008,8(2):246-260.
    [112]VAHDAT A, BECKER D.Epidemic routing for partially connected Ad hoc networks, CS20-00-06[R]. Durham:Duke University,2000.
    [113]GROENEVELT R, NAIN P, KOOLE G.The message delay in mobile Ad hoc networks [J]. Performance Evaluation,2005,62 (1-4):210-228.
    [114]ZHANG X, NEGLIA G, KUROSE J, et al. Performance modeling of epidemic routing [J]. Computer Networks,2007,51 (10):2867-2891.
    [115]LINDGREN A, DORIA A, SCHEL N O. Probabilistic routing in intermittently connected networks [J].ACM SIGMOBILE Mobile Computing and Communications Review,2003,7(3):19-20.
    [116]BURGESS J, GALLAGHER B, JENSEN D, et al.MaxProp:routing for vehicle-based disru-ption-tolerant networks [C]//Proc of IEEE INFOCOM.2006:1-11.
    [117]BURNS B, BROCK O, LEVINE B N.MV routing and capacity building in disruption toler-ant networks [C]//Proc of IEEE INFOCOM.2005:398-408.
    [118]MATSUDA T, TAKINE T. (p,q)-Epidemic routing for sparsely populated mobile Ad hoc networks [J].IEEE Journal on Selected Areas in Communications,2008,26(5):783-793.
    [119]SPYROPOULOS T, PSOUNIS K, RAGHAVENDRA C, et al.Spray and Wait:an efficient routing scheme for intermittently connected mobile networks [C]//Proc of SIGCOMM.New York: ACM Press,2005:252-259.
    [120]SPYROPOULOS T, PSOUNIS K, RAGHAVENDRA C. Efficient routing in intermittently connected mobile networks:the multiple-copy case [J].IEEE/ACM Trans on Networking,2008, 16(1):77-90.
    [121]郑恩,罗秋霞.容断网络中基于ACK机制的喷射等待路由[J].计算机应用.2012,32(2):367-369.
    [122]TANG L, ZHENG Q, LIU J, et al.Selective message forwarding in delay tolerant networks [J].Mobile Networks and Applications,2009,14(4):387-400.
    [123]JONES E, LI L, WARD P.Practical routing in delay-tolerant net works[C]//Proc of SIG-COMM. New York:ACM Press,2005:237-243.
    [124]Merugu S, Ammar M, Zegura E. Routing in space and time in networks with predictable mobil-ity. Technical Report, GIT-CC-04-07, Georgia Tech College of Computing,2004.
    [125]ZHANG Z.Routing in intermittently connected mobile Ad hoc networks and delay tolerant networks:overview and challenges [J].IEEE Communications Surveys & Tutorials,2006,8(1):24-37.
    [126]PSARAS I, WOOD L, TAFAZOLLI R.Delay/disruption-tolerant networking:state of the art and future challenges[R].Guildford:University of Surrey,2010.
    [127]肖明军,黄刘生.容迟网络路由算法[J].计算机研究与发展,2009,46(7):1065-1073.
    [128]熊永平,孙利民,牛建伟,等.机会网络[J].软件学报,2009,20(1):124-137.
    [129]LI Feng, WU Jie.LocalCom:a community-based epidemic forwarding scheme in disruption-tolerant networks [C]//Proc of IEEE SECON.2009:1-9.
    [130]WIDMER J, LE BOUDEC J Y.Network coding for efficient communication in extreme net-works [C]//Proc of SIGCOMM.New York:ACM Press,2005:284-291.
    [131]Fatih Alagoz, Omer Korcak, Abbas Jamalipour Exploring the routing strategies in next- gen-eration satellite networks[J]. IEEE Wireless Communications,2007,14 (3):79288.
    [132]Scott C. Burleigh, "Contact Graph Routing", IRTF, Internet-Draft draftburleigh-dtnrg -cgr-00, Experimental, Dec 2009.
    [133]Carlo Caini, Rosario Firrincieli, et al. Application of Contact Graph Routing to LEO Satellite DTN Communications[C],2012- Selected Areas in Communications Symposium,2012.
    [134]Stephen Farrell. Endpoint Discovery and Contact Graph Routing in Space and Terrestrial DTNs[C].2010 5th Advanced Satellite Multimedia Systems Conference[C].2010.
    [135]John Segui, Esther Jennings, et al. Enhancing Contact Graph Routing for Delay Tolerant Space Networking[C]. Globecom 2011 proceedings.2011.
    [136]KERANEN A, OTT J, KARKKANEN T.The ONE simulator for DTN protocol evaluation [C]//Proc of the 2nd International Conference on Simulation Tools and Techniques.2009:55-65.
    [137]李红艳,杨光祥,王文龙.一种最大吞吐量的深空通信网络路由算法.西安电子科技大学学报(自然科学版),Feb.2012, Vol.39 No.1:92-97.
    [138]Petter Holme, Jari Saramaki. Temporal networks. Physics Reports 519 (2012):97-125.
    [139]葛鹏,刘锋,万鹏.CFDP与SCPS-TP在空间通信中的性能比较[J].计算机应用,2010,30(s2):23-25.
    [140]Wood L.Using Saratoga with a Bundle Agent as a Convergence Layer for.Delay-Tolerant Networking [S].2009.
    [141]I.Psaras,G. Papastergiou,V.Tsaousidis,N. Peccia."DS-TP:Deep-Space Trans- port Protocol,"Proceedings of IEEE Aerospace Conference,Big Sky,May 2008,pp.1-13.
    [142]Giorgos Papastergiou,Ioannis Psaras,Vassilis Tsaoussidis."Deep-Space Trans- port Protocol: A Novel Transport Scheme for Space DTNs," Computer Communica- tions,Elsevier Science,Special Issue on Delay/Disruption-Tolerant Networking,Vol.32,Issue 16,October 2009,pp.1757-1767.
    [143]M.Demmer,"DTN reference Implementation", http://www.dtnrg.org/docs/presentations /IETF60/dtn-impl-ietf-8-6-04-demmer.pdf, August 6,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700