用户名: 密码: 验证码:
5-HT和组胺对经小脑顶核和底丘脑核介导的运动行为的调控及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
5-HT和组胺是中枢神经系统中两类重要的单胺能神经递质。长期以来,人们主要关注它们对非躯体性活动的调节,然而,起源于脑干中缝核(raphe nuclei)及延髓与脑桥网状结构(medullary and pontine reticular formations)的5-HT能神经纤维和起源于下丘脑结节乳头体核(tuberomammillary nucleus, TMN)的组胺能神经纤维也直接支配皮层下许多重要运动结构(如小脑、基底神经节、红核和前庭核团等)。这些纤维以曲张体(varicosity)的形式释放5-HT或组胺,主要通过相应的促代谢型受体与靶细胞发生联系并调节神经元的活动,进一步影响运动功能。
     除了大脑皮层、脑干和脊髓这三个运动控制的等级性组构之外,小脑(cerebellum)和基底神经节(basal ganglia)构成了皮层下参与运动控制的两个重要侧环。小脑是最大的皮层下运动结构,在动物的平衡控制、肌张力调节和随意运动控制中发挥重要作用,其损伤将导致共济失调等运动障碍。而基底神经节主要负责随意运动的发起,其损伤将导致帕金森病(Parkinson's disease, PD)和亨廷顿病(Huntington's disease, HD)等。
     但是,到目前为止,中枢5-HT能传入纤维和中枢组胺能传入纤维对经小脑和基底神经节介导的运动行为的作用仍不清楚,对其神经机制就更知之甚少。本论文采用实时定量RT-PCR、免疫荧光组织化学、电生理学以及行为学等方法,研究了5-HT和组胺分别对这两个皮层下运动结构神经元活动的作用,特别是二者对运动行为的调控。
     一、5-HT对经小脑顶核介导的运动行为的调控及其机制
     5-HT能传人纤维是继苔状纤维和爬行纤维之后小脑最大的传入系统,不仅直接支配皮层中的细胞,还直接支配核团中的神经元。另外,放射自显影、原位杂交、免疫组织化学和神经药理学等研究已经发现,包括5-HT2受体在内的多种5-HT受体亚型均在小脑内有分布。但是,激活5-HT2受体对小脑神经元的活动发挥何种效应,特别是对小脑运动行为产生什么样的影响,尚不清楚。
     在小脑神经元环路中,小脑核团是小脑内信息处理的最终结构而并非仅仅是接受来自小脑皮层Purkinje细胞(小脑皮层主神经元)传出的中继站。事实上小脑核团整合来自小脑皮层、苔状纤维和爬行纤维的相关运动信息,以及包括5-HT能传入在内的第三类传入系统传来的复杂调节信息,与绒球小结叶一起,构成小脑的最终输出。在小脑核团中,顶核(fastigial nucleus, FN)是系统发生上最古老的核团,主要负责躯干和肢体近端肌肉的精确调节。由此,本研究重点探讨5-HT2受体家族在小脑顶核神经元活动中的作用,以及在经顶核介导的小脑运动行为中的功能意义。
     实时RT-PCR和免疫组织化学实验显示,在5-HT2受体家族中,只有5-HT2A受体在小脑顶核中有表达和分布;通过离体脑片的细胞外电生理记录发现,所记录到的大多数神经元(92/116,79.3%)对5-HT的刺激表现出单一的兴奋性效应,且这种兴奋性效应具浓度依赖性特点。重要的是,我们发现低钙高镁人工脑脊液不能阻断5-HT对顶核神经元所诱发的兴奋性效应(n=9),提示5-HT引起顶核神经的兴奋性反应主要是突触后效应。进一步地,我们还发现,5-HT2A受体的激动剂TCB-2(n=42)能够模拟5-HT对顶核神经元产生的兴奋性效应,且5-HT2A受体的阻断剂M100907(n=32)不仅能阻断TCB-2,而且也能阻断5-HT对顶核神经元引起的兴奋性效应,表明突触后5-HT2A受体在5-HT对顶核神经元的兴奋性效应中发挥重要作用。
     接下来,我们通过向小脑顶核微量注射的方法来评估5-HT及其它5-HT能药物对顶核介导的运动行为影响,结果发现,向双侧小脑顶核微量注射5-HT能药物虽然不能影响大鼠在开场活动中的基础运动行为(n=12),但注射5-HT后,大鼠在rota-rod走步机和平衡木的运动成绩显著提高(n=11),同时在足印实验中发现大鼠行进时两足间距缩小(n=12)。向小脑顶核微量注射5-HT2A受体的激动剂TCB-2(n=12或n=13)可模拟5-HT对运动行为的这种易化效应,而微量注射5-HT2A受体的阻断剂M100907(n=12)可对抗核团内源性5-HT传入而显著降低大鼠的运动平衡与协调能力,并且使得大鼠行进时的步宽增大。这些结果强烈提示5-HT或5-HT能神经传入可以通过调节小脑顶核神经元的活动来增强大鼠的运动能力,在这个过程中5-HT2A受体发挥了重要作用。此外,向小脑顶核微量注射5-HT(n=12)并不影响大鼠的步长和肌张力,表明小脑顶核内5-HT或5-HT能传入精确调节躯干肌或近端肌的活动,而非远端肌。因此,我们推测小脑5-HT能传入纤维可以通过对核团神经元活动的调节,影响小脑的最终输出,而实现对小脑介导的运动平衡和协调能力的调控。
     综上所述,中枢5-HT能神经系统能够通过5-HT2A受体直接调节小脑顶核神经元的电活动,并进而调控经小脑顶核介导的运动行为。
     二、组胺兴奋大鼠底丘脑核神经元并改善帕金森病模型大鼠的运动能力
     底丘脑核(subthalamic nucleus, STN)是基底神经节环路中唯一的兴奋性谷氨酸能核团,它接受苍白球及大脑运动皮层的传入并发出广泛的纤维投射到基底神经节的其它核团,由此,STN被认为在基底神经节的运动整合功能中起着驱动及控制作用。许多研究表明在PD患者及PD模型动物中STN神经元的自发放电频率升高并且出现不规则的p同步化震荡,由此,现在临床上STN一直被认为是深部脑刺激治疗PD的重要靶点。
     放射自显影、免疫组化和原位杂交实验发现地松鼠下丘脑结节乳头体核有到STN直接的组胺能投射,并且在人类及豚鼠的STN中分别发现有组胺H1和H2受体。另有研究发现PD病人脑内组胺能纤维密度增高,基底神经节(壳核、黑质网状部、苍白球)及血液内组胺的浓度显著升高。然而,组胺对STN神经元活动的影响以及中枢组胺能神经系统在PD发生和发展中的作用的研究相对较少,本研究旨在探讨组胺对正常及PD模型大鼠经STN介导的运动行为的影响及其作用的神经机制。
     行为学实验发现,向STN微量注射组胺能药物显著改善阿普吗啡诱导PD模型大鼠的旋转行为(30min内的旋转圈数)。与生理盐水组(234.1±12.5,n=12)相比,组胺组(125.7±7.6,n=12;P<0.01)、H2受体激动剂dimaprit组(174.9±8.5,n=12;P<0.01)和高钾组(176.9±10.4,n=12;P<0.01)PD模型大鼠的旋转圈数显著减少;H1受体激动剂2-PyEA组(228.5±12.9,n=12;P>0.05)、H1受体阻断剂mepyramine组(243.1±15.3,n=12;P>0.05)、H4受体激动剂VUF8430组(240.2±13.3,n=12;P>0.05)和H4受体阻断剂JNJ7777120组(236.6±12.3,n=12;P>0.05)PD模型大鼠的旋转圈数没有显著性变化;H2受体阻断剂ranitidine组(337.6±13.7,,n=12;P<0.01)和HCN通道的阻断剂ZD7288组(334.9±18.7,n=12;P<0.01)PD模型大鼠的旋转圈数显著增加。这些结果表明组胺通过作用STN改善PD模型大鼠的运动能力,并且组胺的这种改善作用是通过H2受体及其所耦联的下游HCN通道所介导的。进一步地,我们在粘附移除和足印实验中也证实组胺能够通过STN中H2受体作用而改善PD模型大鼠的运动发起和运动协调能力。
     细胞外电生理记录发现,组胺通过H2受体突触后兴奋STN神经元,这与我们用RT-PCR和免疫组织化学方法发现STN中只有H2受体表达与分布的结果相一致。此外,我们通过全细胞膜片钳记录的方法发现组胺在STN神经上所诱发的兴奋性反应是通过H2受体所耦联的HCN通道介导的。同时,在PD模型大鼠离体脑片的细胞外记录中,我们发现组胺不仅能够提高STN神经元的自发放电频率而且能够显著降低STN神经元自发放电的峰-峰间期的变异系数(n=30),而高钾仅提高STN神经元的自发放电频率(n=16)。考虑到组胺也可以兴奋正常大鼠的STN神经元,随后我们通过rota-rod和平衡木测试,证实组胺可以通过作用于STN神经元上组胺H2受体而提高正常大鼠的运动平衡和运动协调能力。
     综合上述,我们的结果表明:组胺通过激活STN神经元上组胺H2受体,并通过与之相耦联的HCN通道,改善PD模型大鼠的运动能力。结合已有的组胺兴奋黑质、纹状体、苍白球等基底神经节神经元的研究结果,我们认为中枢组胺能神经纤维可能通过直接的平行投射兴奋基底神经节直接通路和间接通路的各核团而调节运动的发起和执行,同时基底神经节中组胺H2受体和HCN通道可能成为临床治疗PD疾病的靶点。
5-HT and histamine are two important monoaminergic neurotransmitters in central nervous system. It has long been focused on their non-somatic modulatory functions, however, the serotonergic fibers, derived from the raphe nuclei as well as the medullary/pontine reticular formations, and the histaminergic fibers originated from tuberomammillary nucleus of the hypothalamus, also directly innervate some subcortical motor structures, such as cerebellum, basal ganglia, red nucleus and vestibular nuclei. These fibers release5-HT or histamine through varicosities, which modulates neuronal activities mainly via the correspondingly metabotropic receptors and subsequently influences animal's motor abilities, such as motor balance and coordination.
     In addition to the cerebral cortex, brainstem, and spinal cord in the three motor control hierarchies, the cerebellum and the basal ganglia constitute two important subcortical side loops responsible for the motor control. The cerebellum, the largest subcortical brain region, holds a key position in the control of balance, equilibrium, muscle tone, and the coordination of voluntary movement. Cerebellar damage could cause a variety of motor dysfunctions, such as cerebellar ataxia. Basal ganglia principally accounts for the initiation of voluntary movement, and its disorders could lead to a series of movement disorders, including Parkinson's disease (PD) and Huntington's disease (HD).
     However, the role and the underlying mechanism of central serotonergic/histaminergic inputs on cerebellum-/STN-mediated motor behaviors are still largely unknown. In this study, by using RT-PCR, immunofluorescence, electrophysiological, and behavioral methods, the effects of5-HT/histamine on cerebellar/STN neuronal activities, and especially, their motor behavioral influences were investigated.
     1. Modulation of5-HT on cerebellar FN-mediated motor behavior and the underlying mechanism
     The serotonergic fibers are the largest afferent population except the mossy fibers and climbing fibers, innervating not only the cerebellar cortex but also the cerebellar nuclei. Correspondingly, radioligand binding, in situ hybridization, neuropharmacological and immunohistochemical studies have revealed an existence of several subtypes of5-HT receptors including5-HT2receptors in the cerebellum. However, effect mediated by the activation of5-HT2receptors on cerebellar neurons, particularly on cerebellar motor behaviors, still remains enigmatic.
     In the cerebellar circuitry, the cerebellar nuclei are the final integrative processing unit rather than a relay station just receiving projections from Purkinje cells (the principal neurons) in the cerebellar cortex. The cerebellar nuclei integrate information from the cerebellar cortex, signals from the mossy fibers and climbing fibers, as well as complicated modulatory messages from the third type of inputs including the serotonergic to make the ultimate outputs of the cerebellum together with the flocculonodular node. Among the cerebellar nuclei, the fastigial nucleus (FN) is the phylogenetically oldest nucleus, and holds a key position in fine-tuning body and proximal limb movements. Therefore, in the present study, we investigated role of5-HT2receptors in neuronal activity of the cerebellar FN and in FN-mediated motor behaviors.
     Real-time RT-PCR and immunostaining results demonstrated that only5-HT2A receptors rather than5-HT2B or5-HT2C receptors in5-HT2receptor subfamily were expressed and localized in the cerebellar FN. From in vitro extracellular recordings, we found that the majority of the recorded FN neurons (92/116,79.3%) responded to5-HT simulation with a unique excitatory effect in a concentration-dependent manner. Importantly, low-Ca2+/high-Mg2+medium did not block the5-HT-evoked concentration-dependent excitations on FN neurons(n=9), indicating that the excitatory effect of5-HT on FN neurons is primarily postsynaptic. Furthermore, selective5-HT2A receptor agonist TCB-2mimicked the5-HT-induced excitations (n=42), and selective5-HT2A receptor antagonist M100907significantly blocked the excitatory responses induced not only by TCB-2but also by5-HT (n=32), suggesting postsynaptic5-HT2A receptors contribute greatly to the excitatory effect of5-HT on rat FN neurons.
     Next, we microinjected serotonergic reagents to bilateral cerebellar FNs to evaluate the effect of5-HT/serotonergic inputs on FN mediated motor behaviors. Although microinjection of serotonergic compounds into cerebellar FNs did not influence the overground locomotion in an open field (n=12), microinjection of5-HT into FNs remarkably promoted motor performances on rota-rod and balance beam (n=11), and narrowed stride width in footprint tests (n=12). This facilitation effect of5-HT was mimicked by5-HT2A receptor agonist TCB-2(n=12or n=13). Moreover, microinjection of5-HT2A receptor antagonist M100907to block endogenous serotonergic inputs in FNs significantly attenuated motor balance and coordination and enlarged stride width (n=12). These results strongly suggest that5-HT/serotonergic inputs improve motor behaviors through modulation of FNs, to which5-HT2A receptors are greatly contributed. Furthermore, microinjection of5-HT into FNs did not affect the stride length, nor did it influence grip strength, demonstrating that5-HT/serotonergic inputs in FNs may precisely modulate trunk and proximal musculature rather than distal muscles. Thus, we speculate that serotonergic afferent inputs may actively regulate final cerebellar outputs by modulation of cerebellar nuclear neurons, and subsequently influence the cerebellum-mediated ongoing motor balance and coordination.
     These results demonstrate that central serotonergic system could influence crebellar FN neuronal activities via5-HT2A receptors, and consequently participate in modulation of cerebellum-mediated motor control.
     2. Histamine excites rat subthalamic nucleus neurons and restores motor behavior in animal models of Parkinson's disease
     The subthalamic nucleus (STN) is the only excitatory glutamatergic nucleus in the basal ganglia motor circuit, and its widespread projections to other basal ganglia regions lead it to be viewed as a 'driving force' or 'control structure' in the integrative function of the basal ganglia circuitry. Numerous studies show that in PD patients and PD animal models the spontaneous firing rate of STN neurons increased with irregular β-synchronized oscillatory. Thus, the STN has long been clinically regarded as an important target in deep brain stimulation for PD.
     A series of autoradiography, immunohistochemistry and in situ hybridization studies showed that the STN of squirrels received the hypothalamic histaminergic innervations, and histamine H1receptors and H2receptors were present in the STN of human and guinea pigs. Other studies demonstrated that the density of histaminergic fibers in the brain of PD patients and the concentration of histamine in their basal ganglia and the blood were significantly higher. However, research about effect of histamine on STN neuron activities and role of the central histaminergic nervous system in PD is relatively rare. Thus, in this study, the effect and the underlying mechanism of histamine on STN-mediated motor performances of normal and Parkinsonian rats were investigated.
     Behavioral tests demonstrated that microinjection of histamergic reagents to STN ipslateral to6-OHDA lesion considerably influenced apomorphine-induced rotation in PD rat models. Compared with the saline treatment (234.1±12.5in30min, n-12), Parkinsonian rats microinjected with histamine (125.7±7.6, n=12; P<0.01), H2receptor agonist dimaprit (174.9±8.5, n=12; P<0.01) and high K+(176.9±10.4, n=12; P<0.01) significantly reduced the rotation; Parkinsonian rats microinjected with H1receptor agonist2-pyridylethylamine (228.5±12.9, n=12; P>0.05), H1receptor antagonist mepyramine (243.1±15.3, n=12; P>0.05), H4receptor agonist VUF8430(240.2±13.3, n=12; P>0.05) and H4receptor antagonist JNJ7777120(236.6±12.3, n=12; P>0.05) had no significant effects on rotation; while Parkinsonian rats microinjected with H2receptor antagonist ranitidine (337.6±13.7, n=12; P<0.01) and HCN channel antagonist ZD7288(334.9±18.7, n=12;P <0.01) significant increased the rotation. These results indicated that histaminergic activities on STN improved the motor behaviors of PD rat models, which was mediated by H2receptors and their downstream HCN channels. Furthermore, we found that histamine improved Parkinsonian rat's motor initiation and motor coordination through H2receptor in adhesive removal and footprint tests.
     Extracellular recording demonstrated that histamine postsynaptically excited STN neurons via H2receptor, which is consistent with our subsequent immunofluorescence and RT-PCR results that only H2recptor was found in STN. Moreover, using whole-cell patch clamp recordings, we found that histamine-elicited excitation on STN neuron was mediated through HCN channels coupled to H2receptors. Furthermore, our extracellular recordings showed that histamine not only increased the firing rate in STN neurons, but also markedly reduced the coefficient of variation in interspike interval (n=30), while high K+only showed an increase in the firing rate (n=16). Considering that histamine also excites STN neurons in normal rats, we subsequently used rota-rod and balance beam tests to evaluate histaminergic effects on the STN-mediated motor behaviors, and the results confirmed histamine promoted STN-mediated motor balance and motor coordination via H2receptor in normal rats.
     These results demonstrate that histamine restores motor performances of PD rat models by activation of H2receptors and the HCN channels. Considering histamine also excites the substantia nigra, neostriatum and globus pallidus, we speculate that the central histaminergic system may actively modulate the balance between direct and indirect pathways in the basal ganglia through its direct parallel innervations of those structures as well as the STN, and consequently regulate motor initiation and execution. Presumably, histamine H2receptor and the HCN channel in the basal ganglia is a potential target for clinical treatment of PD.
引文
1. Abramowski D, Rigo M, Duc D, Hoyer D, and Staufenbiel M.1995. Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34(12):1635-1645.
    2. Alzghoul L, Bortolato M, Delis F, Thanos PK, Darling RD, Godar SC, Zhang J, Grant S, Wang GJ, Simpson KL et al..2012. Altered cerebellar organization and function in monoamine oxidase A hypomorphic mice. Neuropharmacology 63(7):1208-1217.
    3. Andrade-Filho AS, Passos-Almeida J, Andrade-Souza VM, and Sena-Pereira LR.2002. [Buspirone chlorhydrate in the treatment of cerebellar ataxia]. Rev Neurol 35(4):301-305.
    4. Anju TR, Mathew J, Jayanarayanan S, and Paulose CS.2010. Cerebellar 5HT2A receptor function under hypoxia in neonatal rats:role of glucose, oxygen, and epinephrine resuscitation. Respir Physiol Neurobiol 172(3):147-153.
    5. Armstrong DL, Hay M, and Terrian DM.1987. Modulation of cerebellar granule cell activity by iontophoretic application of serotonergic agents. Brain Res Bull 19(6):699-704.
    6. Arpin-Bott MP, Dietrich JB, Dirrig-Grosch S, Aunis D, and Zwiller J.2006. Induction by cocaine of the serotonergic 5-HT3 receptor in rat cerebellum. Ann N Y Acad Sci 1074:382-389.
    7. Assadi M, Campellone JV, Janson CG, Veloski JJ, Schwartzman RJ, and Leone P.2007. Treatment of spinocerebellar ataxia with buspirone. J Neurol Sci 260(1-2):143-146.
    8. Azmitia EC, and Gannon PJ.1986. The primate serotonergic system:a review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43:407-468.
    9. Barnes NM, and Sharp T.1999. A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083-1152.
    10. Beaudet A, and Sotelo C.1981. Synaptic remodeling of serotonin axon terminals in rat agranular cerebellum. Brain Res 206(2):305-329.
    11. Bier JC, Dethy S, Hildebrand J, Jacquy J, Manto M, Martin JJ, and Seeldrayers P.2003. Effects of the oral form of ondansetron on cerebellar dysfunction. A multi-center double-blind study. J Neurol 250(6):693-697.
    12. Bishop GA, and Ho RH.1985. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331(2):195-207.
    13. Bishop GA, Ho RH, and King JS.1985. Localization of serotonin immunoreactivity in the opossum cerebellum. J Comp Neurol 235(3):301-321.
    14. Bishop GA, Ho RH, and King JS.1988. A temporal analysis of the origin and distribution of serotoninergic afferents in the cerebellum of pouch young opossums. Anat Embryol (Berl) 179(1):33-48.
    15. Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, and Jouvet M.1976. The raphe nuclei of the cat brain stem:a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113(3):449-486.
    16. Bonaventure P, Voorn P, Luyten WH, and Leysen JE.1998.5HT1B and 5HT1D receptor mRNA differential co-localization with peptide mRNA in the guinea pig trigeminal ganglion. Neuroreport 9(4):641-645.
    17. Boschert U, Amara DA, Segu L, and Hen R.1994. The mouse 5-hydroxytryptaminelB receptor is localized predominantly on axon terminals. Neuroscience 58(1):167-182.
    18. Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA, Hoyer D, and Palacios JM.1994. Localization of 5-HT1B,5-HT1D alpha,5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33(3-4):367-386.
    19. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Nekrassov-Protasova V, Durand-Rivera A, Montes S, and Ayala-Guerrero F.2010. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res35(10):1538-1545.
    20. Buitelaar JK, and Willemsen-Swinkels SH.2000. Medication treatment in subjects with autistic spectrum disorders. Eur Child Adolesc Psychiatry 9 Suppl 1:185-97.
    21. Burnet PW, Eastwood SL, Lacey K, and Harrison PJ.1995. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676(1):157-168.
    22. Chameau P, Inta D, Vitalis T, Monyer H, Wadman WJ, and van Hooft JA.2009. The N-terminal region of reelin regulates postnatal dendritic maturation of cortical pyramidal neurons. Proc Natl Acad Sci U S A 106(17):7227-7232.
    23. Chen H, Li H, and Chuang DM.1995. Role of second messengers in agonist up-regulation of 5-HT2A (5-HT2) receptor binding sites in cerebellar granule neurons:involvement of calcium influx and a calmodulin-dependent pathway. J Pharmacol Exp Ther 275(2):674-680.
    24. Choi DS, and Maroteaux L.1996. Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391(1-2):45-51.
    25. Chou KL.2004. Diagnosis and management of the patient with tremor. Med Health R I 87(5):135-138.
    26. Chugani DC.2002. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 7 Suppl 2:S16-17.
    27. Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, da Silva EA, and Chugani HT.1997. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 42(4):666-669.
    28. Clemett DA, Punhani T, Duxon MS, Blackburn TP, and Fone KC.2000. Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39(1):123-132.
    29. Cornea-Hebert V, Riad M, Wu C, Singh SK, and Descarries L.1999. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187-209.
    30. Crespi F, and Jouvet M.1984. Differential pulse voltammetric determination of 5-hydroxyindoles in four raphe nuclei of chronic freely moving rats simultaneously recorded by polygraphic technique:physiological changes with vigilance states. Brain Res 299(1):113-119.
    31. Cumming-Hood PA, Strahlendorf HK, and Strahlendorf JC.1993. Effects of serotonin and the 5-HT2/1C receptor agonist DOI on neurons of the cerebellar dentate/interpositus nuclei: possible involvement of a GABAergic interneuron. Eur J Pharmacol 236(3):457-465.
    32. Darrow EJ, Strahlendorf HK, and Strahlendorf JC.1990. Response of cerebellar Purkinje cells to serotonin and the 5-HT1A agonists 8-OH-DPAT and ipsapirone in vitro. Eur J Pharmacol 175(2):145-153.
    33. Dean I, Robertson SJ, and Edwards FA.2003. Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar purkinje cells:a Lugaro cell to Purkinje cell synapse. J Neurosci 23(11):4457-4469.
    34. del Olmo E, Diaz A, Guirao-Pineyro M, del Arco C, Pascual J, and Pazos A.1994. Transient localization of 5-HT1A receptors in human cerebellum during development. Neurosci Lett 166(2):149-152.
    35. Di Mauro M, Fretto G, Caldera M, Li Volsi G, Licata F, Ciranna L, and Santangelo F.2003. Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat:functional effects on neuronal firing. Neurosci Lett 347(2):101-105.
    36. Diener HC, and Dichgans J.1992. Pathophysiology of cerebellar ataxia. Mov Disord 7(2):95-109.
    37. Dieudonne S.2001. Serotonergic neuromodulation in the cerebellar cortex:cellular, synaptic, and molecular basis. Neuroscientist 7(3):207-219.
    38. Dieudonne S, and Dumoulin A.2000. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20(5):1837-1848.
    39. Dumoulin A, Triller A, and Dieudonne S.2001. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057.
    40. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, and Fone KC.1997. Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76(2):323-329.
    41. Eastwood SL, Burnet PW, Gittins R, Baker K, and Harrison PJ.2001. Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia. Synapse 42(2):104-114.
    42. Egeland M, Warner-Schmidt J, Greengard P, and Svenningsson P.2011. Co-expression of serotonin 5-HT(1B) and 5-HT(4) receptors in pll containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology 61(3):442-450.
    43. Ettrup A, Kornum BR, Weikop P, and Knudsen GM.2011. An approach for serotonin depletion in pigs:effects on serotonin receptor binding. Synapse 65(2):136-145.
    44. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE et al..2012. Consensus paper:pathological role of the cerebellum in autism. Cerebellum 11(3):777-807.
    45. Ferrarin M, Gironi M, Mendozzi L, Nemni R, Mazzoleni P, and Rabuffetti M.2005. Procedure for the quantitative evaluation of motor disturbances in cerebellar ataxic patients. Med Biol Eng Comput 43(3):349-356.
    46. Ferrer A, and Artigas F.1994. Effects of single and chronic treatment with tranylcypromine on extracellular serotonin in rat brain. Eur J Pharmacol 263(3):227-234.
    47. Gardette R, Krupa M, and Crepel F.1987. Differential effects of serotonin on the spontaneous discharge and on the excitatory amino acid-induced responses of deep cerebellar nuclei neurons in rat cerebellar slices. Neuroscience 23(2):491-500.
    48. Gazulla J, and Modrego P.2008. Buspirone and serotonin in spinocerebellar ataxia. J Neurol Sci 268(1-2):199-200; author reply 200-191.
    49. Gerard C, el Mestikawy S, Lebrand C, Adrien J, Ruat M, Traiffort E, Hamon M, and Martres MP.1996. Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxytryptamine-treated rats. Synapse 23(3):164-173.
    50. Gerard C, Martres MP, Lefevre K, Miquel MC, Verge D, Lanfumey L, Doucet E, Hamon M, and el Mestikawy S.1997. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 746(1-2):207-219.
    51. Geurts FJ, De Schutter E, and Timmermans JP.2002. Localization of 5-HT2A,5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24(1):65-74.
    52. Hannon J, and Hoyer D.2008. Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198-213.
    53. Hassin-Baer S, Korczyn AD, and Giladi N.2000. An open trial of amantadine and buspirone for cerebellar ataxia:a disappointment. J Neural Transm 107(10):1187-1189.
    54. Hellendall RP, Schambra UB, Liu JP, and Lauder JM.1993. Prenatal expression of 5-HT 1C and 5-HT2 receptors in the rat central nervous system. Exp Neurol 120(2):186-201.
    55. Heo JH, Lee ST, Chu K, and Kim M.2008. The efficacy of combined estrogen and buspirone treatment in olivopontocerebellar atrophy. J Neurol Sci 271(1-2):87-90.
    56. Herold C, Palomero-Gallagher N, Gunturkun O, and Zilles K.2012. Serotonin 5-HT(1A) receptor binding sites in the brain of the pigeon (Columba livia). Neuroscience 200:1-12.
    57. Hewlett WA, Fridman S, Trivedi BL, Schmidt DE, de Paulis T, and Ebert MH.1998. Characterization of desamino-5-[125I]iodo-3-methoxy-zacopride ([125I]MIZAC) binding to 5-HT3 receptors in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 22(2):397-410.
    58. Hicks TP, Krupa M, and Crepel F.1989. Selective effects of serotonin upon excitatory amino acid-induced depolarizations of Purkinje cells in cerebellar slices from young rats. Brain Res 492(1-2):371-376.
    59. Hiner BC, Mauk MD, Peroutka SJ, and Kocsis JD.1988. Buspirone,8-OH-DPAT and ipsapirone:effects on hippocampal cerebellar and sciatic fiber excitability. Brain Res 461(1):1-9.
    60. Hirono M, Saitow F, Kudo M, Suzuki H, Yanagawa Y, Yamada M, Nagao S, Konishi S, and Obata K.2012. Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLoS One 7(1):e29663.
    61. Hirvonen J, Kajander J, Allonen T, Oikonen V, Nagren K, and Hietala J.2007. Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region. J Cereb Blood Flow Metab 27(1):185-195.
    62. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP et al..2009. Characterisation of 5-HT3C,5-HT3D and 5-HT3E receptor subunits:evolution, distribution and function. J Neurochem 108(2):384-396.
    63. Holroyd-Leduc JM, Liu BA, Maki BE, Zecevic A, Herrmann N, and Black SE.2005. The role of buspirone for the treatment of cerebellar ataxia in an older individual. Can J Clin Pharmacol 12(3):e218-221.
    64. Hoyer D, Hannon JP, and Martin GR.2002. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533-554.
    65. Kerr CW, and Bishop GA.1991. Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 304(3):502-515.
    66. Kerr CW, and Bishop GA.1992. The physiological effects of serotonin are mediated by the 5HT1Areceptor in the cat's cerebellar cortex. Brain Res 591(2):253-260.
    67. Kilpatrick GJ, Jones BJ, and Tyers MB.1987. Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330(6150):746-748.
    68. Kilpatrick GJ, Jones BJ, and Tyers MB.1989. Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159(2):157-164.
    69. Kinsey AM, Wainwright A, Heavens R, Sirinathsinghji DJ, and Oliver KR.2001. Distribution of 5-ht(5A),5-ht(5B),5-ht(6) and 5-HT(7) receptor mRNAs in the rat brain. Brain Res Mol Brain Res 88(1-2):194-198.
    70. Kitzman PH, and Bishop GA.1994. The origin of serotoninergic afferents to the cat's cerebellar nuclei. J Comp Neurol 340(4):541-550.
    71. Kitzman PH, and Bishop GA.1997. The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells:an in vivo study in the cat. Prog Brain Res 114:209-223.
    72. Kondoh M, Shiga T, and Okado N.2004. Regulation of dendrite formation of Purkinje cells by serotonin through serotonin 1A and serotonin2A receptors in culture. Neurosci Res 48(1):101-109.
    73. Kornum BR, Lind NM, Gillings N, Marner L, Andersen F, and Knudsen GM.2009. Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig. J Cereb Blood Flow Metab 29(1):186-196.
    74. Krishnakumar A, Abraham PM, Paul J, and Paulose CS.2009. Down-regulation of cerebellar 5-HT(2C) receptors in pilocarpine-induced epilepsy in rats:therapeutic role of Bacopa monnieri extract. J Neurol Sci 284(1-2):124-128.
    75. Lee M, Strahlendorf JC, and Strahlendorf HK.1985. Modulatory action of serotonin on glutamate-induced excitation of cerebellar Purkinje cells. Brain Res 361(1-2):107-113.
    76. Li B, Guo CL, Tang J, Zhu JN, and Wang JJ.2009. Cerebellar fastigial nuclear inputs and peripheral feeding signals converge on neurons in the dorsomedial hypothalamic nucleus. Neurosignals 17(2):132-143.
    77. Li SJ, Wang Y, Strahlendorf HK, and Strahlendorf JC.1993. Serotonin alters an inwardly rectifying current (Ih) in rat cerebellar Purkinje cells under voltage clamp. Brain Res 617(1):87-95.
    78. Liu HZ, Li XY, Tong JJ, Qiu ZY, Zhan HC, Sha JN, and Peng KM.2008. Duck cerebellum participates in regulation of food intake via the neurotransmitters serotonin and neuropeptide Y. Nutr Neurosci 11(5):200-206.
    79. Lou JS, Goldfarb L, McShane L, Gatev P, and Hallett M.1995. Use of buspirone for treatment of cerebellar ataxia. An open-label study. Arch Neurol 52(10):982-988.
    80. Lucaites VL, Krushinski JH, Schaus JM, Audia JE, and Nelson DL.2005. [3H]LY334370, a novel radioligand for the 5-HT1F receptor. II. Autoradiographic localization in rat, guinea pig, monkey and human brain. Naunyn Schmiedebergs Arch Pharmacol 371(3):178-184.
    81. Lugaro E.1894. Sulle connessioni tra gli elemente nervosi della corteccia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Riv Sper Freniat 20:297-331.
    82. Lummis SC.2012.5-HT(3) receptors. J Biol Chem 287(48):40239-40245.
    83. Madsen K, Haahr MT, Marner L, Keller SH, Baare WF, Svarer C, Hasselbalch SG, and Knudsen GM.2011. Age and sex effects on 5-HT(4) receptors in the human brain:a [(11)C]SB207145 PET study. J Cereb Blood Flow Metab 31(6):1475-1481.
    84. Maeshima T, Shiga T, Ito R, and Okado N.2004. Expression of serotonin2A receptors in Purkinje cells of the developing rat cerebellum. Neurosci Res 50(4):411-417.
    85. Maeshima T, Shutoh F, Hamada S, Senzaki K, Hamaguchi-Hamada K, Ito R, and Okado N. 1998. Serotonin2A receptor-like immunoreactivity in rat cerebellar Purkinje cells. Neurosci Lett 252(1):72-74.
    86. Marazziti D.2002. A further support to the hypothesis of a link between serotonin, autism, and the cerebellum. Biol Psychiatry 52(2):143; author reply 143.
    87. Marazziti D, Betti L, Giannaccini G, Rossi A, Masala I, Baroni S, Cassano GB, and Lucacchini A.2001. Distribution of [3H]GR65630 binding in human brain postmortem. Neurochem Res 26(3):187-190.
    88. Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, and Maura G.2006. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices:control by presynaptic 5-HT1D receptors. Neurochem Int 49(1):12-19.
    89. Marsden J, and Harris C.2011. Cerebellar ataxia:pathophysiology and rehabilitation. Clin Rehabil 25(3):195-216.
    90. Matthes H, Boschert U, Amlaiky N, Grailhe R, Plassat JL, Muscatelli F, Mattei MG, and Hen R.1993. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors:cloning, functional expression, and chromosomal localization. Mol Pharmacol 43(3):313-319.
    91. Matthiessen L, Daval G, Bailly Y, Gozlan H, Hamon M, and Verge D.1992. Quantification of 5-hydroxytryptaminelA receptors in the cerebellum of normal and X-irradiated rats during postnatal development. Neuroscience 51(2):475-485.
    92. Maura G, and Raiteri M.1996. Serotonin 5-HT1D and 5-HT1A receptors respectively mediate inhibition of glutamate release and inhibition of cyclic GMP production in rat cerebellum in vitro. J Neurochem 66(1):203-209.
    93. Maura G, Ricchetti A, and Raiteri M.1986. Serotonin inhibits the depolarization-evoked release of endogenous glutamate from rat cerebellar nerve endings. Neurosci Lett 67(2):218-222.
    94. Maura G, Roccatagliata E, Ulivi M, and Raiteri M.1988. Serotonin-glutamate interaction in rat cerebellum:involvement of 5-HT1 and 5-HT2 receptors. Eur J Pharmacol 145(1):31-38.
    95. Mehta H, Saravanan KS, and Mohanakumar KP.2003. Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav Brain Res 145(1-2):31-36.
    96. Mendlin A, Martin FJ, Rueter LE, and Jacobs BL.1996. Neuronal release of serotonin in the cerebellum of behaving rats:an in vivo microdialysis study. J Neurochem 67(2):617-622.
    97. Miquel MC, Emerit MB, Nosjean A, Simon A, Rumajogee P, Brisorgueil MJ, Doucet E, Hamon M, and Verge D.2002. Differential subcellular localization of the 5-HT3-As receptor subunit in the rat central nervous system. Eur J Neurosci 15(3):449-457.
    98. Miquel MC, Kia HK, Boni C, Doucet E, Daval G, Matthiessen L, Hamon M, and Verge D. 1994. Postnatal development and localization of 5-HT1A receptor mRNA in rat forebrain and cerebellum. Brain Res Dev Brain Res 80(1-2):149-157.
    99. Mitoma H, Kobayashi T, Song SY, and Konishi S.1994. Enhancement by serotonin of GABA-mediated inhibitory synaptic currents in rat cerebellar Purkinje cells. Neurosci Lett 173(1-2):127-130.
    100. Mitoma H, and Konishi S.1999. Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neuroscience 88(3):871-883.
    101. Monaca-Charley C, Stojkovic T, Duhamel A, De Seze J, Ferriby D, and Vermersch P.2003. Double-blind crossover study with dolasetron mesilate, a 5-HT3 receptor antagonist in cerebellar syndrome secondary to multiple sclerosis. J Neurol 250(10):1190-1194.
    102. Muneoka KT, and Takigawa M.2003.5-Hydroxytryptamine7 (5-HT7) receptor immunoreactivity-positive 'stigmoid body'-like structure in developing rat brains. Int J Dev Neurosci 21(3):133-143.
    103. Murano M, Saitow F, and Suzuki H.2011. Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience 172:118-128.
    104. Nabulsi N, Huang Y, Weinzimmer D, Ropchan J, Frost JJ, McCarthy T, Carson RE, and Ding YS.2010. High-resolution imaging of brain 5-HT 1B receptors in the rhesus monkey using [11C]P943. Nucl Med Biol 37(2):205-214.
    105. Nag N, Tarlac V, and Storey E.2013. Assessing the efficacy of specific cerebellomodulatory drugs for use as therapy for spinocerebellar ataxia type 1. Cerebellum 12(1):74-82.
    106. Nayak SV, Ronde P, Spier AD, Lummis SC, and Nichols RA.1999. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience 91(1):107-117.
    107. Newman DB, and Ginsberg CY.1992. Brainstem reticular nuclei that project to the cerebellum in rats:a retrograde tracer study. Brain Behav Evol 39(1):24-68.
    108. Nichols DE, and Nichols CD.2008. Serotonin receptors. Chem Rev 108(5):1614-1641.
    109. Ogawa M.2004. Pharmacological treatments of cerebellar ataxia. Cerebellum 3(2):107-111.
    110. Oliver KR, Kinsey AM, Wainwright A, and Sirinathsinghji DJ.2000. Localization of 5-ht(5A) receptor-like immunoreactivity in the rat brain. Brain Res 867(1-2):131-142.
    111. Oostland M, Buijink MR, and van Hooft JA.2013. Serotonergic control of Purkinje cell maturation and climbing fibre elimination by 5-HT3 receptors in the juvenile mouse cerebellum. J Physiol.
    112. Oostland M, Sellmeijer J, and van Hooft JA.2011. Transient expression of functional serotonin 5-HT3 receptors by glutamatergic granule cells in the early postnatal mouse cerebellum. J Physiol 589(Pt 20):4837-4846.
    113. Parker RM, Barnes JM, Ge J, Barber PC, and Barnes NM.1996. Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain. J Neurol Sci 144(1-2):119-127.
    114. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, and John Mann J.2005. Regional heterogeneity of 5-HTl A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785-793.
    115. Pasqualetti M, Ori M, Nardi I, Castagna M, Cassano GB, and Marazziti D.1998. Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Brain Res Mol Brain Res 56(1-2):1-8.
    116. Pierce ET, Hoddevik GH, and Walberg F.1977. The cerebellar projection from the raphe nuclei in the cat as studied with the method of retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 152(1):73-87.
    117. Pike VW, Halldin C, Nobuhara K, Hiltunen J, Mulligan RS, Swahn CG, Karlsson P, Olsson H, Hume SP, Hirani E et al..2003. Radioiodinated SB 207710 as a radioligand in vivo: imaging of brain 5-HT4 receptors with SPET. Eur J Nucl Med Mol Imaging 30(11):1520-1528.
    118. Polter AM, and Li X.2010.5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22(10):1406-1412.
    119. Pompeiano M, Palacios JM, and Mengod G 1994. Distribution of the serotonin 5-HT2 receptor family mRNAs:comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23(1-2):163-178.
    120. Rapport MM, Green AA, and Page IH.1948. Crystalline Serotonin. Science 108(2804):329-330.
    121. Rice GP, Lesaux J, Vandervoort P, Macewan L, and Ebers GC.1997. Ondansetron, a 5-HT3 antagonist, improves cerebellar tremor. J Neurol Neurosurg Psychiatry 62(3):282-284.
    122. Roberts JC, Reavill C, East SZ, Harrison PJ, Patel S, Routledge C, and Leslie RA.2002. The distribution of 5-HT(6) receptors in rat brain:an autoradiographic binding study using the radiolabelled 5-HT(6) receptor antagonist [(125)I]SB-258585. Brain Res 934(1):49-57.
    123. Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R, and Schwartz JC. 1993. A novel rat serotonin (5-HT6) receptor:molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193(1):268-276.
    124. Saitow F, Hirono M, and Suzuki H.2012. Serotonin and Synaptic Transmission in the Cerebellum. In:Manto M, Gruol DL, Schmahmann JD, Koibuchi N, and Rossi F, editors. Handbook of the cerebellum and cerebellar disorders.1st ed. New York:Springer. p 915-926.
    125. Saitow F, Murano M, and Suzuki H.2009. Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol 101(3):1361-1374.
    126. Sari Y.2004. Serotonin1B receptors:from protein to physiological function and behavior. Neurosci Biobehav Rev 28(6):565-582.
    127. Schweighofer N, Doya K, and Kuroda S.2004. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44(2-3):103-116.
    128. Slater P, Doyle CA, and Deakin JF.1998. Abnormal persistence of cerebellar serotonin-1A receptors in schizophrenia suggests failure to regress in neonates. J Neural Transm 105(2-3):305-315.
    129. Storozheva ZI, and Proshin AT.2010. [Selective involvement of cerebellar neurotransmitter systems in mechanisms of various types of defensive behavior]. Zh Vyssh Nerv Deiat Im I P Pavlova 60(4):474-485.
    130. Strahlendorf JC, and Hubbard GD.1983. Serotonergic interactions with rat cerebellar Purkinje cells. Brain Res Bull 11(2):265-269.
    131. Strahlendorf JC, Lee M, and Strahlendorf HK.1984. Effects of serotonin on cerebellar Purkinje cells are dependent on the baseline firing rate. Exp Brain Res 56(1):50-58.
    132. Strahlendorf JC, Lee M, and Strahlendorf HK.1989. Modulatory role of serotonin on GABA-elicited inhibition of cerebellar Purkinje cells. Neuroscience 30(1):117-125.
    133. Takei A, Fukazawa T, Hamada T, Sohma H, Yabe I, Sasaki H, and Tashiro K.2004. Effects of tandospirone on "5-HT1A receptor-associated symptoms" in patients with Machado-Josephe disease:an open-label study. Clin Neuropharmacol 27(1):9-13.
    134. Takei A, Hamada S, Homma S, Hamada K, Tashiro K, and Hamada T.2010. Difference in the effects of tandospirone on ataxia in various types of spinocerebellar degeneration:an open-label study. Cerebellum 9(4):567-570.
    135. Takei A, Hamada T, Yabe I, and Sasaki H.2005. Treatment of cerebellar ataxia with 5-HT1A agonist. Cerebellum 4(3):211-215.
    136. Takei A, Honma S, Kawashima A, Yabe I, Fukazawa T, Hamada K, Hamada T, and Tashiro K.2002. Beneficial effects of tandospirone on ataxia of a patient with Machado-Joseph disease. Psychiatry Clin Neurosci 56(2):181-185.
    137. Takeuchi Y, Kimura H, and Sano Y.1982. Immunohistochemical demonstration of serotonin-containing nerve fibers in the cerebellum. Cell Tissue Res 226(1):1-12.
    138. Thellung S, Barzizza A, Maura G, and Raiteri M.1993. Serotonergic inhibition of the mossy fibre--granule cell glutamate transmission in rat cerebellar slices. Naunyn Schmiedebergs Arch Pharmacol 348(4):347-351.
    139. Thorell JO, Stone-Elander S, Eriksson L, and Ingvar M.1997. N-methylquipazine: carbon-11 labelling of the 5-HT3 agonist and in vivo evaluation of its biodistribution using PET. Nucl Med Biol 24(5):405-412.
    140. Trouillas P.1993. The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci 20 Suppl 3:S78-82.
    141. Trouillas P, Brudon F, and Adeleine P.1988. Improvement of cerebellar ataxia with levorotatory form of 5-hydroxytryptophan. A double-blind study with quantified data processing. Arch Neurol 45(11):1217-1222.
    142. Trouillas P, Xie J, and Adeleine P.1996. Treatment of cerebellar ataxia with buspirone:a double-blind study. Lancet 348(9029):759.
    143. Trouillas P, Xie J, and Adeleine P.1997. Buspirone, a serotonergic 5-HT1A agonist, is active in cerebellar ataxia. A new fact in favor of the serotonergic theory of ataxia. Prog Brain Res 114:589-599.
    144. Trouillas P, Xie J, Getenet JC, Adeleine P, Nighoghossian N, Honnorat J, Riche G, and Derex L.1995. [Effect of buspirone, a serotonergic 5-HT-1A agonist in cerebellar ataxia:a pilot study. Preliminary communication]. Rev Neurol (Paris) 151(12):708-713.
    145. Twarog BM, and Page IH.1953. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175(1):157-161.
    146. Vanover KE, Betz AJ, Weber SM, Bibbiani F, Kielaite A, Weiner DM, Davis RE, Chase TN, and Salamone JD.2008. A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Phannacol Biochem Behav 90(4):540-544.
    147. Veasey SC, Fornal CA, Metzler CW, and Jacobs BL.1995. Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15(7 Pt 2):5346-5359.
    148. Veasey SC, Fornal CA, Metzler CW, and Jacobs BL.1997. Single-unit responses of serotonergic dorsal raphe neurons to specific motor challenges in freely moving cats. Neuroscience 79(1):161-169.
    149. Walker JJ, Bishop GA, Ho RH, and King JS.1988. Brainstem origin of serotonin-and enkephalin-immunoreactive afferents to the opossum's cerebellum. J Comp Neurol 276(4):481-497.
    150. Wang Y, Strahlendorf JC, and Strahlendorf HK.1992. Serotonin reduces a voltage-dependent transient outward potassium current and enhances excitability of cerebellar Purkinje cells. Brain Res 571(2):345-349.
    151. Ward RP, Hamblin MW, Lachowicz JE, Hoffman BJ, Sibley DR, and Dorsa DM.1995. Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemistry. Neuroscience 64(4):1105-1111.
    152. Weiss M, and Pellet J.1982a. Raphe-cerebellum interactions. Ⅰ. Effects of cerebellar stimulation and harmaline administration on single unit activity of midbrain raphe neurons in the rat. Exp Brain Res 48(2):163-170.
    153. Weiss M, and Pellet J.1982b. Raphe-cerebellum interactions.Ⅱ. Effects of midbrain raphe stimulation and harmaline administration on single unit activity of cerebellar cortical cells in the rat. Exp Brain Res 48(2):171-176.
    154. Wiklund L, Bjorklund A, and Sjolund B.1977. The indolaminergic innervation of the inferior olive.1. Convergence with the direct spinal afferents in the areas projecting to the cerebellar anterior lobe. Brain Res 131(1):1-21.
    155. Winter C, Reutiman TJ, Folsom TD, Sohr R, Wolf RJ, Juckel G, and Fatemi SH.2008. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism. Eur Neuropsychopharmacol 18(10):712-716.
    156. Wright DE, Seroogy KB, Lundgren KH, Davis BM, and Jennes L.1995. Comparative localization of serotonin1A,1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357-373.
    157. Wyne KT.2005. A comprehensive review of tremor. JAAPA 18(12):43-50; quiz 57-48.
    158. Yew DT, Yeung LY, Wai MS, and Mak YT.2009.5-HT 1A and 2A receptor positive cells in the cerebella of mice and human and their decline during aging. Microsc Res Tech 72(9):684-689.
    159. Zhang J, Huang XY, Ye ML, Luo CX, Wu HY, Hu Y, Zhou QG, Wu DL, Zhu LJ, and Zhu DY.2010. Neuronal nitric oxide synthase alteration accounts for the role of 5-HT1A receptor in modulating anxiety-related behaviors. J Neurosci 30(7):2433-2441.
    160. Zhang XY, Yu L, Zhuang QX, Zhu JN, and Wang JJ.2013. Central functions of the orexinergic system. Neurosci Bull.
    161. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, and Wang JJ.2006. The cerebellar-hypothalamic circuits:potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52(1):93-106.
    1. Aizenman CD, Huang EJ, and Linden DJ.2003. Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89(4):1738-1747.
    2. Armstrong DL, Hay M, and Terrian DM.1987. Modulation of cerebellar granule cell activity by iontophoretic application of serotonergic agents. Brain Res Bull 19(6):699-704.
    3. Barnes NM, and Sharp T.1999. A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083-1152.
    4. Bidzinski A, Siemiatkowski M, Czlonkowska A, Tonderska A, and Plaznik A.1998. The effect of serotonin depletion on motor activity habituation, and [3H]muscimol binding in the rat hippocampus. Eur J Pharmacol 353(1):5-12.
    5. Bishop GA, Ho RH, and King JS.1988. A temporal analysis of the origin and distribution of serotoninergic afferents in the cerebellum of pouch young opossums. Anat Embryol (Berl) 179(1):33-48.
    6. Bobker DH.1994. A slow excitatory postsynaptic potential mediated by 5-HT2 receptors in nucleus prepositus hypoglossi. J Neurosci 14(4):2428-2434.
    7. Boschert U, Amara DA, Segu L, and Hen R.1994. The mouse 5-hydroxytryptaminelB receptor is localized predominantly on axon terminals. Neuroscience 58(1):167-182.
    8. Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, and Holmes A.2006. Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30(12):1957-1965.
    9. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Nekrassov-Protasova V, Durand-Rivera A, Montes S, and Ayala-Guerrero F.2010. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res35(10):1538-1545.
    10. Carratu MR, Borracci P, Coluccia A, Giustino A, Renna G, Tomasini MC, Raisi E, Antonelli T, Cuomo V, Mazzoni E et al..2006. Acute exposure to methylmercury at two developmental windows:focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 141(3):1619-1629.
    11. Chattopadhyay A.2007. Serotonin receptors in neurobiology. Boca Raton:CRC Press.206 p., 204 p. of plates p.
    12. Chen K, Zhu JN, Li HZ, and Wang JJ.2003. Histamine elicits neuronal excitatory response of red nucleus in the rat via H2 receptors in vitro. Neurosci Lett 35 1(1):25-28.
    13. Cumming-Hood PA, Strahlendorf HK, and Strahlendorf JC.1993. Effects of serotonin and the 5-HT2/1C receptor agonist DOI on neurons of the cerebellar dentate/interpositus nuclei: possible involvement of a GABAergic interneuron. Eur J Pharmacol 236(3):457-465.
    14. Di Mauro M, Fretto G, Caldera M, Li Volsi G, Licata F, Ciranna L, and Santangelo F.2003. Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat:functional effects on neuronal firing. Neurosci Lett 347(2):101-105.
    15. Dieudonne S, and Dumoulin A.2000. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20(5):1837-1848.
    16. Dominguez-Lopez S, Howell R, and Gobbi G.2012. Characterization of serotonin neurotransmission in knockout mice:implications for major depression. Rev Neurosci 23(4):429-443.
    17. Gardette R, Krupa M, and Crepel F.1987. Differential effects of serotonin on the spontaneous discharge and on the excitatory amino acid-induced responses of deep cerebellar nuclei neurons in rat cerebellar slices. Neuroscience 23(2):491-500.
    18. Geurts FJ, De Schutter E, and Timmermans JP.2002. Localization of 5-HT2A,5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24(1):65-74.
    19. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q et al..2007. Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439-452.
    20. Halberstadt AL, Powell SB, and Geyer MA.2013. Role of the 5-HT receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70C:218-227.
    21. Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, and Powell SB.2009.5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34(8):1958-1967.
    22. Harmon J, and Hoyer D.2008. Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198-213.
    23. He YC, Wu GY, Li D, Tang B, Li B, Ding Y, Zhu JN, and Wang JJ.2012. Histamine promotes rat motor performances by activation of H(2) receptors in the cerebellar fastigial nucleus. Behav Brain Res 228(1):44-52.
    24. Hirono M, Saitow F, Kudo M, Suzuki H, Yanagawa Y, Yamada M, Nagao S, Konishi S, and Obata K.2012. Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLoS One 7(1):e29663.
    25. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP et al..2009. Characterisation of 5-HT3C,5-HT3D and 5-HT3E receptor subunits:evolution, distribution and function. J Neurochem 108(2):384-396.
    26. Ito M.1984. The cerebellum and neural control. New York:Raven Press, xvii,580 p. p.
    27. Kalueff AV, Jensen CL, and Murphy DL.2007. Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169:87-97.
    28. Kerr CW, and Bishop GA.1991. Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 304(3):502-515.
    29. Kitzman PH, and Bishop GA.1997. The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells:an in vivo study in the cat. Prog Brain Res 114:209-223.
    30. Li WC, Tang XH, Li HZ, and Wang JJ.1999. Histamine excites rat cerebellar granule cells in vitro through H1 and H2 receptors. J Physiol Paris 93(3):239-244.
    31. Llinas RR, and Walton KD.1990. Cerebellum. In:Shepherd, G. M. The Synaptic organization of the brain.3rd ed. New York:Oxford University Press, p 214-245.
    32. Loubinoux I, Tombari D, Pariente J, Gerdelat-Mas A, Franceries X, Cassol E, Rascol O, Pastor J, and Chollet F.2005. Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer. Neuroimage 27(2):299-313.
    33. Mendlin A, Martin FJ, Rueter LE, and Jacobs BL.1996. Neuronal release of serotonin in the cerebellum of behaving rats:an in vivo microdialysis study. J Neurochem 67(2):617-622.
    34. Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, and Matsuyama K.1999. Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82(1):290-300.
    35. Murano M, Saitow F, and Suzuki H.2011. Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience 172:118-128.
    36. Nichols DE, and Nichols CD.2008. Serotonin receptors. Chem Rev 108(5):1614-1641.
    37. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, and John Mann J.2005. Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785-793.
    38. Pasqualetti M, Ori M, Nardi I, Castagna M, Cassano GB, and Marazziti D.1998. Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Brain Res Mol Brain Res 56(1-2):1-8.
    39. Paxinos G, and Watson C.2007. The rat brain in stereotaxic coordinates. Amsterdam; Boston;:Academic Press/Elsevier.
    40. Peng SY, Zhuang QX, He YC, Zhu JN, and Wang JJ.2013. Histamine excites neurons of the inferior vestibular nucleus in rats by activation of H1 and H2 receptors. Neurosci Lett 541:87-92.
    41. Pytliak M, Vargova V, Mechirova V, and Felsoci M.2011. Serotonin receptors-from molecular biology to clinical applications. Physiol Res 60(1):15-25.
    42. Saitow F, Hirono M, and Suzuki H.2012. Serotonin and Synaptic Transmission in the Cerebellum. In:Manto M, Gruol DL, Schmahmann JD, Koibuchi N, and Rossi F, editors. Handbook of the cerebellum and cerebellar disorders.1st ed. New York:Springer, p 915-926.
    43. Saitow F, Murano M, and Suzuki H.2009. Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol 101(3):1361-1374.
    44. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, and Verge D.1999. Cellular and subcellular localization of 5-hydroxytryptaminelB receptors in the rat central nervous system:immunocytochemical, autoradiographic and lesion studies. Neuroscience 88(3):899-915.
    45. Schweighofer N, Doya K, and Kuroda S.2004. Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44(2-3):103-116.
    46. Shen B, Li HZ, and Wang JJ.2002. Excitatory effects of histamine on cerebellar interpositus nuclear cells of rats through H(2) receptors in vitro. Brain Res 948(1-2):64-71.
    47. Song YN, Li HZ, Zhu JN, Guo CL, and Wang JJ.2006. Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 140(1):33-43.
    48. Strahlendorf JC, Strahlendorf HK, and Lee M.1986. Enhancement of cerebellar Purkinje cell complex discharge activity by microiontophoretic serotonin. Exp Brain Res 61(3):614-624.
    49. Thornton EW, and Goudie AJ.1978. Evidence for the role of serotonin in the inhibition of specific motor responses. Psychopharmacology (Berl) 60(1):73-79.
    50. Tian L, Wen YQ, Li HZ, Zuo CC, and Wang JJ.2000. Histamine excites rat cerebellar Purkinje cells via H2 receptors in vitro. Neurosci Res 36(1)61-66.
    51. Wang JJ, and Dutia MB.1995. Effects of histamine and betahistine on rat medial vestibular nucleus neurones:possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp Brain Res 105(1):18-24.
    52. Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, and Wang JJ.2011. A role for orexin in central vestibular motor control. Neuron 69(4):793-804.
    53. Zhang XY, Yu L, Zhuang QX, Zhang J, Zhu JN, and Wang JJ.2013. Hypothalamic Histaminergic and Orexinergic Modulation on Cerebellar and Vestibular Motor Control. Cerebellum 12(3):294-296.
    54. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, and Wang JJ.2006. The cerebellar-hypothalamic circuits:potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52(1):93-106.
    55. Zhuang QX, Wu YH, Wu GY, Zhu JN, and Wang JJ.2012. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H(1) and H(2) Receptors in vitro. Neurosignals 21(3-4):174-183.
    56. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, and Hen R.1999. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21(2 Suppl):52S-60S.
    1. Anichtchik OV, Peitsaro N, Rinne JO, Kalimo H, and Panula P.2001. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson's disease. Neurobiol Dis 8(2):707-716.
    2. Anichtchik OV, Rinne JO, Kalimo H, and Panula P.2000. An altered histaminergic innervation of the substantia nigra in Parkinson's disease. Exp Neurol 163(1):20-30.
    3. Bell MI, Richardson PJ, and Lee K.2000. Histamine depolarizes cholinergic interneurones in the rat striatum via a H(1)-receptor mediated action. Br J Pharmacol 131(6):1135-1142.
    4. Bergman H, Wichmann T, and DeLong MR.1990. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436-1438.
    5. Bevan MD, Magill PJ, Terman D, Bolam JP, and Wilson CJ.2002. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25(10):525-531.
    6. Bezard E, Boraud T, Bioulac B, and Gross CE.1999. Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci 11(6):2167-2170.
    7. Breunig E, Michel K, Zeller F, Seidl S, Weyhern CW, and Schemann M.2007. Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J Physiol 583(Pt 2):731-742.
    8. Brown RE, Stevens DR, and Haas HL.2001. The physiology of brain histamine. Prog Neurobiol 63(6):637-672.
    9. Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN, Lewis AS, Goldberg AB, Tkatch T, Shigemoto R, Fleming SM et al..2011. HCN channelopathy in external globus pallidus neurons in models of Parkinson's disease. Nat Neurosci 14(1):85-92.
    10. Chen K, Wang JJ, Yung WH, Chan YS, and Chow BK.2005. Excitatory effect of histamine on neuronal activity of rat globus pallidus by activation of H2 receptors in vitro. Neurosci Res 53(3):288-297.
    11. Chen K, Zhu JN, Li HZ, and Wang JJ.2003. Histamine elicits neuronal excitatory response of red nucleus in the rat via H2 receptors in vitro. Neurosci Lett 351(1):25-28.
    12. Cilia R, Marotta G, Landi A, Isaias IU, Mariani CB, Vergani F, Benti R, Sganzerla E, Pezzoli G, and Antonini A.2009. Clinical and cerebral activity changes induced by subthalamic nucleus stimulation in advanced Parkinson's disease:a prospective case-control study. Clin Neurol Neurosurg 111(2):140-146.
    13. Coelho MH, Silva IJ, Azevedo MS, and Manso CF.1991. Decrease in blood histamine in drug-treated parkinsonian patients. Mol Chem Neuropathol 14(2):77-85.
    14. Garbarg M, Javoy-Agid F, Schwartz JC, and Agid Y.1983. Brain histidine decarboxylase activity in Parkinson's disease. Lancet 1(8314-5):74-75.
    15. Glajch KE, Fleming SM, Surmeier DJ, and Osten P.2012. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behav Brain Res 230(2):309-316.
    16. Goodchild RE, Court JA, Hobson I, Piggott MA, Perry RH, Ince P, Jaros E, and Perry EK. 1999. Distribution of histamine H3-receptor binding in the normal human basal ganglia: comparison with Huntington's and Parkinson's disease cases. Eur J Neurosci 11(2):449-456.
    17. Haas H, and Panula P.2003. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121-130.
    18. Haas HL, Sergeeva OA, and Selbach O.2008. Histamine in the nervous system. Physiol Rev 88(3):1183-1241.
    19. Hashimoto T, Elder CM, Okun MS, Patrick SK, and Vitek JL.2003. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916-1923.
    20. Hassani OK, Mouroux M, and Feger J.1996. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 72(1):105-115.
    21. He YC, Wu GY, Li D, Tang B, Li B, Ding Y, Zhu JN, and Wang JJ.2012. Histamine promotes rat motor performances by activation of H(2) receptors in the cerebellar fastigial nucleus. Behav Brain Res 228(1):44-52.
    22. Jin X, and Costa RM.2010. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466(7305):457-462.
    23. Korotkova TM, Haas HL, and Brown RE.2002. Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett 320(3):133-136.
    24. Korotkova TM, Sergeeva OA, Ponomarenko AA, and Haas HL.2005. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology 49(1):129-134.
    25. Li WC, Tang XH, Li HZ, and Wang JJ.1999. Histamine excites rat cerebellar granule cells in vitro through H1 and H2 receptors. J Physiol Paris 93(3):239-244.
    26. Lin TP, Carbon M, Tang C, Mogilner AY, Sterio D, Beric A, Dhawan V, and Eidelberg D. 2008. Metabolic correlates of subthalamic nucleus activity in Parkinson's disease. Brain 131(Pt 5):1373-1380.
    27. Liu CQ, Chen Z, Liu FX, Hu DN, and Luo JH.2007. Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology 53(7):832-841.
    28. Magill PJ, Bolam JP, and Bevan MD.2001. Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106(2):313-330.
    29. Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, and Magill PJ.2008. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28(18):4795-4806.
    30. Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, and Palacios JM.1990. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526(2):322-327.
    31. Nakamura S, Ohnishi K, Nishimura M, Suenaga T, Akiguchi I, Kimura J, and Kimura T. 1996. Large neurons in the tuberomammillary nucleus in patients with Parkinson's disease and multiple system atrophy. Neurology 46(6):1693-1696.
    32. O'Neill KA, and Gertner SB.1987. Effects of centrally administered H2 antagonists on motor activity. Pharmacol Biochem Behav 26(4):683-686.
    33. Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, and Olanow CW.2000. Pathophysiology of the basal ganglia in Parkinson's disease. Trends Neurosci 23(10 Suppl):S8-19.
    34. Ogawa S, Yanai K, Watanabe T, Wang ZM, Akaike H, Ito Y, and Akaike N.2009. Histamine responses of large neostriatal interneurons in histamine H1 and H2 receptor knock-out mice. Brain Res Bull 78(4-5):189-194.
    35. Paxinos G, and Watson C.2007. The rat brain in stereotaxic coordinates. Amsterdam Boston;:Academic Press/Elsevier.
    36. Peng SY, Zhuang QX, He YC, Zhu JN, and Wang JJ.2013. Histamine excites neurons of the inferior vestibular nucleus in rats by activation of H1 and H2 receptors. Neurosci Lett 541:87-92.
    37. Ray NJ, Jenkinson N, Wang S, Holland P, Brittain JS, Joint C, Stein JF, and Aziz T.2008. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213(1):108-113.
    38. Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, Kalimo H, Roytta M, and Panula P.2002. Increased brain histamine levels in Parkinson's disease but not in multiple system atrophy. J Neurochem 81(5):954-960.
    39. Sallmen T, Beckman AL, Stanton TL, Eriksson KS, Tarhanen J, Tuomisto L, and Panula P. 1999. Major changes in the brain histamine system of the ground squirrel Citellus lateralis during hibernation. J Neurosci 19(5):1824-1835.
    40. Schwartz IB, Carr TW, and Triandaf I.1997. Tracking controlled chaos:Theoretical foundations and applications. Chaos 7(2):664-679.
    41. Shen B, Li HZ, and Wang JJ.2002. Excitatory effects of histamine on cerebellar interpositus nuclear cells of rats through H(2) receptors in vitro. Brain Res 948(1-2):64-71.
    42. Sittig N, and Davidowa H.2001. Histamine reduces firing and bursting of anterior and intralaminar thalamic neurons and activates striatal cells in anesthetized rats. Behav Brain Res 124(2):137-143.
    43. Song YN, Li HZ, Zhu JN, Guo CL, and Wang JJ.2006. Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 140(1):33-43.
    44. Tang B, Zhang J, Yu L, Li HZ, Zhu JN, and Wang JJ.2008. Excitation of histamine on neuronal activity of cerebellar fastigial nucleus in rat. Inflamm Res 57 Suppl 1:S41-42.
    45. Tian L, Wen YQ, Li HZ, Zuo CC, and Wang JJ.2000. Histamine excites rat cerebellar Purkinje cells via H2 receptors in vitro. Neurosci Res 36(1):61-66.
    46. Tofighy A, Abbott A, Centonze D, Cooper AJ, Noor E, Pearce SM, Puntis M, Stanford IM, Wigmore MA, and Lacey MG 2003. Excitation by dopamine of rat subthalamic nucleus neurones in vitro-a direct action with unconventional pharmacology. Neuroscience 116(1):157-166.
    47. Vila M, Perier C, Feger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y, and Hirsch EC.2000. Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 12(l):337-344.
    48. Vizuete ML, Traiffort E, Bouthenet ML, Ruat M, Souil E, Tardivel-Lacombe J, and Schwartz JC.1997. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience 80(2):321-343.
    49. Wang JJ, and Dutia MB.1995. Effects of histamine and betahistine on rat medial vestibular nucleus neurones:possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp Brain Res 105(1):18-24.
    50. Witkin JM, and Nelson DL.2004. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacol Ther 103(1):1-20.
    51. Zhang J, Han XH, Li HZ, Zhu JN, and Wang JJ.2008. Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors. Neurosci Lett 448(1):15-19.
    52. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, and Wang JJ.2006. The cerebellar-hypothalamic circuits:potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52(1):93-106.
    53. Zhu Z, Bartol M, Shen K, and Johnson SW.2002. Excitatory effects of dopamine on subthalamic nucleus neurons:in vitro study of rats pretreated with 6-hydroxydopamine and levodopa. Brain Res 945(1):31-40.
    54. Zhuang QX, Wu YH, Wu GY, Zhu JN, and Wang JJ.2013. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H(1) and H(2) Receptors in vitro. Neurosignals 21(3-4):174-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700