糖尿病患者外周血细胞组蛋白修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨2型糖尿病(T2DM)患者外周血单个核细胞(PBMC)整体组蛋白修饰情况及PBMC肿瘤坏死因子-α(TNF-a)、环氧合酶-2(COX-2)基因启动子区域组蛋白乙酰化情况。
     方法:收集12例T2DM患者及12例健康对照PBMC,H3K4/H3K9甲基化及H3/H4乙酰化检测试剂盒提取组蛋白和检测H3K4/H3K9甲基化及H3/H4乙酰化水平。实时多聚酶链反应(Real time-PCR)法检测T2DM PBMC组蛋白修饰酶谱、TNF-a mRNA、COX-2 mRNA表达水平。染色质免疫沉淀技术检测TNF-a及COX-2基因启动子区域组蛋白H3乙酰化状态。
     结果:与健康对照组比较,T2DM患者PBMC组蛋白H3K4甲基化水平升高(P<0.05)、H3乙酰化水平升高(P<0.01)、H4乙酰化水平升高(P<0.05)。Real time-PCR结果显示T2DM患者PBMC组蛋白去乙酰化酶HDAC2、SIRT1 mRNA表达分别是健康对照组的3.55±0.30(P<0.01)、0.40±0.25倍(P<0.05);组蛋白乙酰转移酶P300、CREBBP mRNA表达分别是健康对照组的3.11±0.38(P<0.05)、2.78±0.45(P<0.05)倍;组蛋白去甲基化酶KDM3A、KDM5B和LSD1 mRNA表达分别是健康对照组的0.43±0.43(P<0.05)、3.55±0.30(P<0.01)和0.36±0.35(P<0.05)倍;组蛋白甲基转移酶SET1mRNA表达是健康对照组的3.06±0.51倍(P<0.05)。与正常对照组比较,T2DM患者PBMC TNF-a及COX-2 mRNA表达增高,TNF-a及COX-2基因启动子区域组蛋白H3呈高乙酰化状态。
     结论:2型糖尿病PBMC整体组蛋白修饰及组蛋白修饰酶谱异常,TNF-a及COX-2基因启动子区域组蛋白H3高乙酰化。
     目的:探讨成人隐匿性自身免疫糖尿病(LADA)患者外周血CD4+T细胞整体组蛋白修饰及CD4+T细胞叉头框蛋白3 (Foxp3)基因启动子区域组蛋白乙酰化情况。
     方法:收集16例LADA患者及16例健康对照外周血单个核细胞,磁珠分选CD4+T细胞,H3K4/H3K9甲基化及H3/H4乙酰化检测试剂盒提取组蛋白和检测H3K4/H3K9甲基化及H3/H4乙酰化水平。Real time-PCR法检测CD4+T组蛋白修饰酶谱及Foxp3 mRNA表达水平。染色质免疫沉淀技术检测Foxp3基因启动子区域组蛋白H3乙酰化状态。
     结果:与健康对照组比较,LADA患者CD4+T细胞组蛋白H3/H4乙酰化水平降低(P<0.05)。Real Time-PCR结果显示LADA患者组CD4+T细胞组蛋白去乙酰化酶HDAC2、HDAC5、SIRT1 mRNA表达上调;组蛋白乙酰转移酶P300、CREBBP、PCAF mRNA表达下调;组蛋白去甲基化酶LSD1 mRNA表达是健康对照组的0.17±0.13(P<0.01)倍;组蛋白甲基转移酶SUV39H2 mRNA表达是健康对照组的0.36±0.11(P<0.05)倍。LADA患者外周血CD4+T细胞Foxp3 mRNA表达较正常对照组降低(P<0.05),Foxp3基因启动子区域(-501/-416)(-204/-114)组蛋白H3乙酰化水平降低(P<0.01)。
     结论:LADA患者CD4+T细胞整体组蛋白修饰及组蛋白修饰酶谱异常,Foxp3基因启动子区域(-501/-416)(-204/-114)组蛋白H3低乙酰化。
     目的探讨组蛋白去乙酰化酶抑制剂曲古抑菌素A(TSA)干预对LADA患者CD4+T细胞乙酰化水平及Foxp3表达的影响。
     方法采用密度梯度离心法分离LADA患者外周血单个核细胞,免疫磁珠分离CD4+T细胞,分别给予TSA处理培养相应时间后收集细胞。Western-blot法分析TSA干预对LADA患者CD4+T细胞H3乙酰化及Foxp3表达影响。
     结果与正常对照组相比,TSA干预组LADA患者CD4+T细胞组蛋白H3乙酰化水平及Foxp3表达水平均增加,并呈时间和剂量依赖性。
     结论TSA干预增加LADA患者CD4+T细胞H3乙酰化水平及Foxp3表达水平。
Aims
     To investigate the global histone modification patterns and the status of histone H3 acetylation at Tumor necrosis factor-a (TNF-a) and cyclooxygenase-2 (COX-2) gene promoter region in peripheral blood mononuclear cells (PBMCs) collected from Type 2 diabetic patients.
     Methods
     Global histone H3/H4 acetylation and H3K4/H3K9 methylation in PBMCs from 12 Type 2 diabetic patients and 12 healthy control subjects were quantified by the EpiQuikTM global histone H3/H4 acetylation and H3K4/H3K9 methylation assay kit. The differential expression of the histone modification enzymes and TNF-a mRNA, COX-2 mRNA were measured by real-time polymerase chain reaction (Real-time PCR). Chromatin immunoprecipitation analysis was used to detect the status of histone H3 acetylation at TNF-a and COX-2 gene promoter region.
     Results
     Increased global H3K4 methylation (P<0.05), H3 acetylation (P <0.01) and H4 acetylation(P<0.05) was observed in PBMCs from type 2 diabetic patients compared with controls. mRNA level of the histone deacetylases HDAC2, SIRT1 in patients PBMCs was 3.55±0.30 (P <0.01),0.40±0.25 (P<0.05) fold that in healthy controls. mRNA level of the histone acetyltransferases P300, CREBBP in patients PBMCs was 3.11±0.38 (P<0.05),2.78±0.45 (P<0.05)fold that in healthy controls. mRNA level of the histone demethylase KDM3A, KDM5B, LSD1 in patients PBMCs was 0.43±0.43 (P<0.05),3.55±0.30 (P<0.01),0.36±0.35 (P<0.05) fold that in healthy controls. mRNA level of the histone methytransferases SET1 in patients PBMCs was 3.06±0.51 (P<0.05) fold that in healthy controls. TNF-a and COX-2 mRNA was overexpressed in PBMCs from Type 2 diabetic patients compared with normal controls. H3 acetylation at the TNF-a and COX-2 gene promoter region was elevated in PBMCs from Type 2 diabetic patients compared with normal controls.
     Conclusion
     An aberrant expression pattern of histone modification and histone modification enzymes existed in PBMCs of T2DM. H3 acetylation at the TNF-a and COX-2 gene promoter region was elevated.
     Aims
     To investigate global histone modification patterns and the status of histone H3 acetylation at Forkhead box protein 3 (Foxp3) gene promoter regions in CD4+ T cells collected from latent autoimmune diabetes in adults (LADA).
     Methods
     Global histone H3/H4 acetylation and H3K4/H3K9 methylation in CD4+ T cells from 16 LADA patients and 16 healthy control subjects were analyzed by the EpiQuikTM global histone H3/H4 acetylation and H3K4/H3K9 methylation assay kits. The differential expression of the histone modification enzymes and Foxp3 mRNA were measured by Real-time PCR. Chromatin immunoprecipitation analysis was used to detect the changes of histone H3 acetylation at the promoter region of Foxp3 gene.
     Results
     Reduced H3/H4 acetylation was observed in the LADA CD4+ T cells compared with the controls (P<0.05). Compared with healthy controls, mRNA levels of the histone deacetylases HDAC2, HDAC5 and SIRT1 in the CD4+T cells of patients were upregulated, mRNA levels of the histone acetyltransferases P300, CREBBP, PCAF in patients CD4+ T cells were downregulated. mRNA level of the histone demethylase LSD1 in patients CD4+ T cells was 0.17±0.13 (P<0.01) fold that in healthy controls. mRNA level of the histone methytransferases SUV39H2 in patients CD4+ T cells was 0.36±0.11 (P<0.05) fold that in healthy controls. Foxp3 mRNA was downregulated in CD4+ T cells from LADA patients (P<0.05). H3 acetylation at the Foxp3 gene promoter region (-501/-416) (-204/-114) was lower in CD4+ T cells from LADA patients compared with normal controls (P<0.01)
     Conclusion
     An aberrant expression pattern of histone modification and histone modification enzymes existed in CD4+ T cells of LADA. H3 acetylation at the Foxp3 gene promoter region (-501/-416) (-204/-114) was decreased.
     Objective To investigate whether the histone deacetylase inhibitor, trichostatin A (TSA) interfere with H3 acetylation and Foxp3 expression in CD4+ T cells from LADA patients.
     Methods Peripheral blood mononuclear cells (PBMC) isolated from blood of healthy volunters were prepared using the Ficoll-Hypaque method. CD4+ T cells were isolated using magnetic beads. CD4+ T cells were treated with different concentrations of TSA. Cells were collected after appropriate time, H3 acetylation and the expression of Foxp3 was analyzed by Western-blot.
     Results Compared with control group, TSA intervention increased H3 acetylation and Foxp3 expression in CD4+ T cells from LADA patients time-dependantly and dose-dependantly.
     Conclusion H3 acetylation and Foxp3 expression in LADA CD4+ T cells was elaveted by TSA treatment.
引文
参考文献
    [1]Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med.2010,362:1090-101.
    [2]侯粲,李一君,周智广.糖尿病表观遗传学研究进展.中华医学杂志.2009,89:715-717
    [3]Goldberg AD, Allis CD, Bernstein E. Epigenetics:a landscape takes shape. Cell, 2007,128(4):635-638.
    [4]Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol,2008,9(10):815-820.
    [5]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429(6990):457-463.
    [6]Johnsson AE, Wright AP.The role of specific HAT-HDAC interactions in transcriptional elongation. Cell Cycle,2010,9(3):467-471.
    [7]Legube G, Trouche D.Regulating histone acetyltransferases and deacetylases. EMBO Rep,2003,4(10):944-947.
    [8]刘细玉.1型糖尿病患者CD4+T细胞组蛋白修饰情况的研究.[硕士学位论文].长沙:中南大学,2010.
    [9]Mutskov V, Raaka BM., Felsenfeld G, et al. The Human insulingene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells,2007,25:3223-3233.
    [10]Miao F, Gonzalo IG, Lanting L, et al.In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem, 2004,279:18091-18097.
    [11]Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev.2005,21:416-433.
    [12]Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J,2006, 273(14):3121-3135.
    [13]Berger SL.The complex language of chromatin regulation during transcription. Nature,2007,447(7143):407-412.
    [14]Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics,2009,4(3):129-132.
    [15]Miao F, Wu X, Zhang L, et al. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem,2007,282:13854-13863.
    [16]Miao F, Smith DD, Zhang L, et al.Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation:an epigenetic study in diabetes.2008,57:3189-3198.
    [17]Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab.2010,21:223-229.
    [18]Villeneuve LM, Reddy MA, Natarajan R. Epigenetics:Deciphering its role in Diabetes and its Chronic Complications. Clin Exp Pharmacol Physiol.2011 Feb 10. doi:10.1111/j.1440-1681.2011.05497.x. [Epub ahead of print]
    [19]Ling C, Groop L.Epigenetics:a molecular link between environmental factors and type 2 diabetes. Diabetes.2009,58(12):2718-25.
    [20]Stitzel ML, Sethupathy P, Pearson DS. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab.2010,12(5):443-55.
    [21]J.C. Pickup. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care,2004,27:813-823.
    [22]Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab.2011,13(1):11-22.
    [23]World Health Organization. Definition, Diagnosis, and Classification of Diabetes Mellitus and its Complications:Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva, Switzerland, World Health Organization 1999.
    [24]Li X, Zhou ZG, Huang G, et al. Optimal cutoff point of glutamate decarboxylase antibody titers in differentiating two subtypes of adult-onset latent autoimmune diabetes. Ann N Y Acad Sci,2004,1037:122-126.
    [25]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc,2008,3(6):1101-1108.
    [26]Chakrabarti SK, Francis J, Ziesmann SM, et al. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic β cells. J Biol Chem,2003,278:23617-23623.
    [27]Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes.2009, 58:1229-1236.
    [28]Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol.2010,80(12):1853-1859.
    [29]Inagaki T, Tachibana M, Magoori K, et al. Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells,2009,14:991-1001.
    [30]Chen SS, Jenkins AJ, Majewski H. Elevated plasma prostaglandins and acetylated histone in monocytes in Type 1 diabetes patients. Diabet Med.2009; 26(2):182-6.
    [31]Mutskov V, Raaka BM., Felsenfeld G, et al. The Human insulingene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells,2007, 25:3223-3233.
    [32]Mutskov V, Felsenfeld G.The human insulin gene is part of a large open chromatin domain specific for human islets. Proc Natl Acad Sci U S A,2009, 106(41):17419-17424.
    [33]Lawless MW, Norris S, O'Byrne KJ, et al. Targeting histone deacetylases for the treatment of immune, endocrine & metabolic disorders. Endocr Metab Immune Disord Drug Targets.2009,9(1):84-107.
    [34]Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer?. Nature Reviews Cancer,2009,9:123-128.
    [35]Milne JC, Lambert PD, Schenk S, et al. Small moleule activators of sirtl as therapeutics for the treatment of type 2 diabetes. Nature,2007,450:712-716.
    [36]Sun C, Zhang F, Ge X, et al. Sirtl improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metabolism,2007,6: 307-319.
    [37]Ling C, Groop L.Epigenetics:a molecular link between environmental factors and type 2 diabetes. Diabetes.2009,58(12):2718-25.
    [38]Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes:the atherosclerosis risk in communities study. Diabetes.2003,52:1799-1805.
    [39]Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study):a cohort study. Lancet,1999,353:1649-1652.
    [40]Shanmugam N, Kim YS, Lanting L, et al. Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J Biol Chem.2003,278:34834-34844.
    [41]Giulietti A, van Etten E, Overbergh L, et al. Monocytes from type 2 diabetic patients have a pro-inflammatory profile.1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract.2007,77:47-57.
    [42]Borst SE. The role of TNF-alpha in insulin resistance. Endocrine.2004, 23:177-182.
    [43]Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest.1995,95:2409-2415.
    [44]Curat CA, Miranville A, Sengenes C, et al. From blood monocytes to adipose tissue-resident macrophages:induction of diabetes by human mature adipocytes. Diabetes.2004,53:1285-1292.
    [45]Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J.Clin.Invest.2003,112:1796-1808.
    [46]Parameswaran N, Patial S.Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr.2010,20(2):87-103.
    [47]Lawless MW, O'Byrne KJ, Gray SG. Histone deacetylase inhibitors target diabetes via chromatin remodeling or as chemical chaperones? Curr Diabetes Rev.2009,5(3):201-9.
    [48]Dunoyer-Geindre S, Kruithof EK.Epigenetic control of tissue-type plasminogen activator synthesis in human endothelial cells. Cardiovasc Res,2011, [Epub ahead of print].
    [49]Natoli G, Saccani S, Bosisio D, et al. Interactions of NF kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol.2005. I 6:439-445
    [50]Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment.2002. Nat Immunol 3:69-75
    [51]Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol, 2009,5:367-73.
    [52]Pakala SB, Bui-Nguyen TM, Reddy SD, et al.Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis.J Biol Chem,2010,285(31):23590-23597.
    [53]Miao F, Li S, Chavez V, et al.Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17.Mol Endocrinol,2006,20(7):1562-1573.
    [54]Li Y, Reddy MA,Miao F, et al.Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes.Relevance to diabetes and inflammation. J Biol Chem,2008,283 (39): 26771-26781.
    [55]Aung HT, Schroder K, Himes SR, et al.LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J, 2006,20(9):1315-13127.
    [56]Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes:results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes,2003,52:812-817.
    [57]Groop L, Tuomi T, Rowley M, et al. Latent autoimmune diabetes in adults (LADA)-more than a name. Diabetologia,2006,49(9):1996-1998.
    [58]Naik RG, Brooks-Worrell BM, Palmer JP. Latent autoimmune diabetes in adults. J Clin Endocrinol Metab.2009,94(12):4635-4644.
    [59]侯粲,王建平,杨琳,等.成人隐匿性自身免疫糖尿病患者一级亲属的免疫特征及胰岛功能变化.中华医学杂志,2009,89(26):1820-1824
    [60]Pirola L, Balcerczyk A, Okabe J, et al. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol.2010,6(12):665-75.
    [61]Cooper ME, El-Osta A. Epigenetics:mechanisms and implications for diabetic complications. Circ Res.2010,107(12):1403-1413.
    [62]Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol.2010,299(l):F14-25.
    [63]Pirola L, Balcerczyk A, Okabe J, et al. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol.2010,6(12):665-75.
    [64]Cooper ME, El-Osta A. Epigenetics:mechanisms and implications for diabetic complications. Circ Res.2010,107(12):1403-1413.
    [65]Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol.2010,299(l):F14-25.
    [66]Dejaco C, Duftner C, Grubeck-Loebenstein B, et al. Imbalance of regulatory T cells in human autoimmune diseases. Immunology,2006,117:289-300.
    [67]Crispin JC, Vargas MI, Alcocer VJ. Immuno regulatory T cells in autoimmunity. Autoimmun Rev,2004,3:45-51.
    [68]Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes,2005, 54:92-99.
    [69]Brusko TM, Wasserfall CH, Clare-Salzler MJ, et al. Functional defects and the influence of age on the frequency of CD4+CD25+T-cells in type 1 diabetes. Diabetes,2005,54:1407-1414.
    [70]Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev,2006,212:86-98.
    [71]Li B, Samanta A, Song X, et al. FOXP3 ensembles in T-cell regulation. Immunol Rev,2006,212:99-113.
    [72]Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature,2007,445(7129):766-770.
    [73]Ouaked N, Mantel PY, Bassin C, et al. Regulation of the foxp3 gene by the Thl cytokines:the role of IL-27-induced STAT1. J Immunol.2009,182(2):1041-9.
    [74]Yang Z, Zhou Z, Huang G, et al. The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract.2007, 76(1):126-31.
    [75]Lal G, Bromberg JS. Epigenetic mechanisms of regulation of Foxp3 expression. Blood.2009,114(18):3727-35.
    [76]van Belle TL, Coppieters KT, von Herrath MG Type 1 diabetes:etiology, immunology, and therapeutic strategies. Physiol Rev.2011,91(1):79-118.
    [77]Hewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. Autoimmun,2009,33(1):3-11.
    [78]黄葳MRL/1pr狼疮鼠CD4+T细胞组蛋白去甲基化酶谱的研究:[硕士学位论文].长沙:中南大学,2010.
    [79]Zhou Z, Li X,Huang G, et al. Rosiglitazone combined with insulin preserves islet beta cell function in adult-onset latent autoimmune diabetes (LADA). Diabetes Metab Res Rev,2005,21:203-208.
    [80]Hu N, Qiu X, Luo Y, et al. Abnormal Histone Modification Patterns in Lupus CD4+ T Cells. J Rheumatol,2008,35(5):804-810.
    [81]Tikoo K, Meena RL, Kabra DG, et al. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br J Pharmacol, 2008,153(6):1225-1231.
    [82]Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem. 2010,110(6):1306-1313.
    [83]Noh H, Oh EY, Seo JY, et al. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-betal-induced renal injury. Am J Physiol Renal Physiol.2009,297(3):F729-39
    [84]McGee SL, Hargreaves M. Histone modifications and skeletal muscle metabolic gene expression. Clin Exp Pharmacol Physiol.2010,37(3):392-6.
    [85]McGee SL, van Denderen BJ, Howlett KF, AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes.2008,7(4):860-867
    [86]Yu XY, Geng YJ, Liang JL,et al. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res.2010,316(17):2903-2909.
    [87]SchiltzR L, Mizzen C A, VassilevA, et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem,1999,274:1189-1192
    [88]Musri MM, Carmona MC, Hanzu FA, et al. Histone demethylase LSD1 regulates adipogenesis. J Biol Chem.2010,285(39):30034-30041.
    [89]Reddy MA, Villeneuve LM, Wang M, et al. Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res.2008,103(6):615-623.
    [90]Grolleau-Julius A, Ray D, Yung RL. The role of epigenetics in aging and autoimmunity. Clin Rev Allergy Immunol.2010,39(1):42-50.
    [91]Wilson AG Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol.2008,79(8 Suppl):1514-1519.
    [92]Wierda RJ, Geutskens SB, Jukema JW, et al. Epigenetics in atherosclerosis and inflammation. J Cell Mol Med.2010,14(6A):1225-1240.
    [93]Pham MN, Hawa MI, Pfleger C, et al. Pro-and anti-inflammatory cytokines in latent autoimmune diabetes in adults, type 1 and type 2 diabetes patients:Action LADA4. Diabetologia.2011 Feb 24. [Epub ahead of print]
    [94]Zhang Y, Zhou ZG, Yang L, et al. Abnormal T cell autoimmunity against GAD65 in LADA patients. Zhonghua Yi Xue Za Zhi.2010,90(28):1963-5.Chinese.
    [95]Brusko TM, Wasserfall CH, Clare-Salzler MJ, et al. Functional defects and the influence of age on the frequency of CD4+CD25+ T-cells in type 1 diabetes. Diabetes,2005,54(5):1407-1414.
    [96]Lindley S, Dayan CM, Bishop A, et al. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes,2005, 54:92-99.
    [97]Sia C. Replenishing Peripheral CD4(+) Regulatory T Cells:A Possible Immune-Intervention Strategy in Type 1 Diabetes?. Rev Diabet Stud,2006,3(3): 102-107.
    [98]Dejaco C, Duftner C, Grubeck-Loebenstein B, et al. Imbalance of regulatory T cells in human autoimmune diseases. Immunology,2006,117:289-300.
    [99]Wan YY, Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature,2007,445(7129):766-770.
    [100]Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression:the keytoa stable regulatory T-cell lineage?. Nat Rev Immunol.2009,9(2):83-89.
    [101]Tao R, De Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T-cells. Nat Med,2007,13:1299-1307.
    [102]Mantel PY, Ouaked N, Ruckert B, et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol,2006,176:3593-3602.
    [103]Tone Y, Furuuchi K, Kojima Y, et al. SMAD3 and NEAT cooperate to induce FOXP3 expression through its enhancer. Nat Immunol,2008,9:194-202.
    [104]Floess S, Freyer J, Siewert C, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PloS Biol,2007,5(2):e38.
    [105]田易,吴玉章,倪兵FOXP3表达调控的研究进展.免疫学杂志.2010.26:823-826
    [106]Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression:the key to a stable regulatory T-cell lineage. Nat Rev Immunol,2009,9:83-89.
    [107]郭庆明,王青青.调节性T细胞foxp3基因表达的表观遗传学调控.细胞与分子免疫学杂志.2010.26:296-299
    [108]Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol,2007,8(3):277-284.
    [109]Beier UH, Wang L, Bhatti TR, et al. Sirtuin-1 targeting promotes foxp3+ T-regulatory cell function and prolongs allograft survival. Mol Cell Biol. 2011,31(5):1022-9.
    [110]van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood.2010, 4,115(5):965-74.
    [111]MacFarlane AJ,Strom A,Scott FW. Epigenetics:deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome.2009;20 (9-10):624-632.
    [112]Moreira JM,Scheipers P,Sorensen P. The histone deacetylase inhibitor Trichostatin A modulates CD4+T cell responses. BMC Cancer,2003,9(3):30.
    [113]胡南.系统性红斑狼疮CD4+T细胞组蛋白修饰异常及SIRT1-siRNA对MRL-lpr/lpr狼疮鼠模型干预的研究.[博士学位论文].长沙:中南大学,2008
    [114]Chung YL,Lee MY, Wang AJ, et al. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther,2003,8:707-717.
    [115]Gray SG, Dangond F:Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis.Epigenetics,2006,1:67-75.
    [116]魏强.曲古抑菌素A对T细胞的影响及在大鼠肾脏移植中的应用:[博士学位论文].广州:南方医科大学,2008
    [117]Reilly CM,Thomas M, Gogal R Jr, et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J Autoimmun.2008,31(2):123-30.
    [118]Strahl BD,Allis CD.The language of covalent histone modifications. Nature. 2000,403:41-45.
    [119]ChambersA E, Banerjee S, Chap lin T, et al. Histone acetylation mediated regulation of genes in leukaemic cells. Eur J Cancer,2003,39:1165-1175.
    [120]Blanchard F, Chipoy C.Histone deacetylase inhibitors:new drugs for the treatment of inflammatory diseases? Drug Discov Today.2005,10(3):197-204.
    [121]Dangond F,Gullan SR. Differeantial expression of human histone deacetlyase mRNAs in response to immune cell apoptosis induction by trichostatin A and butyrate. Biochem Biophys Res Commun,1998,247(3):833-837.
    [121]Susick L, Senanayake T, Veluthakal R. A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J Cell Mol Med.2009,13(8B):1877-85.
    [122]Skov S, Rieneck K, Bovin LF, et al. Histone deacetylase inhibitors:a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood.2003,101(4):1430-8.
    [123]Bohmig GA, Krieger PM, Saemann MD, et al. Stable prodrugs of n-butyric acid: suppression of T cell alloresponses in vitro and prolongation of heart allograft survival in a fully allogeneic rat strain combination. Transpl Immunol,1999,7: 221-227.
    [124]Chiba T, Yokosuka O, Fukai K, et al. Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology,2004,66:481-491.
    [125]Yasui W, One N, Ono S, et al. Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci,2003,983; 220-231.
    [126]Allan SE,Passerini L, Bacchetta R, et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest.2005,115(11):3276-3284.
    [127]Vignali DA,Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol.2008,8:523-532.
    [128]Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFOXP3pos regulatory T cells differentiate into IL-17-producing cells. Blood,2008,15(112):2340-2352.
    [129]Wang L, de Zoeten EF, Greene MI, et al. Immunomodulatory effects of deacetylase inhibitors:therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov.2009,8(12):969-981.
    [130]Johnson J, Pahuja A, Graham M, et al. Effects of histone deacetylase inhibitor SAHA on effector and FOXP3+regulatory T cells in rhesus macaques. Transplant Proc.2008,40(2):459-61.
    [131]Akimova T, Ge G, Golovina T, et al. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+ Tregs. Clin Immunol. 2010,136(3):348-63.
    [132]Tone Y, Furuuchi K, Kojima Y, et al. Smad 3 and NFAT cooperate to induce Foxp3 expression through ite enhancer. Nat Immunol,2008,9(2):194-202.
    [133]Tao R,de Zoeten EF, Ozkaynak E, et al. Histone deacetylase inhibition and transplantation. Curr Opin Immunol.2007,19(5):589-595
    [134]Reilly CM,Thomas M, Gogal R Jr, et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J Autoimmun.2008,31(2):123-30.
    [135]Samanta A, Li B, Song X, et al. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci U S A.2008,105(37):14023-14027.
    [136]Kozlowska A, Jagodzinski PP. Effect of Trichostatin A on CD4 surface density in perpheral blood T cells. Folia Histonchem Cytobiol,2006,44:259-262.
    [137]Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem,2000,275:20436-20443.
    [138]Patel T, Patel V, Singh R, et al. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol.2011 Feb 15. [Epub ahead of print]
    [139]Christensen DP, Dahllof M, Lundh M, et al. HDAC inhibition as a novel treatment for diabetes mellitus. Mol Med.2011 Jan 25. doi: 10.2119/molmed.2011.00021. [Epub ahead of print]
    [1]Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol.2010,28(10):1057-1068.
    [2]Mitchell BD, Pollin TI.Genomic imprinting in diabetes.Genome Med,2010,2 (8):55.
    [3]Temple IK, Shield JP.6q24 transient neonatal diabetes.Rev Endocr Metab Disord, 2010,1(3):199-204.
    [4]Cave H, Polak M, Drunat S, et al. Refinement of the 6q chromosomal region implicated in transient neonatal diabetes. Diabetes,2000,49:108-113.
    [5]Temple IK, Shield JP. Transient neonatal diabetes:a disorder of imprinting. J Med Genet,2002,39:872-875.
    [6]Arima T, Drewell RA, Arney KL, et al. A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus. Hum Mol Genet,2001,10:1475-1483.
    [7]Mackay DJ, Coupe AM, Shield JP, et al. Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum Genet,2002,110:139-144.
    [8]Mackay DJ, Temple IK. Transient neonatal diabetes mellitus type 1. Am J Med Genet C Semin Med Genet.2010,154C(3):335-42.
    [9]Julier C, Hyer RN, Davies J, et al. Insulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature, 1991,354:155-159.
    [10]Polychronakos C, Kukuvitis A. Parental genomic imprinting in endocrinopathies. Eur J Endocrinol,2002,147:561-569.
    [11]McCann JA., Xu YQ, Frechette R,et al. The insulin-like growth factor-Ⅱ receptor gene is associated with type 1 diabetes:evidence of a maternal effect. J Clin Endocrinol Metab,2004,89:5700-5706.
    [12]Wu W, Shang J, Feng Y, et al. Identification of glucose-dependant insulin secretion targets in pancreatic beta cells by combining defined-mechanism compound library screening and siRNA gene silencing. J Biomol Screen,2008, 13:128-134.
    [13]Marzban L, Tomas A, Becker TC, et al. Small interfering RNA-mediated suppression of proislet amyloid polypeptide expression inhibits islet amyloid formation and enhances survival of human islets in culture. Diabetes,2008,57: 3045-3055.
    [14]Herrera BM, Lockstone HE, Taylor JM, et al.Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia,2010,53(6):1099-1109.
    [15]Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, et al. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression.PLoS One,2010, 5(5):e10843.
    [16]Long J, Wang Y, Wang W, et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions.J Biol Chem,2010,285(30):23457-23465.
    [17]Ramachandran D, Roy U, Garg S, et al.Sirtl and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets.FEBS J,2011, doi:10.1111/j.1742-4658.2011.08042.x. [Epub ahead of print].
    [18]McArthur K, Feng B, Wu Y, et al.MicroRNA-200b Regulates Vascular Endothelial Growth Factor-Mediated Alterations in Diabetic Retinopathy. Diabetes,2011 Feb 28. [Epub ahead of print].
    [19]Wang B, Koh P, Winbanks C, et al. miR-200a Prevents renal fibrogenesis through repression of TGF-β2 expression.Diabetes,2011,60(1):280-287.
    [20]Hezova R, Slaby O, Faltejskova P, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.Cell Immunol,2010,260(2):70-74.
    [21]Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature,2004,432:226-230.
    [22]Zhao H, Guan J, Lee HM, et al.Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition.Pancreas,2010, (6):843-846.
    [23]Mi QS, He HZ, Dong Z, et al. microRNA deficiency in pancreatic islet cells exacerbates streptozotocin-induced murine autoimmune diabetes. Cell Cycle, 2010,9(15):3127-31279.
    [24]Yang BT, Dayeh TA, Kirkpatrick CL, et al.Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets.Diabetologia,2011,54(2):360-367.
    [25]Maier S, Olek A. Diabetes:a candidate disease for efficient DNA methylation profiling. J Nutr,2002,132:2440s-2443s.
    [26]Ling C, Del Guerra S, Lupi R, et al.Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion.Diabetologia,2008, 51(4):615-622.
    [27]Zheng Q, Xu Y, Liu Y, et al. Induction of Foxp3 demethylation increases regulatory CD4+CD25+T cells and prevents the occurrence of diabetes in mice.J Mol Med,2009,87(12):1191-1205.
    [28]Simmons RA, Templeton LJ, Gertz SJ, et al. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes,2001,50:2279-2286.
    [29]Simmons RA. Developmental origins of diabetes:the role of epigenetic mechanisms. Curr Opin Endocrinol Diabetes Obes,2007,14:13-16.
    [30]Bell CG, Teschendorff AE, Rakyan VK, et al.Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus.BMC Med Genomics,2010,5; 3:33.
    [31]Sapienza C, Lee J, Powell J, et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy.Epigenetics,2011,6(1):20-28.
    [32]Mutskov V, Raaka BM., Felsenfeld G, et al. The Human insulingene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells,2007,25:3223-3233.
    [33]Mutskov V, Felsenfeld GThe human insulin gene is part of a large open chromatin domain specific for human islets. Proc Natl Acad Sci U S A,2009,106 (41):17419-17424.
    [34]Patel T, Patel V, Singh R, et al. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol.2011 Feb 15. [Epub ahead of print]
    [35]Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev,2005,21:416-433.
    [36]Zhong Q, Kowluru RA.Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon.J Cell Biochem, 2010,110(6):1306-1313.
    [37]Miao F, Gonzalo IG, Lanting L, et al. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem,2004,279:18091-18097.
    [38]Chen SS, Jenkins AJ, Majewski H.Elevated plasma prostaglandins and acetylated histone in monocytes in Type 1 diabetes patients. Diabet Med,2009,26 (2):182-186.
    [39]Chakrabarti SK, Francis J, Ziesmann SM, et al. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta. J Biol Chem,2003,278:23617-23623
    [40]Ogihara T, Vanderford NL, Maier B,et al. Expression and function of Set7/9 in pancreatic islets.Islets,2009,1(3):269-272.
    [41]Deering TG, Ogihara T, Trace AP, et al. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes.Diabetes,2009, 58(1):185-193.
    [42]Li Y, Reddy MA,Miao F, et al.Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem,2008,283 (39):26771-26781.
    [43]Siebel AL, Fernandez AZ, El-Osta A, Glycemic memory associated epigenetic changes. Biochem Pharmacol.2010,80(12):1853-1859.
    [44]Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol.2010,299(l):F14-25.
    [45]Pirola L, Balcerczyk A, Okabe J, et al. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol.2010,6(12):665-75.
    [46]Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res.2011 Feb 16. [Epub ahead of print]
    [47]Villeneuve LM, Reddy MA, Natarajan R. Epigenetics:Deciphering its role in Diabetes and its Chronic Complications. Clin Exp Pharmacol Physiol.2011 Feb 10. doi:10.1111/j.1440-1681.2011.05497.x. [Epub ahead of print]
    [48]Villeneuve LM, Reddy MA, Lanting LL, et al. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc Natl Acad Sci U S A,2008,105 (26): 9047-9052.
    [49]Zhong Q, Kowluru RA. Epigenetic Changes in Mitochondrial Superoxide Dismutase in the Retina and the Development of Diabetic Retinopathy. Diabetes. 2011 Feb 25. [Epub ahead of print]
    [50]Miao F, Wu X, Zhang L, et al. Genome-wide analysis of histone lysine methylation variations caused bydiabetic conditions in human monocytes. J Biol Chem,2007,282:13854-13863.
    [51]Miao F, Smith DD, Zhang L, et al. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes,2008,57(12):3189-3198
    [52]Bohren KM, Nadkarni V, Song JH, et al. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem, 2004,279:27233-27238.
    [53]Li M, Guo D, Isales CM, et al. SUMO wrestling with type 1 diabetes. J Mol Med,2005,83:504-513.
    [54]Kishi A, Nakamura T, Nishio Y, et al. Sumoylation of Pdxl is associated with its nuclear localization and insulin gene activation. Am J Physiol Endocrinol Metab, 2003,284:E830-E840.
    [55]Bradley SP, Kowalik TF, Rastellini C, et al. Successful incorporation of short-interfering RNA into islet cells by in situ perfusion. Transplant Proc,2005, 37:233-236.
    [56]Christensen DP, Dahllof M, Lundh M, et al. HDAC inhibition as a novel treatment for diabetes mellitus. Mol Med.2011 Jan 25. doi: 10.2119/molmed.2011.00021. [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700