组蛋白乙酰化修饰对多头绒泡菌细胞周期调控的影响及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物细胞周期沿着G1→S→G2→M的顺序有序地进行。对G1→S,S→G2,G2→M以及走出M期各转换点的调控,保证了细胞周期各事件按次序正常发生,是细胞正常分裂、增殖和生长的保障。真核细胞周期调控的引擎分子是细胞周期素(Cyclin)和细胞周期素依赖性蛋白激酶(cyclin-dependent kinase,CDK)。CDK只有与Cyclin结合在一起才具有激酶活性,CDK是催化亚基,Cyclin是调节亚基。不同的Cyclin和不同CDK的结合、分离、磷酸化和去磷酸化,推动着细胞周期的进程和各检查点的过渡。细胞周期素依赖性蛋白激酶抑制蛋白(cyclin-dependent kinase inhibitor,CDI)是CDK的负调控因子。另外,癌基因和抑癌基因也在细胞周期调控中起到关键作用,癌基因如:myc,ras等;抑癌基因如:P53,P21,P16等等。它们的异常表达可能导致与细胞增殖与分化相关基因转录的异常,从而使细胞周期调节失控。
     人们很早就注意到,真核细胞中核小体核心组蛋白N-端尾部的乙酰化水平与基因活化密切相关。随着研究的深入,人们发现组蛋白乙酰化修饰对真核细胞周期调控过程起重要作用,但对其具体的调控机制还了解不多。在真核细胞周期调控的重要检验点G1/S和G2/M,以及其他的转换点S/G2和走出M期的各个过程中,哪些细胞周期调控相关蛋白的表达活性与细胞内的组蛋白乙酰化水平相关?组蛋白乙酰化修饰对这些细胞周期相关蛋白表达水平的调节是通过何种途径来完成的?这些都是我们急于解决的问题。这些问题的解决将有助于我们深入了解组蛋白乙酰化修饰对真核细胞周期调控的作用机制。
     本文以多头绒泡菌为实验材料,利用其天然同步化的优点,从新的角度研究了组蛋白乙酰化修饰对真核细胞周期调控的作用机制。初步确定了组蛋白乙酰化在多头绒泡菌细胞周期各转换点的调控过程中对细胞周期调控相关蛋白表达水平的调节作用;了解了组蛋白乙酰化修饰对细胞周期各转换点调控的作用途径;建立了组蛋白乙酰化修饰
    
    对多头绒泡菌细胞周期调控机制的基本模型。得到的上要结果和结沦
    如下:
    1.通过用组蛋白去乙酚化酶抑制剂 TSA分别处理 S期、* 期和dijfl)j
     细胞的方法,结合光镜观察和蛋白免疫印迹实验,发现TSA处理抑
     制了S期,GZ期和前期多头绒泡菌细胞内组蛋白去乙酚化酶的活
     性,使核心组蛋白状的U 的乙酚化水平明显提高,从而打破了
     细胞内原有的核心组蛋臼N端尾部的乙酚化修饰水平的平衡。多头
     绒泡菌细胞内组蛋白H3 的LSs的超乙酚化,阻断了多头绒泡菌细
     胞周期山S/GZ,GZ/M,以及走出M期过程的转换,使之无法)E成
     正常的有丝分裂。同时TSA对多头绒泡菌细胞周期的作用具有剂量
     依赖性和时间依赖性。山此确定了组蛋白乙酞化修饰对多头绒泡菌
     细胞周期S/GZ、GZ川以及走出M期各转换过程的重要作用。
    2.通过1”SA处理、RT干CR和蛋白兔疫印迹实验,发现多头绒泡菌细
     胞中存在着哺乳动物细胞周期调控相关回于的同源物,包括细胞周
     期素类 Cycl in BI蛋白、癌基因产物类 c-Foo和类 c-J。n蛋白、抑
     癌基因产物类P53蛋白以及与信号转导相关的类Ras蛋白。这些炎
     白的表达水平具有细胞周期依赖性,随着细胞周期的进行而发生变
     化。TSA处理引起的多头绒泡菌S期、GZ期和前期细胞内组蛋白
     H3乙酚化水平的提高,改变了细胞内类 Cyclin BI蛋白、类。-F。。、
     类c-厂n蛋白和类P53蛋白的表达水平,也改变了两种R。。基U
     Pnr。sl和 Pnranl的 mRNA以及类hs蛋白的表达水平,从而使细
     胞周期无法完成S/GZ、GZ川以及走出M期各转换点的过渡。山此
     推测,组蛋白乙酚化修饰对多头绒泡菌细胞周期 S/GZ、(;2川以及
     走出M期各转换点的调控可能是通过改变细胞周期调控相关囚-F
     的基回mRNA及蛋白的表达水平来完成的。
    3.通过抗c-Fos,c-Jun和 Ras蛋白抗体的抗体处理实验,乡合刘细
     胞周期进程的观察,发现多头绒泡菌细胞内一定量的具有功能活性
     的类c-Fos、类c-Jun蛋白和类他s蛋白在细胞周期UGZ、(ZZ川
     以及走出M期的转换过程起重要作用。蛋白免疫印迹分析的结果表
     IV
    
     明,当S期、GZ期和前期细胞内具有功能活性的类Ras蛋白的量
     减少时,细胞中的细胞周期调控因于类Cyclin BI蛋白、类c-Jun
     蛋白、类C-FOS蛋白和类P53蛋白的表达水平,与未经抗体处理时
     相比发生了变化(或升高或下降);而山抗体处理引起的多头绒泡
     菌细胞内具有功能活性的类c-Fos和类c-Jun蛋白的减少,使细胞
     内类 Cyclin BI蛋白和类 P53蛋白的表达水平与抗体未处理时相比
     也发生了明显的改变。这些改变导致细胞无法正常完成S/GZ、GZ川
     以及走出M期的转换。由此认为,类c-Fos,类c-Jun和类Ras蛋
     白对多头绒泡菌细胞周期各转换点调控可能与细胞周期调控相关
     因于蛋?
The precise control of the key checkpoints of the cell cycle, such as G1/S, S/G2, G2/M and mitosis exit, ensures the eukaryotic cells to proliferate and divide in an orderly and programmed manner. The promoting molecules in cell cycle regulation include cyclins and CDKs (cyclin-dependent kinases). The CDKs are activated when they interact and bind with the proper regulating cyclins. It has been shown that different CDKs are responsible for the regulation of cell cycle progression by associating or dissociating the specific cyclins to phosphorylate or dephosphorylate specific substrates. CDIs (cyclin-dependent kinase inhibitors) are the negative effectors to CDKs. Moreover, some oncogenes and tumor suppressor genes are also important in cell cycle regulation; those include myc, ras, p53, p21 and p16. The abnormal expression of these genes may interfere with the normal transcription of certain genes associated with cell cycle progression and cell proliferation.
    It has been known for some time that the acetylation of N-termini of core histones in nucleosome is associated with gene activation. Upon extensive studies, it has been found that histone acetylation is important in cell cycle regulation. However, little is known about the mechanisms of this process up to date. We do not know what cell cycle-associated proteins are regulated by histone acetylation modification, especially at the checkpoints of G1/S, S/G2, G2/M and mitosis exit. Neither do we know about the manner in which histone acetylation regulates the expression of these genes. These issues are essential to the understanding of the nature of cell cycle control, and to elucidating the roles of the histone acetylation modification in cell cycle regulation in eukaryotes.
    In this thesis, we studied the mechanisms of histone acetylation in cell cycle regulation in Physarum polycephalum, a naturally synchronized slime mold. The results of this study confirmed that histone acetylation changed the expression of proteins related with the regulation of checkpoint conversion in cell cycle. Based on the data arising from the experiments in this thesis, a hypothesized model, which intends to explain
    
    
    the mechanisms and relationship between histone acetylation and the expression of important cell cycle regulating factors in Physarum polycephalum. The main results and conclusions of this thesis are as follows.
    1. By treating the cells in S, G2 phase and prophase with histone deacetylase inhibitor TSA, and through the application of microscopic observation and Western-blotting, we demonstrated that histone acetylation modification played important roles in the cell cycle regulation in Physarum polycephalum, affecting the normal crossover of the checkpoints of S/G2, G2/M and mitosis exit.
    2. By using TSA treatment, RT-PCR and Western-blotting, we established that the histone acetylation modification changed the expression of various cell cycle-related factors (mRNA and protein expression) at different checkpoints. These factors included cyclin B1-like protein, P53-like protein, c-Fos-like protein, c-Jun-like protein and Ras-like protein in Physarum polycephalum.
    3. To investigate the functions of these factors, cells were treated with anti-c-Fos, anti-c-Jun and anti-Ras antibodies and examined microscopically for the cell cycle progression. The results indicated that c-Fos-like protein, c-Jun-like protein and Ras-like protein played important roles in checkpoint regulation in Physarum polycephalum. Western blot analysis showed that the c-Fos-like protein and c-Jun-like protein may act in cell cycle checkpoint by changing the cyclin B1-like protein and P53-like protein expression; and the Ras-like protein may act by changing the cyclin Bl-like protein , P53-like protein, c-Fos-like protein and c-Jun-like protein expression.
    4. Though TSA treatment and Western blotting, we demonstrated that acetylation of certain non-histones may also be associated with the regulation of checkpoints in Physarum polycephalum.
    5
引文
1.汪堃仁等.细胞生物学.北京师范大学出版社.1998,第2版,436-511.
    2.沈珝琲,方福德.真核基因表达调控.高等教育出版社·施普林格出版社,1997,修订版.1-14
    3.黄百渠,曾庆华等.组蛋白和核小体在基因转录中的作用.科学通报,2000,45(19):2033—2040.
    4. Luo R X. and Dean D C. Chromatin remodeling and transcriptional regulation. Journal of the National Cancer Institute. 1999, 91(15): 1288-1293.
    5. Imbalzano A N. SWI/SNF complexes and facilitation of TATA- binding protein: nucleosome interactions. Methods. 1998, 15: 303-314.
    6. Moreira J M. and Homberg S. Transcriptional repression of the yeast CHA1 gene requires chromatin-remodeling complexes RSC. EMBO J. 1999, 18(10): 2836-2844.
    7. Tsukiyama T., Daniel C., et al. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140Kda subunit of the nucleosome remodeling factor. Cell. 1995, 83:1021-1026.
    8. Peterson C L. Multiple Switches to turn on chromatin? Curr. Opin. Genet. Dev. 1996, 6(2): 171-175.
    9. Langst G., Bonte E J., Corona D F. and Becker P B. Nucleosome movement by CHRAC and ISWI without disruption or transdisplacement of the histone octamer. Cell. 1999, 97(7): 843-852.
    10. Whitehouse I., Flaus A., Cairns B R., White M F., Workman J L. and Owen-Hughes T. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature. 1999, 400 (6746): 784-787.
    11. Kal A J., Mahmoudi T., Zak N B., Verrijzer C P. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Genes Dev. 2000, 14(9): 1058-1071.
    12. Okada M. and Hirose S. Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene
    
    transcription in vitro. Mol Cell Biol. 1998, 18(5): 2455-2461.
    13. Armstrong J A., Bieker J J., Emerson B M. A SWI/SNF- related chromatin-remodeling complex, E-RC1, is required for tissue- specific transcriptional regulation by EKLF in vitro. Cell. 1998, 95(1): 93-104.
    14. Cote J., Peterson C L. and Workman J L. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. USA. 1998, 95(9): 4947-52.
    15. Spencer V A. and Davie J R. Role of covalent modification of histones in regulating gene expression. Gene. 1999, 240:1-12.
    16. Allfrey V G., Faulkner R M. and Misky A E. Proc. Natl. Acad. Sci. USA. 1964, 51: 786-793.
    17. Berger S L. Gene activation by histone and factor acetyltransf- erases. Curt. Opin. Cell. Biol. 1999, 11 (3): 336-341.
    18. Cress W D., Seto E. Histone Deacetylases, transcriptional control and cancer. J. Cell. Physiol. 2000, 184(1): 1-16.
    19. Hebbes T R., Thorne A W. and Crane-Robinson C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 1988, 7(5): 1395-1402.
    20. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997, 389(6649): 349-352.
    21. Fletcher T M. and Hansen J C. The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryote Gene Expr. 1996, 6: 149-188.
    22. Brownell J E., Zhou J., Ranalli T., Kobayashi R., Edmondson D G., Roth S Y. and Allis C D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996, 84(6): 843-851.
    23. Smith E R., Allis C D. and Lucchesi J C. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol Chem. 2001, 276(34): 31483- 31466.
    24. Lusser A., Kolle D. and Loidl P. Histone acetylation: lessons from the plant kingdom. Trends in Plant Science. 2001, 6(2): 59-65.
    25. Allis C D., Chicoine L G., Richman R. and Schulman I G.
    
    Deposition-related histone acetylation in micromuclei of conjugating Tetrahymena. Proc. Natl. Acad. Sci. USA. 1985, 82: 8048-8052.
    26. Howe L., Brown C E., Lechner T. and Workman J L. Histone acetyltransferase complexes and their link to transcription. Cri. Rev. Eukaryot. Gene Expr. 1999, 9 231-243.
    27. Chen H W., Tini M. and Evans R M. HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 2001, 13: 218-224.
    28. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12:599-606.
    29. Brown C E., Lechner T., Howe L. and Workman J L. The many HATs of transcription coactivators. Trends Biochem. Sci. 2000, 25 (1): 15-19.
    30. Schiltz R L., Mizzen C A., Vassilev A., et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 1999, 274:1189- 1192.
    31. Schiltz R L. and Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor. Biochimica et Biophysica Acta. 2000, 1470: 37-53.
    32. Krumm A L., Madisen X J., Yang R., et al. Long-distance transcriptional enhancement by the histone acetyltransferase PCAF. Proc. Natl. Acad. Sci. USA. 1998, 95: 13501-13506.
    33. Giles R H., Peters D J. and Breuning M H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998, 14: 178-183.
    34. Ogryzko V V., Schlitz V., Russanova B H., et al. The trans- criptional coactivators p300 and CBP are histone acetyltransferase. Cell. 1996, 87: 953-959.
    35. Korzus E., Torchia J., Rose D W., et al. Transcription factor- specific requirements for coactivators and their acetyltransferase functions. Science. 1998, 279: 703-707.
    36. Bannister A J. and Miska E A. Regulation of gene expression by transcription factor acetylation. CMLS Cell. Mol. Life Sci. 2000, 57: 1184-1192.
    37. Otero G., Fellows J., Li Y., et al. Elongator, a multisubunit component of a novel RNA polymerase Ⅱ holoenzyme for transcriptional
    
    elongation. Mol. Cell. 1999, 3: 109-118.
    38. Wittschieben B O., Otero G., de Bizemont T., et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase Ⅱ holoenzyme. Mol. Cell. 1999, 4: 123-128.
    39. Orphanides G. and Reinberg D. RNA polymerase II elongation through chromatin. Nature. 2000, 407: 471-475.
    40. Ramanathan B. and Smerdon M J. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem. 1989, 264:11026 - 11034.
    41. Kamine J., Elangovan B., Subramanian T., et al. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1Tat transactivator. Virology. 1996, 216: 357-366.
    42. Kimura A. and Horikoshi M. Tip60 acetylate six lysines of a specific class in core histones in vitro. Genes. Cells. 1998, 3: 789-800.
    43. Ikura T., Ogryzko V V., Grigoriev M., et al. Involvement of the Tip60 histone acetyltransferase complex in DNA repair and apoptosis. Cell. 2000, 102: 463-473.
    44. Golding A., Chandler S., Ballestar E., et al. Nucleosome structure completely inhibits in vitro cleavage by the V (D) J recombinase. EMBO J. 1999, 18: 3712-3723.
    45. McMurry M T. and Krangel M S. A role for histone acetylation in the developmental regulation of V (D) J recombination. Science. 2000, 287: 495-498.
    46. McBlane F. and Boyes J. Stimulation of V (D) J recombination by histone acetylation. Curr. Biol. 2000, 10: 482-486.
    47. Iizuka M. and Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 1999, 274: 23027-23034.
    48. Fox C A., Loo S., Dillin A. and Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev. 1995, 9: 911-924.
    49. Verreault A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev. 2000, 14: 1430-1438.
    50. Parthun M R., Widom J. and Gottschling D E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and
    
    histone metabolism. Cell. 1996, 87: 85-94.
    51. Sobel R E., Cook R G., Perry C A., et al. Conservation of deposition -related acetylation sites in newly synthesized histone H3 and H4. Proc. Natl. Acad. Sci. USA. 1995, 92:1237-1241.
    52. Ruiz-Garcia A B., Sendra R., Galiana M., et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyl- transferase enzyme specific for free histone H4. J. Biol. Chem. 1998, 273: 12599-12605.
    53. Ehrenhofer-Murray A E., Rivier D H. and Rine J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics. 1997, 145: 923-934.
    54. Reifsnyder C., Lowell J., Clarke A. and Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1Tat interactions are homologous with acetyltransferase. Nat. Genet. 1996, 14: 42-49.
    55. Takechi S. and Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem. Biophys. Res. Commun. 1999, 266: 405-410.
    56. Mahlknecht U. and Hoelzer D. Histone acetylation modifies in the pathogenesis of malignant disease. Molecular Medicine 2000, 6(8): 623-644.
    57. Borrow J., Stanton V P., Andresen J M., et al. The translocation t (8; 16)(pll; 13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 1996, 14: 33-41.
    58. Carapeti M., Aguiar R C., Goldman J M. and Cross N C. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998, 91: 3127-3133.
    59. Chen H., Lin R J., Schiltz R L., et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with PCAF and CBP/p300. Cell. 1997, 90: 569-580.
    60. Smith E R., Allis C D. and Lucchesi J C. Linking global histone acetylation to the transcription enhancement of X-chromosomal genes
    
    in Drosophila males. J. Biol. Chem. 2001, 276(34): 31483-31466.
    61. Onate S A., Tsai S Y., Tsai M J. and O'Malley B W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995, 270: 1354-1357.
    62. Spencer T E., Jenster G., Burcin M M., et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997, 389: 194-198.
    63. Chen H., Lin R J., Xie W., et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of acetylase. Cell. 1999, 98: 675-686.
    64. Vogelauer M., Wu J., Suka N. and Grunstein M. Global histone acetylation and deacetylation in yeast. Nature. 2000, 408: 495-498.
    65. Berger S L. Local or Global? Nature. 2000, 408: 412-414.
    66. Taunton J., Hassig C A., Schreiber S L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996, 272: 408-411.
    67. Johnson C A., Turner B M. histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol. 1999, 10:179-188.
    68. Khochbin S., Verdel A., Lemercier C., Seigneurin-Bernv D. Functional significance of histone deacetylase diversity. Curr. Opin. Genet Dev. 2001, 11(2): 162-166.
    69. Gray S G. and Ekstrom T J. The human histone deacetylase family. Exp. Cell. Res. 2001, 262: 75-83.
    70. Yang W M., Inouye C., Zeng Y., et al. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA. 1996, 93: 12845-12850.
    71. Emiliani S., Fischle W., Van L C., et al. Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl. Acad. Sci. USA. 1998, 95: 2795-2800.
    72. Buggy J J., Sideris M L., Mak P., et al. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J. 2000, 350: 199-205.
    73. Knoepfler P S. and Eisenman R N. Sin meets NuRD and other tails of
    
    repression. Cell. 1999, 99: 447-450.
    74. Takami Y., Kikuchi H. and Nakayama T. Chicken histone deacetylase-2 controls the amount of the lgM H-chain at the steps of both transcription of its gene and alternative processing of its pre-mRNA in the DT40 cell line. J. Biol. Chem. 1999, 274: 23977-23990.
    75. Li J., Wang J., Nawaz Z., et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexs containing HDAC3. EMBO J. 2000, 19: 4342-4350.
    76. Takami Y. and Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J. Biol. Chem. 2000, 275: 16191-16201.
    77. Grozinger C M., Hassig C A. and Schreiber S L. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc. Natl. Acad. Sci. USA. 1999, 96: 4868-4873.
    78. Grozinger C M. and Schreiber S L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3- dependent cellular localization. Proc. Natl. Acad. Sci. USA. 2000, 97: 7835-7840.
    79. Miska E A., Karlsson C., Langley E., et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999, 18: 5099-5107.
    80. Lemercier C., Verdel A., Galloo B., et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 2000, 275:15594-15599.
    81. Guarente L. Sir2 links chromatin silencing, metabolism and aging.Genes Dev. 2000, 14: 1021-1026.
    82. Imai S., Armstrong C M., Kaeberlein M. and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature. 2000, 403: 795-800.
    83. Landry J., Sutton A., Tafrov S., et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA. 2000, 97: 5807-5811.
    84. Fry R A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may
    
    have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260: 273-279.
    85. Christina M., Grozinger C M. and Stuart L Schreiber. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. 2002, 9: 3-16.
    86. Zhang Y., Ng H H., Erdjument-Bromage H., Tempst P., Bird A. and Reinberg D. Analysis of the NURD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, 13: 1924-1935.
    87. Ayer D E. Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 1999, 9: 193-198.
    88. Tong J K., Hassig C A., Schnitzler G R., Kingston R E. and Schreiber S L. Chromatin deacetylation by ATP-dependent nucleosome remodeling complex. Nature. 1998, 395: 917-921.
    89. Zhang Y., LeRoy G., Sellig H P., Lane W S. and Reinberg D. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 1998, 95: 279-289.
    90. Aasland R., Stewart A F. and Gibson T. The SANT domain: a putative DNA-binding domain in the SWI/SNF and ADA complex, the transcriptional co-repressor N-CoR and TFⅢB. Trends. Biochem. Sci. 1996, 21: 87-88.
    91. You A., Tong J K., Grozinger C M. and Screiber S L. CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc. Natl. Acad. Sci. USA. 2001, 98: 1454-1458.
    92. Humphrey G W., Wang Y., Russanova V R., Hirai T., Qin J., Nakatani Y. and Howard B H. Stable histone deacetylase complex distinguished by the presence of SANT dimain protein CoREST / kiaa0071 and Mta-L1. J. Biol. Chem. 2001, 276: 6817-6824.
    93. Guenther M G., Lane W S., Fischle W., Verdin E., Lazar M A. and Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 2000, 14: 1048-1057.
    94. Huang E Y., Zhang J., Miska E A., Guenther M G., Kiuzarides T. and
    
    Lazar M A. Nuclear receptor corepressors partner with class Ⅱ histone deacetylase in a Sin3-independent repression pathway. Genes Dev. 2000, 14: 45-54.
    95. Kao H Y., Downes M., Ordentlich P. and Evans R M. Isolation of a novel histone deacetylase reveals that class I and class Ⅱ deacetylases promote SMRT-mediated repression. Genes Dev. 2000, 14: 55-66.
    96. Wen Y D., Perissi V., Staszewski L M., Yang W M., Krones A., Glass C K., Rosenfeld M G.. and Seto E. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl. Acad. Sci. USA. 2000, 97: 7202-7207.
    97. Dressel U., Bailey P J., Wang S C., Downes M., Evans R M. and Muscat G E. A dynamic role for HDAC-7 in MEF2 mediated muscle differentiation. J. Biol. Chem. 2001, 276: 17007-17013.
    98. Wang A H., Bertos N R., Vezmar M., Pelletier N., Crosato M., Heng H H., Th'ng J., Han J. and Yang X J. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell. Biol. 1999, 19: 7816-7827.
    99. Hassig C A. and Schreiber S. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1997, 1: 300-308.
    100. Kuo M H. and Allis C D. Roles of histone acetyltranseferases and deacetylases in gene regulation. Bio Essays. 1998, 20: 615-626.
    101. Braunstein M., Sobel R E., Allis C D., Turner B M. and Broach J R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell Biol. 1996, 16(8): 4349-56.
    102. Turner B M., Birley A J., Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992, 69(2): 375-84.
    103. Marks P A., Richon V M. and Rifkind R A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. Journal of the National Cancer Institute. 2000, 92(15): 1210-1216.
    
    
    104. Carducci M., Bowling M K., et al. Phenylbutyrate (PB) for refractory solid tumors: phase Ⅰ clinical and pharmacologic evaluation of intravenous and oral PB. Anticancer Res. 1997, 17: 3972-3973.
    105. Roediger W E W. The colonic epithelium in ulcerative colitis-an energy deficiency disease? Lancet. 1980, 2: 712-15.
    106. Archer S Y. and Hodin R. Histone acetylation and cancer. Curr. Opin. Genet. Dev. 1999, 9: 171-174.
    107. Gibson P R. The intracellular target of butyrate's actions: HDAC or HDON'T. Gut. 2000, 46:447-451.
    108. Yoshida M., Kijima M., Akita M., Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem. 1990, 265: 17174-17179.
    109. Furumai R., Komatsu Y., Nishino N., et al. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc. Nal. Aca. Sci. USA. 2001, 98(1): 87-92.
    110. Yoshida M., Horinouchi S. and Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bio Essays. 1995, 17: 423-430.
    111. Finnin M S., Donigian J R., Cohen A., Richon V M., Rifkind R A., Marks P A., Breslow R. and Pavletich N P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitor. Nature. 1999, 401: 188-193.
    112. Jung M., Brosch G., Kolle D., Scherf H., Gerhauser C. and Loidl P. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differenitiation. J. Med. Chem. 1999, 42: 4669-4679.
    113. Furumai R., Komatsu Y., Nishino N., Khochbin S., Yoshida M. and Horinouchi S. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapxin. Proc. Nal. Aca. Sci. USA. 2001, 98: 87-92.
    114. Lusser A., Kolle D., Loidl P. Histone acetylation: lessons from the plant kingdom. Trends in Plant Science. 2001, 6: 59-65.
    115. Loidl P. Histone acetylation: facts and questions. Chromosoma. 1994, 103: 441-449.
    
    
    116. Lechner T., et al. RPD3-type histone deactylases in maize embryos. Biochemistry. 2000, 39:1683-1692.
    117. Kolle D., et al. Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett. 1998, 421: 109-114.
    118. Lusser A., et al. Analysis of the histone acetyltransferase B complex of maize embryos. Nucleic Acid Res. 1999, 27: 4427-4435.
    119. Wu K., et al. Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Mol. Biol. 2000, 44:167-176.
    120. Lusser A., et al. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science. 1997, 277: 88-91.
    121. Dangl M., Loidl P., Lusser A., et al. Comparative analysis of HD2 type histone deacetylases in higher plants. Planta. 2001, 213: 280-285.
    122. Graessle S., Dangl M., Loidl P., Brosch G., et al. Characterization of two putative histone deacetylase genes from Aspergillus nidulans. Biochimica et Biophysica Acta. 2000, 1492: 120-126.
    123. Brosch G., Dangl M., Graessle S., Loidl A., Loidl P. An inhibitor resistant histone deacetylas in the plant pathogenic fungus Cochliobolus carbonum. Biochemistry. 2001, 40:12855-12863.
    124.桂建芳.RNA加工与细胞周期调控.科学出版社,1998,第一版.78-136.
    125.张四清,王永潮.细胞周期调控.细胞生物学动态(第一卷).北京师范大学出版社,1996,46-60.
    126.刘传聚,左嘉客.细胞周期“驱动器”中的负调控元件-CKIs.细胞生物学动态(第一卷).北京师范大学出版社,1996,61-65.
    127.江虹,王永潮.细胞周期调控机制.细胞生物学动态(第二卷).北京师范大学出版社,1997,1-16.
    128.陈晓波,王永潮.细胞周期检验点调控研究进展.细胞生物学动态(第二卷).北京师范大学出版社,1997,17-25.
    129. Evans T., Rosenthal E T., Youngblom J., Distel D. and Hunt T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is
    
    destroyed at each cleavage division. Cell. 1983, 33: 389-396.
    130. Swenson K., Farrell K M., Ruderman J V. The clam embryo protein cyclin A induces entry into M-phase and the resumption of meiosis in Xenopus oocytes. Cell. 1986, 65: 145-161.
    131. Standart N., Minshull J., Pine J., Hunt T. Cyclins synthesis. modification and destruction during meiotic maturation of the starfish oocyte. Dev. Biol. 1987, 124: 248-258.
    132. Goebel M., Byers B. Cyclin in fission yeast. Cell. 1988, 54: 739-740.
    133. Lehner C F. and O'Farrell P H. The roles of Drosophila cyclin A and cyclin B in mitotic control. Cell. 1990, 61: 535-547.
    134. Minshull J., Golsteyn R., Hill C S., Hunt T. The A- and B- type cyclin associated cdc2 kinase in Xenopus turn on and off at different times in the cell cycle. EMBO J. 1990, 9: 2865-2875.
    135. Pines J., Hunter T. Cyclin A and B1 are differentially located in the cell and undergo cell cyclin-dependent nuclear transport. J. Cell Biol. 1991, 115 (1): 1-17.
    136. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995b, 308: 697-711.
    137. Jeffrey P D., Russo A A., Polyak K., et al. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature. 1995, 376: 313-320.
    138. Hadwiger J A., Wittenberg C., Reed S I., et al. A novel family of cyclin homologs that control G1 in yeast. Proc. Nal. Aca. Sci. USA. 1989, 86: 6255-6259.
    139. Reed S I. G1-specific cyclins: in search of an S-phase-promoting factor. Trends Genet. 1991, 7: 95-99.
    140. Forsburg S L. and Nurse P. Identification of a G1-type cyclin pucl+ in the fission yeast Schizosaccharomyces pombe. Nature. 1991, 351: 245-248.
    141. Xiong Y., Connolly T., Futcher B. and Beach D. Human D-type cyclin. Cell. 1991, 65: 691-699.
    142. Lew D J., Dulic V., Reed S I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) in yeast. Cell. 1991, 66:1197-1206.
    143. Sherr C J. Mammalian G1 cyclins. Cell. 1993, 73: 1059-1065.
    
    
    144. Sherr C J. Mammalian G1 cyclins and cell cycle progression. Proceedings of the Association of American Physicians. 1995, 107: 181-186.
    145. Baldin V., Lukas J., Marcote M J., et al. Cyclin D1 is a nuclear protein required for cell cycle progression in Gl. Genes Dev. 1993, 7: 81-82.
    146. Minshull J., Blow J J. and Hunt T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell. 1989, 56: 947-956.
    147. Pines J., Hunter T. P34~(cdc2):the S and M kinase ? New Biologist. 1990b, 2: 389-401.
    148. Solomon M J., Glotzer M., Lee T H., et al. Cyclin activation of P34~(cdc2). Cell. 1990, 63: 1013-1024.
    149. Hunt T., Luca F C. and Ruderman J V. The requirements for protein synthesis and degradation, the control of destruction of cyclin A and cyclin B in the mitotic cell cycles of the clam embryo. J. Cell. Biol. 1992, 116: 707-724.
    150. Pines J., Hunter T. Human cyclin A is adenovirus E1A- asscociated protein P60, and behaves differently from cyclin B. Nature. 1990a, 346:760-763.
    151. Holloway S L., Glotzer M., King R W. and Murray A W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell. 1993, 73: 1393 - 1402.
    152. Murray A M. and Kirschner M W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989, 339: 275-280.
    153. Ghiara J B., Richardson H E., Reed S I., et al. A cyclin B homolog in S. cerevisiae: chronic activation of the cdc28 protein kinase by cyclin prevents exit from mitosis. Cell. 1991, 65: 163-175.
    154. Luca F C., Shibuya E K., Dohrmann C E., Ruderman J V. Both Cyclin A△60 and B△97 are stable and arrest cells in M-phase, but only cyclin BA97 turns on cyclin destruction. EMBO J. 1991, 10: 4311-4320.
    155. Gallant P. and Nigg E A. Cyclin B2 undergoes cell cycle- dependent nuclear translocation and, when expressed as a nondestructible
    
    mutant, causes mitotic arrest in HeLa cells. J. Cell. Biol. 1992, 117: 213-224.
    156. Glotzer M., Murray A W., Kirschner M W. Cyclin is degraded by the ubiquition pathway. Nature. 1991,349:132-138.
    157. Sudakin V., et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell. 1995, 6: 185- 198.
    158. Masui J C. and Markert C. Cytoplasmic control of nuclear behaviour during meiotic maturation of frog oocytes. J. Exp. Zool. 1971, 177: 129-146.
    159. Weinberg R A. The retinoblastoma protein and cell cycle control. Cell. 1995, 81: 323-330.
    160. Nurse P. Universal control mechanism regulating onset of M phase. Nature. 1990, 344: 503-508.
    161. Lohka M J., Hayes M K. and Maller J L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Nal. Aca. Sci. USA. 1988, 85: 3009-3013.
    162. Gautier J., Norbury C., Lohka M., Nurse P. and Mallet J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell. 1988, 54: 433-439.
    163. Gautier J., Minshull J., Lohka M., Glotzer M., Hunt T. and Maller J L. Cyclin is a component of MPF from Xenopus. Cell. 1990, 60: 487-494.
    164. Kirschner M. The cell cycle then and now. TIBS. 1992, 17: 281- 285.
    165. Meyerson M., Enders G H., Wu C L., et al. A family of cdc2- related protein kinases. EMBO J. 1992, 11: 2909-2917.
    166. Grana X., De Luca A., Sang N., et al. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retino- blastoma protein in vitro. Proc. Nal. Aca. Sci. USA. 1994, 91: 3834-3838.
    167. Lew J. and Wong J H. Neruonal cdc2-like kinase. TIBS. 1995, 20: 33-37.
    168. Moreno S. and Nurse P. Substrates for P34~(cdc2): in vivo veritas. Cell. 1990, 61: 549-551.
    
    
    169. Pines J. conformational change. Nature. 1995, 376: 294-295.
    170. Matsumoto Y L., Yasuda H., Mita S., et al. Evidence for the involvement of H1 histone phosphorylation in chromosomes condensation. Nature. 1980, 248:181-184.
    171. Gerace L. and Blobel G. Nuclcear envelope lamina is reversibly depolymerized during mitosis. Cell. 1980, 19: 277-287.
    172. Peter M., Nakagawa L., Doree M., Labbe J C. and Nigg E A. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamina by cdc2 kinase. Cell. 1990, 61: 591- 602.
    173. Yamashiro S., Yamakita Y., Hosoya H. and Matsumura F. Phosphorylation of non-muscle caldesmon by P34~(cdc2) kinase during mitosis. Nature. 1991, 349: 169-172.
    174. Bailly M., McCaffrey M., Touchot N., et al. Phosphorylation of two small GTP-binding proteins of the Rab family by P34~(cdc2). Nature. 1991, 350: 715-718.
    175. Gittesfeld J M., Wolf V J., Dang T., Forbes D J. and Hartl P. Mitotic repression of RNA polymeraseⅢ transcription in vitro mediated by phosphorylation of a TF ⅢB component. Science. 1994, 263: 81-84.
    176. Welch P J. and Wang J U J. A C-terminal protein-binding domain in the retinoblastoma protein regulates c-Abl tyrosine kinase in the cell cycle. Cell. 1993, 75: 779-790.
    177. Krek W., Ewen M E., Shirodkar S., Arany Z., Kaelin W G. and Livingstone D M. Negative regulation of the growth- promoting transcription E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell. 1994, 78: 168-172.
    178. Schwob E., Bohm T., Mendenhall M D. and Nasmyth K. The B-type cyclin kinase inhibitor P40 controls the G1 to transition in S. cerevisiae. Cell. 1994, 79: 233-244.
    179.孙大业,郭艳林,马力耕.细胞信号转导.科学出版社,第二版.49-271.
    180.杜宪兴,施渭康.Ras信号转导途径.细胞生物学杂志.1994,16(4):171-173.
    181.熊舜斌等.Ras的结构功能及其参与的信号转导.生物化学与生物
    
    物理学进展.1995.22(6):482-486.
    182. Oren M. Regulation of the P53 tumor suppressor protein. J. Biol. Chem. 1999. 274: 36031-36034.
    183. Sinonov R V. and Prives C. Oncogene. 1996, 18: 6145-6157.
    184. Ferreira D., Hemerly A. Control of cell proliferation during plant development. Plant Mol. Biol. 1994. 26: 1289-1303.
    185. den Boer B G. and Murray J A. Triggering the cell cylcle in plant. Trends Cell Biol. 2000, 10: 245-250.
    186. Hemely A., Bergounioux C., Montagu M V., Inze D., Ferreira P. Genes regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidopsis thaliana. Proc. Nal. Aca. Sci. USA. 1992, 89: 3295-3299.
    187. Hirt H., Mink M., Pfosser M., et al. Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell. 1992, 4: 1531-1538.
    188. Forbert P R., Cox E S., Murphy G J P. and Doonan J H. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle of plants. EMBO J. 1994, 13: 616-624.
    189. Chaudhuri S K. and Ghosh S. Immunological defection of onion cell cycle regulatory proteins: evidence for plant P34~(cdc2) and mitotic cyclins. Cell. Chr. Res. 1996, Vol 19.
    190. Renaudin J P., Colasenti J., Rime H., Yuan Z. and Sundaresan V. Cloning of four cyclins from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins. Proc. Nal. Aca. Sci. USA. 1994, 9: 7375-7379.
    191. 陈坚,张晓琴.组蛋白乙酰化/脱乙酰化与细胞周期的有关系.国外医学遗传学分册,2000,23(5):233-236.
    192. Yoshida M., et al. Reversible arrest of proliferation of rat 3Y1 fibrobalsts in both the G1 and G2 phase by trichostatin A. Cell Res. 1988, 177: 122-132.
    193. Zhang W Z., et al. Essential and renduntant functions of histone acetylation revealed by target lysises and loss of the Gcn5p acetyltransferase. EMBO J. 1998, 17(11): 3155-3167.
    194. Allard S., Utley R T., Savard J., et al. NuA4, an essential trans
    
    cription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp. EMBO J. 1999, 18: 5108-5119.
    195. Smith E R., Eisen A., Gu W., et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. USA. 1998, 95: 3561-3566.
    196. Clarke A S., Lowell J E., Jacobson S J. and Pillus L. Esalp is an essential histone acetyltransferase required for cell cycle pro gression. Mol. Cell. Biol. 1999, 19: 2515-2526.
    197. Burley S K. and Roeder R G. Biochemsitry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 1996, 65: 769 - 799.
    198. Mizzen C A., Yang X J., Kokubo T., et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell. 1996, 87: 1261-1270.
    199. O'Brien T. and Tjian R. Funtional analysis of the human TAFII250 N-terminal kinase domain. Mol. Cell. 1998, 1(6): 905- 911.
    200. O'Brien T. and Tjian R. Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. Proc. Natl. Acad. Sci. USA. 2000, 97: 2456-2461.
    201. Yao T P., et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator P300. Cell. 1998, 93: 361-372.
    202. Bartl S., et al. Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol. Cell. Biol. 1997, 17(9): 5033-5043.
    203. Dangond F., et al. Differential display cloning of a novel human histone deacetylase (HDAC3) cDNA from PHA-activated immune cells. Biochem. Biophy. Res. Commun. 1998, 242: 648- 652.
    204. 陈坚,张晓琴,傅继梁.组蛋白乙酰化/脱乙酰化与肿瘤的关系.中国肿瘤.2000,9(10):466-468.
    205. Weidle U H. and Grossmann A. Inhibition of Histone de- acetylases: a new strategy to target epigenetic modifications for anticancer treatment. Anticancer Res. 2000, 20: 1471-1486.
    
    
    206. Sambucetti L C., Fischer D D., Cohen D., et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiprolifertive effects. J Biol. Chim. 1999, 274: 34940-34947.
    207. Siavoshian S., Blottiere H M., et al. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase Ⅰ expression in HT-29 colonic epithelial cell. Biochem. Biophys. Res. Commun. 1997, 232: 169-172.
    208. Xiao H., Hasegawa T., et al. Sodium butyrate induces NIH3T3 cell to senescence-like state and enhances promoter activity of p21~(WAF/CIP) in p53-independent manner. Biophys. Res. Commun. 1997, 237: 457-460.
    209. Yoshida M., Horinouchi S. and Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylat- ion in chromatin structure and function. Bio Essays. 1995, 17: 423-430.
    210. Hoshikawa Y., Kwon H. J. et al. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp, Cell. Res. 1994, 214: 189-197.
    211. Xiao H., Hasegawa T. and Isobe K I. Both Sp1 and Sp3 are responsible for p21~(WAF) promoter activity induced by histone deacetylase inhibitor in NIH3T3 cell. J. Cell. Biochem. 1999, 73: 291-302.
    212. Futamura M., Monden Y., et al. Trichostatin A inhibits both ras-induced neurite outgrowth of PC12 cell and morphological transformation of NIH3T3 cell. Oncogene. 1995, 10:1119-1123.
    213. Kim Y B., Lee K H., Sugita K., et al. Oxamflatin is a novel anti-tumor compounds that inhibits mammalian histone deacetyl- ase. Oncogene. 1999, 18(15): 2461-2470.
    214. Ueda H., Manda T., Matsumoto S., Nishigaki F., Kawamura I. and Shimomura K. FR901228, a novel antitumor bicyclic depsi- peptide produced by Chromobacterium violaceum No 968. Ⅲ. anti-tumor activities on experimental tumors in mice. J Antibiot. 1994, 47: 315-323.
    
    
    215. Sandor V., Senderowicz A., Bates S E., et al. P21- dependent G1 arrest with downergulation of cyclin D 1 and upreguation of cyclin E by the histone deacetylase inhibitbor FR901228. British J. Cancer. 2000, 83 (6): 817-825.
    216. Nakajima H., Kim Y B., Terano H., Yoshida M. and Horinouchi S. FR901228, a potent antitumor antiviotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 1998, 241: 126-133.
    217. Ueda H., Nakajima H., Hori Y., Goto T. and Okuhara M. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No 968. on Ha-ras transformed NIH3T3 cells. Biosci. Biotechol. Biochem. 1994, 58: 1579-1583.
    218. Harbour J W. and Dean D C. The Rb/E2F pathway: expanding roles and emerging paradings. Genes Dev. 2000, 14: 2393-2409.
    219. Brehm A., et al. Retinoblastoma protein recruits histone de- acetylase to repress transcription. Nature. 1998, 391: 597-601.
    220. Gutierrez C. The retinoblastoma pathway in plant cell cycle and development. Curr. Opin. Plant Biol. 1998, 1: 492-497.
    221. Howard F L. Nuclear division in plasmodia of Physarum. Ann. Bot. 1932, 46: 461-477.
    222. Guttes S. and Guttes N. Mitotic synchrony in the plasmodia of Physarum polycephalum and mitotic synchronization by coalesceence of microplasmodia. In: D. M. Prescott (ed.) Methods in cell Physiology. Academic Press, New York. 1964, Vol 1: 43- 54.
    223. Song Z X., Xing M., Zeng X L. Effect of Cytochalasin B upon Mitosis of Physarum polycephalum. Chin J of Genetics. 1999, 26 (4): 371-378.
    224. Adlaka R C., Shipley G L., Zhou J., Jones K., Wright D A., Rao P N., Sauer H W. Amphibian oocyte maturation induced by ex- tracts of Physarum polycephalum in mitosis. J Cell Biol. 1988, 106: 1445-1452.
    225. Shipley G L., Sauer H W. Evidence for a homolog of the yeast cell cycle regulatory gene product of cdc+ in Physarum polycephalum. Eur. J. Cell Biol. 1989, 48: 95-103.
    226. Cho J W. and Sauer H W. A non-cycling mitotic cyclin in the
    
    naturally synchronous cell cycle of Physarum polycephalum. Eur. J. Cell Biol. 1994, 65(1): 94-102.
    227. Loidl A. and Loidl P. Oncogene- and tumor-suppressor gene- related proteins in plants and fungi. Crit. Rev. Oncog. 1996, 7 (1-2): 49-64.
    228. Trzcinska-Danielewica J., Kozlowski P., Toczko K. Cloning and genomic sequence of the Physarum polycephalum Pprasl gene, a homologue of the ras protooncogene. Gene. 1996, 169 (1): 143- 144.
    229. Kozlowski P., Trzcinska-Danielewica J. and Toczko K. Identification and sequence analysis of a rap gene from the true slime mold Physarum polycephalum. Biochim. Biophys. Acta. 1996, 1305(1-2): 29-33.
    230. Kozlowski P., Fronk J. and Toczko K. Indentification of a ras gene in the slime mold Physarum polycephalum. Biochim Biophys. Acta. 1993, 1173 (3): 357-359.
    231. Lechner T., Lusser A., Brosch G., Loidl P., et al. A comparative study of histone deacetylases of plant, fungi, and vertebrate cells. Biochim. Biophys. Acta. 1996, 1296 (2): 181-188.
    232. Lusser A., Brosch G., Lopez-Rodas G., Loidl P. Histone acetyltransferases during the cell cycle and differentiation of Physarum polycephalum. Eur. J. Cell Biol. 1997, 74 (1): 102-110.
    233. Lopez-Rodas G., Brosch G., Golderer G., Loidl P., et al. Enzymes involved in the dynamic equilibrium of core histone acetylation of Physarum polycephalum. FEBS Lett. 1992, 296(1): 82-86.
    234. Brandtner E M., Lechner T., Loidl P., Lusser A. Molecular identification of PpHDAC1, the first histone deacetylase from slime mold Physarum polycephalum. Cell Biol. Int. 2002, 26(9): 783-789.
    235. Daniel J W., Baldwin H H. Methods of culture of plasmodial myxomycetes. In: Prescott D M, (ed.) Methods in Cell Physial. New York: Academic Press, 1964, Vol□,61-110.
    236. Ogryzko V V., Schiltz R L., Russanova V., Howard B H. and Nakatani Y. The transcriptional coactivators P300 and CBP are histone acetyltranferases. Cell. 1996, 87: 953-959.
    237. Juan L J., Shia W J., Seto E., et al. Histone deacetylases speci- fically down-regulate p53-dependent gene activation. J. Biol. Chem. 2000,
    
    275: 20436-20443.
    238. Daniel J., Spiegelman G B. and Weeks G. Characterization of a third ras gene, rasB, that is expreesed throughout the growth and development of Dictyostelium discoideum. Oncogene. 1993, 8: 1041-1047.
    239. Daniel J., Bush J., Cardelli J., Spiegelman G B. Oncogene. 1994, 9: 501-508.
    240. Rebatein P J., Weeks G. and Spiegelman G B. Altered morphology of vegetative amoebae induced by increased expression of the Dictyostelium discoideum ras-related gene rap- 1. Dev. Genet. 1993, 14: 347-355.
    241. Fronk J Expression of ras-family genes in the cell cycle and during differentiation of the lower eukaryote Physarum polycephalum. Acta. Biochem. Pol. 1999, 46(1): 197-202.
    242. Noda M. Structures and functions of the rev-1 transformation suppressor gene and its relatives. Biochim. Biophys. Acta. 1993, 1155: 97-109.
    243. Kitayama H. and Noda M. In: The ras superfamily of GTPases (Lacal J C. and McCormick F. eds.) CRC Press, Boca Raton. 1993, 231-245.
    244. Nassar N., Horn G., Herrmann C., Scherer A., McCormick F. and Wittinghofer A. The 2.2A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with RaplA and a GTP analogue. Nature. 1995, 375: 554-560.
    245. Bamberger A M., Milde-Langosch K., Rossing E., Goemann C., Loning T. Expression pattern of AP-1 family in endometrial cancer: correlation with cell cycle regulators. J. Cancer Res. Clin. Oncol. 2001. 127(9): 545-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700