人Elongator复合物及其组蛋白乙酰转移酶活性在基因表达调控中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核生物DNA紧密包装成染色质结构,影响了包括转录、复制和修复等在内的以DNA为模板的每一个生物过程。其mRNA的合成是个多步骤的复杂过程,由控制该过程的多个辅因子协助RNAPⅡ完成。一个完整的转录循环包括RANPⅡ和通用转录因子被招募至启动子、RAN链合成的起始和RANPⅡ从启动子的脱逸、RNA链的延伸以及伴随RANPⅡ和新生RNA链从DNA模板释放的转录终止等过程。当RNAPⅡ离开基因的启动子转录编码区时,遇到包括核小体在内的多种障碍。近来研究表明组蛋白尾部尤其是H3、H4四聚体的尾部强烈影响通过核小体的转录延伸速率,而尾部的乙酰化修饰可抑制这种影响。延伸中的RNAPⅡ的辅因子可能具有这种作用。与磷酸化的RNAPⅡ结合的Elongator复合物具有组蛋白乙酰转移酶(HAT)活性,它可能执行这一功能。
     酵母Elongator是与染色质组分结合,并与延伸中的磷酸化形式的RNAPⅡ相互作用的复合物,是个六亚基的功能整体,在高盐处理或MonoQ层析时易于分解为两个三亚基亚复合物,其中一个是含Elp3的核心复合物,另一个含Elp4/5/6亚基。缺失yELP3(或其它yELP)可导致一系列表型,有的与转录延伸缺陷有关。Elp3具有HAT活性,该活性为复合物行使功能所必需。使Elp3的HAT活性严重丧失的点突变可引起所有elp表型。完整的复合物可直接修饰组蛋白H3和H4尾部,其优先乙酰化位点是H3 K14和H4 K8。复合物的HAT活性需要Elp4/5/6的存在,它们只与核心复合物相互作用(不与RNAPⅡ作用),可能对核心复合物的HAT活性具调控作用。
     近来人Elongator也被分离,它也是个不稳定的六亚基复合物,可与RNAPⅡ相互作用,具有HAT活性,能乙酰化H3和H4,在HeLa细胞核抽提物中去除Elongator可降低抽提物对染色质模板的转录延伸速率,提供了该复合物在染色质为模板的转录延伸中有功能的生化证据,但是上面的信息都来自体外研究。尚未见对人Elongator复合物及其亚基功能的体内研究的报道。
     本文以酿酒酵母为实验材料,利用其易于进行遗传操作的优点,
    
    对人Elongator的功能特点进行体内研究。证明了人与酵母的Elp3在
    功能上是保守的,初步确定了hElp3及其拥有的HAT活性在复合物中
    的功能地位,了解了复合物HAT活性在基因表达调控中的作用方式。
    得到的主要结果和结论如下:
    1、建立了以酵母为材料对人Elongator复合物作用特点进行分析的功
     能互补和基因表达分析的实验体系
    2、利用上述体系证实J送洗P3、.叻凡P3和力凡P3分别可以完全、显著、
     部分补偿妊弘P3缺失引起的生长缺陷,并分别能够在诱导条件下完
     全、显著、部分恢复.此艺P3缺失引起的月敬万和汉5刀3基因表达延迟
     的缺陷。HAT区催化结构域缺失的动凡尸夯别拜口力云艺尸狱刹厂没有上
     述功能。表明人与酵母的凡P3在功能上是保守的,力凡P3的HAT区
     可以替代夕凡P3的HAT区,hEIP3的HAT活性为其行使功能所必需。
    3、利用功能互补和RT一PCR证明力几P4可部分补偿不必艺用缺失引起的生
     长缺陷,并能在一定程度上恢复其产y左又夕掀.55刀3表达延迟的缺陷,
     表明与yElp4相似,hElp4所在的较小亚复合物可能对核心复合物
     的HAT活性行使调控功能。
    4、利用点突变和Plasmid Shuffle等技术构建了含H3 K14一R、H4 KS
     ~R单突变和H3 K14一侧H4 KS一R双突变的e1P3乙菌株,通过功
     能互补实验分析少凡P3对突变株的补偿功能,证实酵母Elongator
     可对H3 14K/H4 SK进行乙酞化修饰。同时以转入_汪艺P3为参照确
     立了研究hElp3的HAT活性作用方式的体内检测体系。
    5、通过对力几P3相关质粒转入含H3/H4K一R突变的e幼3乙菌株的功
     能互补实验,发现在供试条件下组蛋白突变均使少艺艺P3、,动乙艺P3和
     力凡P3补偿能力下降。在H3 K14一侧H4 KS~R双突变的e助3』菌
     株中,三个基因的补偿功能都近乎丧失,表明在体内组蛋白(H3 K14、
     H4KS)是hElp3及其所在的Elongator复合物的重要靶位点,同时
     表明人Elongat叮复合物与转录相关的染色质的修饰和改构
     (remondeling)有关。
    6、在对H3/H4K~R突变株的功能互补实验中,我们发现H3 K14一R
    
     舰4 KS一R双突变使e助了乙菌株产生更为严重的缺陷表型,表明细
     胞内其它乙酞转移酶与EIP3在功能上有重叠,同时也表明体内维持
     一定的乙酞化水平对细胞正常生长或迅速适应条件变化非常重要。
    7、H4 KS一R对I功五艺P3、力几P3与少凡P3功能的影响大于H3 K14一R,
     表明体内组蛋白不同位点的乙酞化修饰对基因表达有不同的影响。
     人与酵母的Elp3对组蛋白H4 KS的乙酞化修饰可能有比H3 K14更
     重要的作用。
The packaging of eukaryotic DNA into chromatin influences various processes that utilize DNA as a template, including transcription, replication and repair. Eukaryotic messenger RNAs are synthesized by the multisubunit enzyme RNA polymerase II, aided by myriad cofactors that control different events in this multistep process. A complete round of transcription involves the recruitment of polymerase and general transcription factors to the promoter, RNA chain synthesis initiation and polymerase escape form the promoter, RNA chain elongation, and finally termination with relaease of polymerase and nascent transcript from the DNA template. As RNA polymerase II leaves a gene promotor to transcribe the coding region, it faces many obstacles, including nucleosomes. Recent data have demonstrated that the tails of histones H3 and H4 greatly reduce the speed of transcript elongation through a nucelosome, and tail acetylation suppresses this effect. Accessory factors for elongating polymerase would be expected to carry out these modifications. The RNAPII -associated complex Elongator has histone acetyltransferase (HAT) activity and thus might fulfil such a role.
    Yeast Elongator was isolated as a complex that associates with the chromatin fraction and interacts with the elongating phosphorylated form of RNAP II. The functional entity of Elongator complex has recently been shown to be an unstable six-subunit complex, termed holo-Elongator, which can dissociate into two discrete three-subunit subcomplexes upon treatment with high salt and /or MonoQ chromatography. One of these subcompexes is the Elp3-containing core complex, and the other is a complex of the Elp4, Elp5 and Elp6 proteins. Deletion of ELP3 (or other ELP genes) confers a set of phenotypes, some of which are associated with elongation defects. Significantly, the Elp3 subunit is a highly conserved histone acetyltransferase (HAT). Mutations that debilitate the HAT activity of EIp3 in vitro also confer elp phenotypes in vivo, indicating that the HAT activity of Elongator is required for its function. The activity of intact Elongator complex is directed specifically toward the amino-terminal tails of histone H3 and H4, the predominant acetylation sites are lysine-14 of
    
    
    
    histone H3 and lysine-8 of histone H4. The small subcomlexes composed of Elp4/5/6 is required for the HAT activity, it interacts preferentially with the core complex(rather than in complex with RNAPII) and was therefore proposed to have a regulatory function.
    Recently, human Elongator complexes have been isolated. The human complex is a fragile six-subunit complex that interacts with RNAP II and has HAT activity directed against histone H3 and H4. Depletion of Elongator from HeLa nuclear extracts reduces the ability of these extracts to transcribe chromatin templates, providing biochemical support for the proposed role of Elongator during transcript elongation in chromatin. However all of these data come from in vitro studies. There have been no reports so far on the characterization of human Elongator complex in vivo.
    In this thesis, we studied the function of HAT activity of human Elongator complex in gene expression and regulation in Saccharomyces cerevisiae. The results have shown that the HAT activity ofELP3, which is essential for its function in vivo, is evolutionarily conserved between human and yeast. Human Elongator complex serves a role in chromatin remodeling through modifying the lysine residues of histone H3 and H4 during transcription elongation in higher cells. The main results and conclusions are as followings.
    1 Using depletion strain of yeast as material, we have established a system for complementation test and gene expression analysis of human Elongator complex.
    2, By using the above system, we demonstrated that yELP3, yhELP3 and hELP3 were able to completely, dramatically and partially complement the growth defects and the slow activation of PHO5 and SSA3 gene caused by the depletion of yELP3, respectively, while yhELPBHAT' whose catalytic domain was partially de
引文
1. Cramer P., Bushnell D A., Fu J., Gnatt A L., Maier-Davis B., Thompson NE., Burgess R R., Edwards A M., David P R. and Komberg R D: Architecture of RNA polymerase Ⅱ and implications for the transcription mechanism. Science 2000, 288: 640-649.
    2. Conaway J W., Shilatifard A., Dvir A. and Conaway R C: Control of elongation by RNA polymerase Ⅱ. Trends Biochem Sci. 2000, 25: 375-80.
    3. Roeder R G. The role of general initiation factors in transcription by RNA polymerase Ⅱ. Trends Biochem Sci. 1996, 21: 327-35.
    4. Tirode F., Busso D., Coin F., Egly J M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell. 1999, 3: 87-95.
    5. Keene, R.G. and Luse D S. Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase Ⅱ. J. Biol. Chem. 1999, 274:11526-11534.
    6. Holstege F C., Fiedler U., Timmers H T., Three transitions in the RNA polymerase Ⅱ transcription complex during initiation. EMBO J. 1997, 16: 7468-7480.
    7. Yan Q., Moreland R J., Conaway J W., Conaway R C. Dual roles for TFIIF in promoter escape by RNA polymerase Ⅱ. J. Biol. Chem. 1999, 274:35668-35675
    8. Moreland, R J., et al. A role for the TFIIH XPB RNA helicase in promoter escape by RNA polymerase Ⅱ. J. Biol. Chem. 1999, 274: 22127-22130
    9. Bradsher J., Coin F., Egly J M., Distinct roles for the helicases of
    
    TFIIH in transcript initiation and promoter escape. J. Biol. Chem. 2000, 275:2532-2538
    10. Dvir A., Conaway R C., Conaway J W. Promoter escape by RNA polymerase Ⅱ: A role for an ATP cofactor in suppression of arrest by polymerase at promoter-proximal sites. J. Biol. Chem. 1996, 271: 23352-23356
    11. Robert F., Douziech M., Forget D., Egly J M., Greenblatt J., Burton Z F., Coulombe B. Wrapping of promoter DNA around the RNA polymerase Ⅱ initiation complex induced by TFIIF. Mol. Cell. 1998, 2: 342-351
    12. Fu J., Gerstein M., David P R., Gnatt A L., Bushnell D A., Edwards A M., Kornberg R D. Repeated tertiary fold of RNA polymerase Ⅱ and implications for DNA binding. J. Mol. Biol. 1998, 280:317-322
    13. Tan S., Garrett K P., Conaway R C., Conaway J W. A cryptic DNA binding domain in the C-terminus of RNA polymerase Ⅱ general transcription factor RAP30. Proc. Natl. Acad. Sci. USA. 1994, 91: 9808-9812
    14. Dahmus M E. Reversible phosphorylation of the C-terminal domain of RNA polymerase Ⅱ. J. Biol. Chem. 1996, 271:19009-19012
    15. Chodosh L A., et al. 5,6-Dichloro-1-b-Dribofuranosylbenzimi- dazole inhibits transcription elongation by RNA polymerase Ⅱ in vitro. J. Biol. Chem. 1989, 264:2250-2257
    16. Marshall N F., and Price D H. Control of formation of two distinct classes of RNA polymerase Ⅱ elongation complexes. Mol. Cell. Biol. 1992, 12:2078-2090
    17. Kibel A., Iliopoulos O., DeCaprio J. A., and Kaelin W G. Binding of the von hippel-Lindau tumor suppressor protein to Elongin B and C. Science 1995, 269:1444-1446
    18. Shilatifard A., Lane W S., Jackson K W., Conaway R C., and
    
    Conaway J W. An RNA polymerase Ⅱ elongation factor encoded by the human ELL gene. Science 1996, 271:1873-1876.
    19. Selby C P., Sancar A. Cockayne syndrome group B protein enhances elongation by RNA polymerase Ⅱ. Proc. Natl. Acad. Sci. USA. 1997, 94:11205-11209.
    20. Wittschieben B O., Otero G., de Bizemont T., Fellows J., ErdjumentBromage H., Ohba R., Li Y., Allis C D., Tempst P., Svejstrup J Q: A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase Ⅱ holoenzyme. Mol. Cell. 1999, 4:123-128
    21. Otero G., Fellows J., Li Y., et al. Elongator, a multisubunit component of a novel RNA polymerase Ⅱ holoenzyme for transcriptional elongation. Mol Cell. 1999, 3:109-118.
    22. Brownell J E., and Allis C D. An activity gel assay detects a single, catalytically active histone acetyltrnsterase subunit on Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA. 1995, 92:6364-6368
    23. Cho H., Orphanides G., Sun X., Yang X J., Ofryzko V., Lees E., Nakatani Y., and Reinberg D: A human RNA polymerase Ⅱ complex containing factors that modify chromatin structure. Mol. Cell. Biol., 1998, 18:5355-5363
    24. Hartzog G A., Wada T., HAnda H., Winston F: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase Ⅱ in Saccharomyces cerevisiae. Genes Dev. 1998, 12:357-369
    25. Chen H W., Tini M., and Evans R M. HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 2001, 13: 218-224
    26. Wada T., Takagi T., Yamaguchi Y., Ferdous A., Imai T., Hirose S., Sugimoto S., Yano K., Hartzog G A., Winston F., et al.: DSIF, a novel transcription elongation factor that regulates RNA polymerase Ⅱ processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998, 12:343-356.
    
    
    27. Tamm I: Definition of subclasses of nucleoplasmic RNA. Proc. Natl. Acad. Sci. USA. 1977, 74:5011-5015.
    28. Kephart D D., Marshall N F., Price D H: Stability of Drosophila RNA polymerase Ⅱ elongation complexes in vitro. Mol. Cell. Biol. 1992, 12:2067-2077.
    29. Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H: NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase Ⅱ elongation. Cell 1999, 97:41-51
    30. Wada T., Takagi T., Yamaguchi Y., Watanabe D., and Handa H: Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase Ⅱ-dependent transcription in vitro. EMBO J. 1998, 7:7395-7403.
    31. Price D H: P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase Ⅱ. Mol. Cell. Biol. 2000, 20:2629-2634.
    32. Sune C., Hayashi T., Liu Y., Lane W S., Young R A., and Garcia-Blanco M A. CA150, a nuclear protein associated with the RNA polymerase Ⅱ holoenzyme, is involved in Tat-activated human immunodeficiency type 1 transcription. Mol. Cell. Biol. 1997, 17: 6029-6039.
    33. Bedford M T., Reed R., and Leder P: WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proc. Natl. Acad. Sci. USA. 1998, 95:10602-10607.
    34. Bedford M T., and Leder P: The FF domain: a novel motif that often accompanies WW domains. Trends Biochem. Sci. 1999, 24, 264-265.
    35. Carty S M., Goldstrohm A C., Sune C., Garcia-Blanco M A., and Greenleaf A L: Protein-interaction modules that organize nuclear
    
    function: FF domains of CA150 bind the phosphoCTD of RNA polymerase Ⅱ. Proc. Natl. Acad. Sci. USA. 2000, 97:9015-9020.
    36. Sudol M: Structure and function of the WW domain. Prog. Biophys. Mol. Biol. 1996, 65:113-132.
    37. Sudol M.,. Sliwa K, and Russo T: Functions of WW domains in the nucleus. FEB S Lett. 2001,490:190-195.
    38. Bedford M T., and Leder P: The FF domain: a novel motif that often accompanies WW domains. Trends Biochem. Sci. 1999, 24: 264-265.
    39. Zarrinpar A., and Lim W A: Converging on proline: the mechanism of WW domain peptide recognition. Nat. Struct. Biol. 2000, 7:611-613.
    40. Goldstrohm A C., Albrecht T R., Carles Sun~E'., Bedford M T., And Garcia-Blancol M A: The Transcription Elongation Factor CA150 Interacts with RNA Polymerase Ⅱ and the Pre-mRNA Splicing Factor SF1. Mol. Cell. Biol. 2001, 21:227617-7628
    41. Sune C., and Garcia-Blanco M A: Transcriptional Cofactor CA150 Regulates RNA Polymerase Ⅱ Elongation in a TATA-Box-Dependent Manner. Mol. Cell. Biol. 1999, 19: 4719-4728.
    42. Van Gool A J., Verhage R., Swagenakers SNA., Van De Putte P., Brouwer J., Troelstra C., Bootsma D., Hoeijmakers JHJ: RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J 1994, 13:3459-3470
    43. Tantin D, Kansal A, Carey M: Recruitment of the jputative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase Ⅱ elongation complexes. Nol Cell Biol. 1997, 17:6803-6814
    44. Thirman M J., Levitan D A., Kobayashi H., Simon M C., and Rowley J: Cloning of ELL, a gene that fuses to MLL in a t(11; 19)(q23; p13.1) in acute myeloid leukemia. Proc. Natl. Acad. Sci. USA. 1994, 91:12110-12114.
    
    
    45. Martin M E., and Berk A J: Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol. Cell. Biol. 1999, 19: 3403-3414.
    46. Shilatifard A., Haque D., Conaway R C., and Conaway J W: Structure and function of RNA polymerase Ⅱ elongation factor ELL: identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex. J. Biol. Chem. 1997, 272:22355-22363.
    47. Shilatifard A: Factors regulating the transcriptional elongation activity ofRNA polymerase Ⅱ. FASEB J. 1998, 12:1437-1446.
    48. Johnstone R W., Gerber M., Landewe T., Tollefson A., Wold W S., And Shilatifard A: Functional Analysis of the Leukemia Protein ELL: Evidence for a Role in the Regulation of Cell Growth and Survival. Mol. Cell. Biol. 2001, 5:1672-1681.
    49. Miller T., Williams K., Johnstone R W., and Shilatifard A: Identification, cloning, expression, and biochemical characterization of the testisspecific RNA polymerase Ⅱ elongation factor ELL3. J. Biol. Chem. 2000, 275: 32052-32056.
    50. Aso T., Lane W S., Conaway J W., and Conaway R C: Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase Ⅱ. Science 1995, 269:1439-1443
    51. Garrett K P., Tan S., Bradsher J N., Lane W S., Conaway J W., and Conaway R C: Molecular cloning of an essential subunit of RNA polymerase Ⅱ elongation factor SIII. Proc. Natl. Acad. Sci. USA. 1994, 91:5237-5241
    52. Garrett K P., Aso T., Bradsher J N., Foundling S I., Lane W S., Conaway R C., and Conaway J W: Positive regulation of general transcription factor SIll by a tailed ubiquitin homolog. Proc. Natl. Acad. Sci. USA. 1995, 92:7172-7176
    
    
    53. Aso T., Haque D., Barstead R J., Conaway R C., and Conaway J W: The inducible elongin A elongation activation domain: structure, function and interaction with the elongin BC complex. EMBO J. 1996, 15:5557-5566
    54. Conaway J W., Kamura T., and Conaway R C: The Elongin BC complex and the von Hippel-Lindau tumor suppressor protein. Biochim. Biophys. Acta. 1998, 1377(2):49-54.
    55. Duan D R., Pause A., Burgess W H., Aso T., Chen D Y T., Garrett K P., Conaway R C., Conaway J W., Linehan W M., and Klausner R D: Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 1995, 269:1402-1406
    56. Gnarra J R., Duan D R., Weng Y., Humphrey J S., Chen D Y., Lee S., Pause A., Dudley C F., Latif F., Kuzmin I., Schmidt L., Duh F M., Stackhouse T., Chen F., Kishida T., Wei M H., Lerman M I., Zbar B., Klausner R D., and Linehan W M: Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. Biochim. Biophys. Acta. 1996, 1242:201-210
    57. Bradsher J N., Tan S., McLaury H.-J., Conaway J W., and Conaway R C: RNA polymerase Ⅱ transcription factor SIII. Ⅱ. Functional properties and role in RNA chain elongation. J. Biol. Chem. 1993, 268: 25594-25603
    58. Moreland R J., Hanas J S., Conaway J W., Conway R C: Machanism of Action of RNA Polymerase□Elongation Factor Elongin. J. Biol. Chem. 1998, 273:26610-26617
    59. Jaeson T, Kwon E, Chachulska A M, Hyman L E. Novel roles for Elongin C in yeast. Biochimica et Biophysica Acta. 2000, 1491: 161-176
    60. Conaway R C., and Conaway J W: General initiation factors for RNA polymerase Ⅱ. Annu. Rev. Biochem. 1993, 62:161-190
    
    
    61. Conaway R C., Garrett K P., Hanley J P., and Conaway J W: Mechanism of promoter selection by RNA polymerase Ⅱ: mammalian transcription factors alpha and beta gamma promote entry of polymerase into the preinitiation complex. Proc. Natl. Acad. Sci. USA. 1991, 88:6205-6209
    62. Buratowski S., Sopta M., Greenblatt J., and Sharp P A: RNA polymerase Ⅱ-associated proteins are required for a DNA conformation change in the transcription initiation complex. Proc. Natl. Acad. Sci. USA. 1991, 88:7509-7513
    63. Flores O., Lu H., and Reinberg D: Factors involved in specific transcription by mammalian RNA polymerase Ⅱ. Identification and characterization of factor IIH. J. Biol. Chem. 1992, 267:2786-2793
    64. Tirode F., Busso D., Coin F., and Egly J M: Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 1999, 3:87-95
    65. Pan G., and Greenblatt J: Initiation of transcription by RNA polymerase Ⅱ is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J. Biol. Chem. 1994, 269: 30101-30104
    66. Parvin J D., and Sharp P A: DNA topology and a minimal set of basal factors for transcription by RNA polymerase Ⅱ. Cell 1993,73: 533-540
    67. Qin Y., Moreland R J., Conaway J W., and Conaway R C: Dual Roles for Transcription Factor IIF in Promoter Escape by RNA Polymerase Ⅱ. J. Biol. Chem. 1999, 274:35668-35675
    68. Zhou Q., and Sharp P A: Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J. 1995, 14: 321-328.
    69. Zhou Q., and Sharp P A: Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science 1996, 274:605-610.
    
    
    70. Li X Y., and Green M R: The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev. 1998, 12: 2992-2996.
    71. Kim J B., Yamaguchi Y., Wada T., Handa H., And Phillip A: Sharpl Tat-SF1 Protein Associates with RAP30 and Human SPT5 Proteins. Mol. Cell. Biol. 1999, 19:5960-5968
    72. Sekimizu K., Kobayashi N., Mizuno D., Natori S: Purification of a factor from Ehrlich ascites tumor cells specifically stimulating RNA polymerase Ⅱ. Biochemistry 1976, 15:5064-5070
    73. Reins D: Nascent RNA cleavage by transcription elongation complexes. In Transcription: Mechanisms and Regulation, Edited by Conawy RC, Conaway J W., New York: Ravenb Press. 1994, 283-278
    74. Exinger G., LaCroute F: 6-azauracil inhibiton of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 1992, 142:749-759
    75. Archambault J., LaCroute F., Ruet A., Frissen J D: Genetic interacton between trandscription elongation factor TFIIS and RNA polymerase Ⅱ. Mol. Cell. Biol. 1992,12:4142-4152
    76. Reines D., Conaway R C., Conaway J W: Mechanism and regulation of transcriptional elongation by RNA polymerase Ⅱ. Curr Opin Cell Biol. 1999, 11:342-6.
    77. Struhl K: Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12:599-606
    78. Orphanides G., LeRoy G., Chang C.-H., Luse D S., Reinberg D: FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 1998, 92:105-116
    79. Orphanides G., Wu W.-H., Lane W S., Hampsey M., Reinberg D: The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 1999, 400:284-288
    80. Okuhara K., Ohta K., Seo H., Shioda M., Yamada T., Tanaka Y.,
    
    Dohmae N., Seyama Y., Shibata T., Murofushi H: A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr. Biol. 1999, 9:341-350
    81. Brewster N K., Johnston G C., Singer R A: Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J. Biol. Chem. 1998, 273, 21972-21979
    82. Wittmeyer J., Joss L., Formosa T: Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 1999, 38:8961-8971
    83. Keller D M., Zeng X., Wang Y., Zhang Q H., Kapoor M., Shu H.,. Goodman R., Lozano G., Zhao Y., Lu H: A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 2001, 7:283-292.
    84. Yarnell AT., Oh S., Reinberg D., Lippard S J: Interaction of FACT, SSRP1, and the high mobility group (HMG) domain of SSRP1 with DNA damaged by the anticancer drug cisplatin. J. Biol. Chem. 2001, 276:25736-25741.
    85. Svejstrup J Q: Chromatin elongation factors. Curr Opin Genet Dev. 2002, 12:156-161
    86. Brewster N K., Johnston G C., Singer R A: A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol. 2001, 21:3491-3502.
    87. Formosa T., Eriksson P., Wittmeyer J., Ginn J., Yu Y., Stillman D J: Spt16 Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 2001, 20:3506-3517.
    88. John S., owe L., Tafrov S T., Grant P A., Sternglanz R., Workman J L: The something about silencing protein, Sas3, is the catalytic subunit of
    
    NuA3, a yTAF(Ⅱ)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 2000, 14:1196-1208.
    89. Wada T., Orphanides G., Hasegawa J., Kim D K., Shima D., Yamaguchi Y., Fukuda A., Hisatake K., Oh S, Reinberg D., et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFⅡH. Mol Cell 2000, 5:1067-1072.
    90. Ding HF., Rimsky S., Batson S C., Bustin M., Hansen U: Stimulation of RNA polymerase Ⅱ elongation by chromosomal protein HMG-14. Science 1994, 265:796-799.
    91. Bustin M., Trieschmann L., Postnikov Y V: The HMG-14/17 chromosomal protein family: architectural elements that enhance transcription from chromatin templates. Cell Biol. 1995, 6:247-255
    92. Winkler G S., Petrakis T G., Ethelberg S., Tokunaga M., Erdjument-Bromage H., Tempst P., Svejstrup J Q: RNA polymerase Ⅱ elongator holoenzyme is composed of two discrete subcomplexes. J. Biol. Chem. 2001, 276:32743-32749.
    93. Li Y., Takagi Y., Jiang Y., Tokunaga M., Erdjument-Bromage H., Tempst P., Kornberg R D: A multiprotein complex that interacts with RNA polymerase Ⅱ elongator. J. Biol. Chem. 2001, 276:29628-29631.
    94. Krogan N J., Greenblatt J F: Characterization of a six-subunit holoelongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 2001, 21:8203-8212.
    95. Wittschieben B O., Fellows J., Du W., Stillman D J., Svejstrup J Q:. Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo. EMBO J. 2000, 19:3060-3068.
    96. Frohloff F., Fichtner L., Jablonowski D., Breunig K D., Schaffrath R:.
    
    Saccharomyces cerevisiae elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J. 2001, 20:1993-2003.
    97. Fellows J., Erdjument-Bromage H., Tempst P., Svejstrup J Q: The Elp2 subunit of Elongator and Elongating RNA polymerase Ⅱ holoenzyme is a WD40 repeat protein. J. Biol. Chem. 2000, 275: 12896-12899
    98. Krogan N J., and Greenblatt J F: Characterization of a Six-Subunit Holo-Elongator complex Required for the Regulated Expression of a Group of Genes in Saccharomyces cerevisiae. Mol. Cell. BioL. 2001 21:8203-8212
    99. Reines D., Conaway R C., and Conaway J W: Mechanism and regulation of transcriptional elongation by RNA polymerase Ⅱ. Curr Opin Cell Biol. 1999, 11:342-346
    100. Hawkes N A., Otero G., Winkler G S., Marshall N., Dahmus M E., Krappmann D., Scheidereit C., Claire L., Schiavo T G., Hediye E B., Tempst P., and Svejstrup J Q: Purification and Characterization of the Human Elongator Complex. J. Biol. Chem. 2002, 277: 3047-3052.
    101. Kim J H., Lane W S., and Reinberg D: Human Elongator facilitates RNA polymerase Ⅱ transcription through chromatin. Proc. Natl. Acad. Sci. USA. 2002, 99:1241-1246
    102. Marshall N F., And Price D H: Purification of P-TEFb, a transcription factor required for the transition into productive elongation [J]. J. Biol. Chem. 1995, 270:12335-123
    103. Mancebo H S., Lee G., Flygare J., Tomassini J., Luu P., Zhu Y., Peng J., Blau C., Hazuda D., Price D H., and Flores O: P-TEFb kinase is requiredfor HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 1997. 11:2633-2644.
    104. Peng J., Marshall N F., and Price D H: Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J. Biol. Chem.
    
    1998, 273:13855-13860.
    105. Peng J., Zhu Y., Milton J T., and Price D H: Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 1998, 12:755-762.
    106. Wei P., Garber M E., Fang S M., Fischer W H., and Jones K A: A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998, 92:451-462.
    107. Zhu Y., Peery T., Peng J., Ramanathan Y., Marshall N F., Marshall T., Amendt B., Mathews M B., and Price D H: Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 1997, 11:2622-2632.
    108. Thoma F: Structural changes in nucleosomes during transcription: strip, split or flip? Trends Genet. 1991, 7:175-177.
    109. Van Holde KE., Lohr D E., Robert C: What happens to nucleosomes during transcription? J. Biol. Chem. 1992, 267:2837-2840.
    110. Felsenfeld G., Clark D., Studitsky V: Transcription through nucleosomes. Biophys Chem. 2000, 86:231-237.
    111. Lorch Y., LaPointe J W., Kornberg R D: Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 1987, 49:203-210.
    112. Izban M G., Luse D S: Transcription on nucleosomal templates by RNA polymerase Ⅱ in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991, 5:683-696.
    113. Cavalli G., Thoma F: Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 1993, 12:4603-4613.
    114. Baer B W., Rhodes D: Eukaryotic RNA polymerase Ⅱ binds to nucleosome cores from transcribed genes. Nature 1983,301:482-488.
    
    
    115. Sathyanarayana U G., Freeman L A., Lee M S., Garrard W T: RNA polymerase-specific nucleosome disruption by transcription in vivo. J. Biol. Chem. 1999, 274:16431-16436.
    116. Chen T A., Sterner R., Cozzolino A., Allfrey V G: Reversible and irreversible changes in nucleosome structure along the c-los and c-myc oncogenes following inhibition of transcription. J. Mol. Biol. 1990, 212:481-493.
    117.沈(王羽)(王非),方福德.真核基因表达调控.高等教育出版社.施普林格出版社,1997,修订版.1-14
    118.黄百渠,曾庆华等.组蛋白和核小体在基因转录中的作用.科学通报 2000,45:2033—2040.
    119. Spencer V A., and Davie J R: Role of covalent modification of histones in regulating gene expression. Gene 1999, 240:1-12.
    120. Allfrey V G., Faulkner R M., and Misky A E: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl. Acad. Sci. USA. 1964, 51: 786-793.
    121. Strahl B D., and Allis C D: The language of covalent histone modifications. Nature 2000, 403:41-45
    122. Hebbes T R., Thome A W. and Crane-Robinson C: A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 1988, 7: 1395-1402.
    123. Grunstein M: Histone acetylation in chromatin structure and transcription. Nature 1997, 389: 349-352.
    124. Fletcher T M., and Hansen J C: The nucleosomal array: structure/function relationships. Crit. Rev. Eukaryote Gene Expr. 1996,6:149-188.
    125. Brownell J E., Zhou J., Ranalli T., Kobayashi R., Edmondson D G., Roth S Y., and Allis C D: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation.
    
    Cell 1996, 84: 843-851.
    126. Smith E R., Allis C D., and Lucchesi J C: Linking global histone acetylation to the transcription enhancement of Ⅹ-chromosomal genes in Drosophila males. J. Biol Chem. 2001, 276: 31483-31466.
    127. Lusser A., Kolle D. and Loidl P: Histone acetylation: lessons from the plant kingdom. Trends in Plant Science 2001, 6: 59-65.
    128. Allis C D., Chicoine L G., Richman R. and Schulman I G: Deposition-related histone acetylation in micromuclei of conjugating Tetrahymena. Proc. Natl. Acad. Sci. USA. 1985, 82: 8048-8052.
    129. Howe L., Brown C E., Lechner T. and Workman J L. Histone acetyltransferase complexes and their link to transcription. Cri. Rev. Eukaryot. Gene Expr. 1999, 9 231-243.
    130. Chen H W., Tini M. and Evans R M: HATs on and beyond chromatin. Curr. Opin. Cell. Biol. 2001, 13:218-224.
    131. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12:599-606.
    132. Brown C E., Lechner T., Howe L. and Workman J L. The many HATs of transcription coactivators. Trends Biochem. Sci. 2000, 25(1): 15-19.
    133. Schiltz R L., Mizzen C A., Vassilev A., et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J. Biol. Chem. 1999, 274:1189-1192.
    134. Schiltz R L. and Nakatani Y: The PCAF acetylase complex as a potential tumor suppressor. Biochimica et Biophysica Acta. 2000, 1470: 37-53.
    135. Krumm A L., Madisen X J., Yang R., et al. Long-distance transcriptional enhancement by the histone acetyltransferase PCAF. Proc. Natl. Acad. Sci. USA. 1998, 95: 13501-13506.
    
    
    136. Giles R H., Peters D J. and Breuning M H. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 1998, 14: 178-183.
    137. Ogryzko V V., Schlitz V., Russanova B H., et al. The trans- criptional coactivators p300 and CBP are histone acetyltransferase. Cell 1996, 87: 953-959.
    138. Korzus E., Torchia J., Rose D W., et al. Transcription factor- specific requirements for coactivators and their acetyltransferase functions. Science 1998, 279: 703-707.
    139. Bannister A J. and Miska E A. Regulation of gene expression by transcription factor acetylation. CMLS Cell. Mol. Life Sci. 2000, 57: 1184-1192.
    140. Burley S K. and Roeder R G. Biochemsitry and structural biology of transcription factor ⅡD (TFⅡD). Annu. Rev. Biochem. 1996.65:769-799
    141. Mizzen C A., Yang X J., Kokubo T., et al. The TAFⅡ250 subunit of TFⅡD has histone acetyltransferase activity. Cell. 1996, 87:1261-1270
    142. O'Brien T. and Tjian R: Funtional analysis of the human TAFⅡ250 N-terminal kinase domain. Mol Cell 1998, 1: 905-911
    143. O'Brien T. and Tjian R: Different functional domains of TAFⅡ250 modulate expression of distinct subsets of mammalian genes. Proc. Natl. Acad. Sci.USA. 2000, 97:2456-2461
    144. Stemer D E., and Berger S L: Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews 2000, 435-459
    145. Allard S., Utley R T., Savard J., et al: NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esalp and the ATM-related cofactor Tralp.EMBO J. 1999, 18:5108-5119
    146. Smith E R., Eisen A., Gu W., et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Pro. Natl. Acad. Sci. USA. 1998,
    
    95:3561-3565
    147. Clarke A S., Lowell J E., Jacobson S J. and Pillus L: Esalp is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 1999, 19:2515-2526
    148. Ramanathan B. and Smerdon M J. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J. Biol. Chem. 1989, 264: 11026-11034.
    149. Kamine J., Elangovan B., Subramanian T., et al. Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 1996, 216:357-366.
    150. Kimura A. and Horikoshi M: Tip60 acetylate six lysines of a specific class in core histones in vitro. Genes Cells 1998, 3: 789-800.
    151. Ikura T., Ogryzko V V., Grigoriev M., et al. Involvement of the Tip60 histone acetyltransferase complex in DNA repair and apoptosis. Cell 2000, 102: 463-473.
    152. Golding A., Chandler S., Ballestar E., et al. Nucleosome structure completely inhibits in vitro cleavage by the V (D) J recombinase. EMBO J. 1999, 18: 3712-3723.
    153. McMurry M T. and Krangel M S: A role for histone acetylation in the developmental regulation of V (D) J recombination. Science 2000, 287: 495-498.
    154. McBlane F. and Boyes J. Stimulation of V (D) J recombination by histone acetylation. Curr. Biol. 2000, 10: 482-486.
    155. Iizuka M. and Stillman B: Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 1999, 274: 23027-23034.
    156. Fox C A., Loo S., Dillin A. and Rine J. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev. 1995, 9:911-924.
    
    
    157. Verreault A. De novo nucleosome assembly: new pieces in an old puzzle. Genes Dev. 2000, 14: 1430-1438.
    158. Parthun M R., Widom J. and Gottschling D E: The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996, 87: 85-94.
    159. Sobel R E., Cook R G., Perry C A., et al. Conservation of deposition-related acetylation sites in newly synthesized histone H3 and H4. Proc. Natl. Acad. Sci. USA. 1995, 92:1237-1241.
    160. Ruiz-Garcia A B., Sendra R., Galiana M., et al. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyl- transferase enzyme specific for free histone H4. J. Biol. Chem. 1998, 273: 12599-12605.
    161. Ehrenhofer-Murray A E., Rivier D H. and Rine J: The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 1997, 145: 923-934.
    162. Reifsnyder C., Lowell J., Clarke A. and Pillus L. Yeast SAS silencing genes and human genes associated with AML and HIV-1Tat interactions are homologous with acetyltransferase. Nat. Genet. 1996, 14: 42-49.
    163. Takechi S. and Nakayama T: Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem. Biophys. Res. Commun. 1999, 266: 405-410.
    164. Mahlknecht U. and Hoelzer D: Histone acetylation modifies in the pathogenesis of malignant disease. Molecular Medicine 2000, 6: 623-644.
    165. Borrow J., Stanton V P., Andresen J M., et al. The translocation t(8; 16)(p11; 13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 1996, 14: 33-41.
    
    
    166. Carapeti M., Aguiar R C., Goldman J M. and Cross N C: A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 1998, 91: 3127-3133.
    167. Chen H., Lin R J., Schiltz R L., et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with PCAF and CBP/p300. Cell 1997, 90: 569-580.
    168. Smith E R., Allis C D. and Lucchesi J C. Linking global histone acetylation to the transcription enhancement of Ⅹ-chromosomal genes in Drosophila males. J. Biol. Chem. 2001, 276:31483-31466.
    169. Onate S A., Tsai S Y., Tsai M J. and O'Malley B W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995, 270: 1354-1357.
    170. Spencer T E., Jenster G., Burcin M M., et al. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997, 389: 194-198.
    171. Chen H., Lin R J., Xie W., et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of acetylase. Cell 1999, 98: 675-686.
    172. Vogelauer M., Wu J., Suka N. and Grunstein M: Global histone acetylation and deacetylation in yeast. Nature 2000, 408: 495-498.
    173. Berger S L: Local or Global? Nature 2000, 408: 412-414.
    174. Orphanides G. and Reinberg D. RNA polymerase Ⅱ elongation through chromatin. Nature 2000, 407: 471-475.
    175. Taunton J., Hassig C A., Schreiber S L: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996, 272: 408-411.
    176. Johnson C A., Turner B M: histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol. 1999, 10: 179-188.
    
    
    177. Khochbin S., Verdel A., Lemercier C., Seigneurin-Bernv D: Functional significance of histone deacetylase diversity. Curr. Opin. Genet Dev. 2001, 11: 162-166.
    178. Gray S G. and Ekstrom T J: The human histone deacetylase family. Exp. Cell. Res. 2001, 262: 75-83.
    179. Yang W M., Inouye C., Zeng Y., et al. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA. 1996, 93: 12845-12850.
    180. Emiliani S., Fischle W., Van L C., et al. Characterization of a human RPD3 ortholog, HDAC3. Proc. Natl. Acad. Sci. USA. 1998, 95: 2795-2800.
    181. Buggy J J., Sideris M L., Mak P., et al. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J. 2000, 350: 199-205.
    182. Knoepfler P S. and Eisenman R N. Sin meets NuRD and other tails of repression. Cell 1999, 99: 447-450.
    183. Takami Y., Kikuchi H. and Nakayama T. Chicken histone deacetylase-2 controls the amount of the 1gM H-chain at the steps of both transcription of its gene and alternative processing of its pre-mRNA in the DT40 cell line. J. Biol. Chem. 1999, 274:23977-23990.
    184. Li J., Wang J., Nawaz Z., et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexs containing HDAC3. EMBO J. 2000, 19: 4342-4350.
    185. Takami Y. and Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are essential for the viability of the DT40 chicken B cell line. J. Biol. Chem. 2000, 275: 16191-16201.
    
    
    186. Grozinger C M., Hassig C A. and Schreiber S L. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc. Natl. Acad. Sci. USA. 1999, 96: 4868-4873.
    187. Grozinger C M. and Schreiber S L: Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3- dependent cellular localization. Proc. Natl. Acad. Sci. USA. 2000, 97: 7835-7840.
    188. Miska E A., Karlsson C., Langley E., et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J. 1999, 18: 5099-5107.
    189. Lemercier C., Verdel A., Galloo B., et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J. Biol. Chem. 2000, 275:15594-15599.
    190. Guarente L: Sir2 links chromatin silencing, metabolism and aging. Genes Dev. 2000, 14: 1021-1026.
    191. Imai S., Armstrong C M., Kaeberlein M. and Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403: 795-800.
    192. Landry J., Sutton A., Tafrov S., et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA. 2000, 97: 5807-5811.
    193. Fry R A: Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-1ike proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 1999, 260: 273-279.
    194. Christina M., Grozinger C M. and Stuart L Schreiber. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem. Biol. 2002, 9: 3-16.
    195. Zhang Y., Ng H H., Erdjument-Bromage H., Tempst P., Bird A. and Reinberg D. Analysis of the NURD subunits reveals a histone
    
    deacetylase core complex and a connection with DNA methylation. Genes Dev. 1999, 13: 1924-1935.
    196. Ayer D E: Histone deacetylases: transcriptional repression with SINers and NuRDs. Trends Cell Biol. 1999, 9: 193-198.
    197. Tong J K., Hassig C A., Schnitzler G R., Kingston R E. and Schreiber S L: Chromatin deacetylation by ATP-dependent nucleosome remodeling complex. Nature 1998, 395: 917-921.
    198. Zhang Y., LeRoy G., Sellig H P., Lane W S. and Reinberg D: The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998, 95: 279-289.
    199. Aasland R., Stewart A F. and Gibson T: The SANT domain: a putative DNA-binding domain in the SWI/SNF and ADA complex, the transcriptional co-repressor N-CoR and TFⅡB. Trends. Biochem. Sci. 1996, 21: 87-88.
    200. You A., Tong J K.,Grozinger C M. and Screiber S L: CoREST is an integral component of the CoREST-human histone deacetylase complex. Proc. Natl. Acad. Sci. USA. 2001, 98: 1454-1458.
    201. Humphrey G W., Wang Y., Russanova V R., Hirai T., Qin J., Nakatani Y. and Howard B H: Stable histone deacetylase complex distinguished by the presence of SANT dimain protein CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 2001, 276: 6817-6824.
    202. Guenther M G., Lane W S., Fischle W., Verdin E., Lazar M A. and Shiekhattar R: A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 2000, 14: 1048-1057.
    203. Huang E Y., Zhang J., Miska E A., Guenther M G., Kiuzarides T. and Lazar M A: Nuclear receptor corepressors partner with class Ⅱ histone deacetylase in a Sin3-independent repression pathway. Genes Dev.
    
    2000, 14: 45-54.
    204. Kao H Y., Downes M., Ordentlich P. and Evans R M: Isolation of a novel histone deacetylase reveals that class Ⅰ and class Ⅱ deacetylases promote SMRT-mediated repression. Genes Dev. 2000, 14: 55-66.
    205. Wen Y D., Perissi V., Staszewski L M., Yang W M., Krones A., Glass C K., Rosenfeld M G. and Seto E: The histone deacetylase-3 complex contains nuclear receptor corepressors. Proc. Natl. Acad. Sci. USA. 2000, 97: 7202-7207.
    206. Dressel U., Bailey P J., Wang S C., Downes M., Evans R M. and Muscat G E: A dynamic role for HDAC-7 in MEF2 mediated muscle differentiation. J. Biol. Chem. 2001, 276:17007-17013.
    207. Wang A H., Bertos N R., Vezmar M., Pelletier N., Crosato M., Heng H H., Th'ng J., Han J. and Yang X J: HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor. Mol. Cell. Biol. 1999, 19: 7816-7827.
    208. Hassig C A. and Schreiber S: Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1997, 1: 300-308.
    209. Kuo M H. and Allis C D: Roles of histone acetyltranseferases and deacetylases in gene regulation. Bio Essays. 1998, 20:615-626.
    210. Braunstein M., Sobel R E., Allis C D., Turner B M. and Broach J R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 1996, 16: 4349-56.
    211. Turner B M., Birley A J., Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 1992, 69(2): 375-84
    
    
    212. Travers AA. The reprogramming of transcriptional competence. Cell 1992, 69, 573~575
    213. Wasylyk B and Chambon P: Transcription by eukaryotic RNA polymerases A and B of chromatin assembled in vitro. Eur. J. Biochem, 1979, 98:317~327
    214. Lzban MG and Luse DS: Transcription on nuclleosomal trmplates by RNA polymeraseⅡ in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 1991, 5: 683~696.
    215. Tse C, Sera T, Wolffe AP et al. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymeraseⅢ. Mol. Cell. Biol. 1998, 18, 4629~4638
    216. Winker S G., Kristjuhan A., Hediye E B., et al. Elongator is a histone H3 and H4 acetyltransferase omportant for normal histone acetylation levels in vivo. Proc. Natl. Acad. Sci. USA. 2002, 99:3517~3522
    217. Jabtonowski D., Frohloff F., Fichtner L., et al. Kluyveromyces lactis zymocin mode of action is linked to RNA polymerase Ⅱ function via Elongator. Mol Microbiol. 2001, 42:1095~105.
    218. Chinenov Y: A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem Sci. 2002, 27:115~7.
    219. Anderson S L., Coli R., Daly I W., et al. Familial dysautonomia is caused by mutations of the IKAP gene. Am. J. Hum. Genet. 2001, 68:753-8.
    220. Cheung P. Tanner K G., et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell. 2000, 5:905-915.
    221. Stephen Rea., Frank Eisenhaber., Dónal O'carroll., et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases.
    
    Nature 2000, 406: 593-599.
    222. Zlatanova J., Caiafa P. And Holde KV: Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J. 2000, 14:1697-1704.
    223. Goffeau A., et al: Life with 6000 genes. Science 1996, 274:563-567
    224. Burke D., Dawson D. and Steams T: Methods in Yeast Genetics, A Cold Spring Harbor Laboratory Course Manual, USA: Cold Spring Harbor Laboratory Press, 2000 Edition, 103-105
    225. Lorenz M C., Muir R S., Lim E., McElver J., Weber S C. and Heitman: Gene disruption with PCR products in Saccharomyces cerevisiae. Gnen. 1995, 158:113-117
    226. Kumar A and Snyder M: Emerging technologies in yeast genomics. Nature 2001, 2:202-312
    227. Bassett D E., Boguski M S. and Hieter P: Yeast genes and human diseases. Nature 1996, 379:589-590
    228. Bassett D E., et al. Genome cross-referencing and analysis of genes mutated in human disease. Nature Genet. 1997, 15:339-344
    229. Venter J C., et al. The sequence of human genome. Science 2001, 291: 1304-1351
    230. The genome international sequencing and analysis of genes mutated in human disease. Nature 2001, 409:860-921
    231.刘擎,余龙.酵母:一种模式生物.生命的化学 2000,2:61-66
    232. Jona G., Wittschieben B O., Svejstrup J Q., et al. Involvement of yeast carboxy-terminal domain kinase Ⅰ(CTDK-Ⅰ) in transcription elongation in vivo. Gene 2001: 267:31-36
    233. Han M., Kim U J., Kayne P., et al. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharornyces ceevisiae. EMBO J. 1988, 7:2221-2228
    234. Han M., Grunstein: Nucleosome loss actibates yeast downstream
    
    promoters in vivo. Cell 1988, 55:1137-1145
    235. Hirata Y., Andoh T., Asahara T., et al. Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol. Biol. Cell. 2003, 14:302-312
    236. Totter E W., Camilla M-F Kao., Berenfeld L., et al. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 2002, 277:44817-44825
    237. Meijsing S H. and Ehrenohofer-Murray A E: The silencing complex SAS-1 links histone acetylation to the assembly of repressed chromatin by CAF-1 and Asfl in Saccharomyces cerevisiae. Genes Dev. 2001, 15:3169-3182
    238. Nicholson R., Williams D B. and Moran L A: An essential member of the HSP70 gene family of Saccharomyces cerevisiae is homologous to immunoglobulin heavy chain binding protein. Proc. Natl. Acad. Sci. USA. 1990, 86:1159-1163
    239. Germaniuk A., Liberek K. and Marszalek J: A bichaperone (Hsp70-Hsp78) system restores mitochondrial DNA synthesis following thermal inactivaton of mipip polymerase. J. Biol. Chem. 2002, 277(31): 27801-27808
    240. Winker S G., Kristjuhan A., Hediye E B., et al. Elongator is a histone H3 and H4 acetyltransferase omportant for normal histone acetylation levels in vivo. Proc. Natl. Acad. Sci. USA. 2002, 99 (6): 3517-3522
    241. Pokholok D K., Hannett N M and Young R A: Exchange of RNA polymerase Ⅱinitiation and elongation factors during gene expression in vivo. Mol Cell. 2002, 9: 799-809.
    242. Archambault J., Lacroute F., Ruet A., Friesen J: Genetic interaction between transcription elongation factor TFⅡS and RNA polymerase Ⅱ. Mol. Cell. Biol. 1992, 12: 4142-4152.
    243. Exinger F., Lacroute F: 6-Azauracil inhibition of GTP biosynthesis in
    
    Saccharomyces cerevisiae. Curr. Genet. 1992, 22:9-11.
    244. Wang L., Mizzen C., Ying C., et al. Histone acetyltransrerase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol. 1997, 17:519-527
    245. Nelissen H., Clarke J H., Block M D., Block S D., Vanderhaeghen R., Zielinski R E., Dyer T., Lust S., Lnze D. and Lijsobettens M V: DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. Plant Cell 2003, 15: 639-654
    246. Frohloff F., Jablonowski D., Fichtner L. and Schaffrath R: Subunit Communications Crucial for the Functional Integrity of the Yeast RNA Polymerase Ⅱ Elongator (gamma-Toxin Target (TOT)) Complex. J. Biol. Chem. 2003, 278:956-961
    247. Spotswood H T. and Turner B M: An increasingly complex code. The Journal of Clinical Investigation. 2002, 110:557-582
    248. Protacio R U., Li G., Lowary P T. and Widom J: Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol. 2000, 20:8866-8878.
    249. zhang W, Bone JR, Edmondson DG, Turner BM and Roth SY: Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J. 17:3155-3167
    250. Grant PA: A tale of histone modifications. Genome Biology 2001, 2: reviews:0003.1-0003.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700