可逆性组蛋白乙酰化修饰在人WT1基因转录调控中的作用及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白的翻译后修饰所引起的染色质结构的重塑在真核生物基因表达调控中发挥着重要的作用。其中研究得最深入的是由组蛋白乙酰转移酶(HATs)和组蛋白去乙酰化酶(HDACs)催化的乙酰化反应。这两种酶通过对核心组蛋白尾部赖氨酸残基进行可逆的乙酰化修饰来调控转录的起始,并由此介导基因的激活或抑制。转录辅激活子p300/CBP 和 P/CAF 是具有组蛋白乙酰转移酶活性的蛋白,能通过多种机制参与许多基因的转录调控过程。
     WT1 基因编码一种锌指结构的蛋白 WT1。WT1 蛋白在调控生长和分化方面起重要作用,主要参与肾和生殖腺的发育过程,另外在造血系统的早期发育过程中也起作用。WT1基因的改变除了能引起维耳姆斯氏瘤(Wilms’tumor)之外,还与几种发育异常综合征和白血病、间皮瘤、生殖腺肿瘤等其它肿瘤有关。因此,阐明 WT1 基因的转录调控机制不仅对胚胎发育的研究有意义,而且将为治疗 WT1 相关疾病奠定理论基础。
     本论文旨在确定可逆的组蛋白乙酰化修饰是否参与WT1基因的转录调控,并试图探讨其分子机制。通过一系列瞬时转染和相对荧光素酶活性分析以及RT-PCR实验,我们发现组蛋白乙酰转移酶p300/CBP不仅能促进WT1启动子和内部增强子的活性,而且能提高内源WT1 mRNA的表达水平。E1A蛋白能抑制p300对WT1报告基因转录激活的促进作用,而其突变体E1A delta 2-36因不能与p300/CBP结合而没有这种作用,这也间接地证明了p300/CBP能促进WT1基因的表达。我们的结果还表明p300/CBP可分别与转录因子Sp1、c-Myb和Ets-1协同地促进WT1报告基因的转录活性。通过WT1内部增强子克隆方向不同的质粒,我们证明p300/CBP促进WT1报告基因的转录激活不受内部增强子方向的影响。此外,通过采用HAT区缺失突变的p300表达质粒的转染实验,我们证明了p300/CBP的组蛋白乙酰转移酶活性在WT1基因转录调控过程中发挥重要作用。通过染色质免疫沉淀实验(ChIP),我们发现p300/CBP能够提高WT1内部增强子处组蛋白H3的乙酰化水平。另外,我们的结果表明另一种组蛋白乙酰转移酶P/CAF不仅能促进WT1报告基因的表达,而且在此过程中与p300/CBP具有协同作用。在它们协同地促进WT1报告基因表达的过程中,p300/CBP和P/CAF的HAT活性都非常重要。另一方面,我们验证了六种人组蛋白去乙酰化酶(HDAC1-6)对WT1报告基因表达水平的影响。结果表明,HDAC4和HDAC5不仅能抑制WT1报告基因的活性,而且能下调内源WT1 mRNA的表达水平。在瞬时转染和报告基因活性分析中,HDAC4和HDAC5能抑制p300对WT1报告基因转录激活的促进作用。
     本论文的结果首次揭示了组蛋白可逆的乙酰化修饰参与WT1基因的转录调控,并对其分子机制进行了初步的探讨,为深入研究WT1基因转录调控机制和WT1相关疾病的研究奠定了基础。
The remodeling of the chromatin structure mediated by histone posttranslationalmodifications plays a crucial role in the expression regulation of eukaryotic genes. Among thehistone posttranslational modifications, the histone acetylation catalyzed by histoneacetyltransferases (HATs) and histone deacetylases (HDACs) plays a critical role in generegulation and hence has been intensively studied. The reversible acetylation/deacetylationmodification of lysine residues in core histone tails mediated by these two enzymes modulatesthe initiation of transcription, thus leads to the activation/suppression of gene expression.Transcriptional coactivators p300/CBP and P/CAF, which possess histone acetyltransferaseactivities, are involved in transcriptional regulation of many genes by distinct mechanisms.
     WT1 gene encodes a zinc finger protein, which plays an important role in the regulationof growth and differentiation. WT1 proteins are mainly involved in the development ofkidney and gonad. Moreover, WT1 proteins are associated with the early development ofhematopoietic system. Apart from Wilms’ tumor, alterations of WT1 gene have been shown tobe associated with several developmental abnormality syndromes and other tumors such asleukemias, mesotheliomas, gonadoblastoma, etc. Therefore, the elucidation of themechanisms of WT1 transcriptional regulation will be helpful not only in studies ofembryonic development, but also in the establishing theoretical bases for the cure of WT1-associated diseases.
     The aim of this study was to clarify whether the reversible histoneacetylation/deacetylation modification participates in the regulation of WT1 gene transcriptionand to explore its molecular mechanisms. By applying a series of transient transfection andrelative luciferase activity assays, as well as semiquantitative RT-PCR, we found that histoneacetyltransferases p300/CBP not only promoted the activities of the WT1 promoter andintronic enhancer, but also increased the expression of endogenous WT1 mRNA. E1A proteinrepressed the promotion of WT1 transcription by p300, while the p300/CBP-binding defectiveE1A delta 2-36 did not. This result further confirmed the effects of p300/CBP in promotingthe WT1 gene expression. Our results also indicated that p300/CBP and transcription factorsSp1, c-Myb, and Ets-1 synergistically activated WT1 reporter gene transcription. By using theplasmids with opposite orientations of insertion of the WT1 intronic enhancer, p300/CBP wasshown to be able to activate WT1 reporter gene transcription independent the orientation ofWT1 intronic enhancer. In addition, by using the HAT domain-deleted p300 mutant, weshowed that the histone acetyltransferase activity of p300/CBP was important in regulation ofWT1 gene expression. With the chromatin immunoprecipitation assay (ChIP), we found thatp300/CBP enhanced the acetylation of the histone H3 at the WT1 intronic enhancer.
    
    Furthermore, our results showed that another histone acetyltransferase P/CAF could alsoactivate WT1 reporter gene expression and this process required the synergism betweenP/CAF and p300/CBP. The histone acetyltransferase activities of P/CAF and p300/CBP wereboth important in the activation of WT1 reporter gene expression. With regard to histonedeacetylases, we tested the influences of six human histone deacetylases (HDAC1-6) on WT1gene expression. The results showed that HDAC4 and HDAC5 were able to not only repressthe activity of the WT1 promoter/intronic enhancer/luciferase reporter gene, but alsodecreased the expression of endogenous WT1 mRNA. By transient transfection and reportergene assay, we demonstrated that HDAC4 and HDAC5 repressed the promotion of WT1reporter gene transcription by p300. Data presented in this thesis demonstrated, for the first time, that the reversible histoneacetylation/deacetylation modification was involved in the transcriptional regulation of WT1gene. The molecular mechanisms of histone acetylation in WT1 gene regulation were brieflyexploited. This study provides further insight into the mechanisms of transcriptional
引文
[1] Call K M, Glaser T, Ito C Y, et al. Isolation and characterization of a zinc fingerpolypeptide gene at the human chromosome 11 Wilms’ tumor locus[J]. Cell, 1990, 60:509–520.
    [2] Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms’ tumors of azinc-finger gene identified by chromosome jumping[J]. Nature, 1990, 343: 774–778.
    [3] Zhang X, Xing G, Fraizer G C, et al. Transactivation of an intronic hematopoietic-specificenhancer of the human Wilms’tumor 1 gene by GATA1 and c-Myb[J]. J Biol Chem, 1997,272(46): 29272-29280.
    [4] Scharnhorst V, van der Eb A J, Jochemsen A G. WT1 proteins: functions in growth anddifferentiation[J]. Gene, 2001, 273: 141-161.
    [5] Menke A L, Schedl A. WT1 and glomerular function[J]. Semin Cell Dev Biol, 2003, 14:233-240.
    [6] Pelletier J, Schalling M, Buckler A, et al. Expression of the Wilms’ tumor gene WT1 inthe murine urogenital system[J]. Genes Dev, 1991, 5: 1345–1356.
    [7] Haber D A, Sohn R L, Buckler A J, et al. Alternative splicing genomic structure of theWilms tumor gene WT1[J]. Proc Natl Acad Sci USA, 1991, 88: 9618–9622.
    [8] Morris J F, Madden S L, Tournay O E, et al. Characterization of the zinc finger proteinencoded by the WT1 Wilms’ tumor locus[J]. Oncogene, 1991, 6: 2339–2348.
    [9] Bruening W, Pelletier J. A non-AUG translation initiation event generates novel WT1isoform[J]. J Biol Chem, 1996, 271: 8646–8654.
    [10] Scharnhorst V, Dekker P, van der Eb A J, et al. Internal translation initiation generatesnovel WT1 protein isoforms with distinct biological properties[J]. J Biol Chem, 1999, 274:23456–23462.
    [11] Sharma P M, Bowman M, Madden S L, et al. RNA editing in the Wilms’ tumorsusceptibility gene, WT1[J]. Genes Dev, 1994, 8: 720–731.
    [12] Nachtigal M W, Hirokawa Y, Enyeart-Van Houten D L, et al. Wilms’ tumor 1 andDAX-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression[J].Cell,1998, 93: 445–454.
    [13] Maheswaran S, Englert C, Zheng G, et al. Inhibition of cellular proliferation by theWilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70[J].Genes Dev, 1998, 12: 1108–1120.
    [14] Wang W, Lee S B, Palmer R, et al. A functional interaction with CBP contributes totranscriptional activation by the Wilms tumor suppressor WT1[J]. J Biol Chem, 2001, 276:16810–16816.
    [15] Lee S B, Huang K, Palmer R, et al. The Wilms’ tumor suppressor WT1 encodes atranscriptional activator of amphiregulin[J]. Cell, 1999, 98:663-673.
    [16] Cook D M, Hinkes M T, Bernfield M, et al. Transcriptional activation of the syndecan-1 promoter by the Wilms’ tumor protein WT1[J]. Oncogene, 1996, 13: 1789-1799.
    
    [17] Amin K M, Litzky L A, Smythe W R, et al. Wilms’ tumor 1 susceptibility (WT1) geneproducts are selectively expressed in malignant mesothelioma[J].Am J Pathol, 1995,146:344-356.
    [18] Karnieli E, Werner H, Rauscher F J, et al. The IGF-I receptor gene promoter is amolecular target for the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein[J]. J Biol Chem,1996, 271:19304-19309.
    [19] Hofmann W, Royer H D, Drechsler M, et al. Characterization of the transcriptionalregulatory region of the human WT1 gene [J].Oncogene, 1993, 8: 3123-3132.
    [20] Cohen H T, Bossone S A, Zhu G, et al. Sp1 is a Critical Regulator of the Wilms’ tumor-1Gene[J]. J Biol Chem, 1997, 272(5): 2901–2913.
    [21] Wu Y-j, Fraizer G C, Saunders G F. GATA-1 transactivates the WT1 hematopoieticspecific enhancer[J]. J Biol Chem, 1995, 270(11): 5944-5949.
    [22] Blobel G A. CBP/p300: molecular integrators of hematopoietic transcription[J]. Blood,2000, 95(3): 745-755.
    [23] Fraizer G C, Shimamura R, Zhang X, et al. Pax 8 regulates human WT1 transcriptionthrough a novel DNA binding site[J]. J Biol Chem, 1997, 272(49): 30678-30687.
    [24] Englert C. WT1-more than a transcription factor[J]? TIBS, 1998, 23: 389-393.
    [25] Malik K T, Poirier V, Ivins S M, et al. Autoregulation of the human WT1 genepromoter[J]. FEBS Lett, 1994, 349(1): 75-78.
    [26] Suzuki T, Kimura A, Nagai R, et al. Regulation of interaction of the acetyltransferaseregion of p300 and the DNA-binding domain of Sp1 on and through DNA binding[J]. GenesCells, 2000, 5(1): 29-41.
    [27] Soutoglou E, Papafotiou G, Katrakili N, et al. Transcriptional activation by HepatocyteNuclear Factor-1 requires synergism between multiple coactivator proteins[J]. J Biol Chem,2000, 275(17): 12515-12520.
    [28] Jin S, Scotto K W. Transcriptional regulation of the MDR1gene by histoneacetyltransferase and deacetylase is mediated by NF-Y[J]. Mol Cell Biol, 1998, 18(7):4377-4384.
    [29] Paranjape S M,Kamakaka R T,Kadonaga J T. Role of chromatin structure in theregulation of transcription by RNA polymeraseⅡ[J]. Annu Rev Biochem,1994,63: 265-297.
    [30] Davie J R. Covalent modifications of histones: expression from chromatin templates [J].Curr Opin Genet Dev, 1998, 8: 173-178.
    [31] Allfrey V, Faulkner R M, Mirsky A E. Acetylation and methylation of histones and theirpossible role in the regulation of RNA synthesis [J]. Proc Natl Acad Sci U S A, 1966,51:786-794.
    [32] Roth SY, Denu JM, Allis CD. Histone Acetyltransferases [J]. Annu Rev Biochem,2001,70:81-120.
    [33] Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation[J].Cell, 2004, 116: 259-272.
    [34] Workman J L,Kingston R E. Alteration of nucleosome structure as a mechanism oftranscriptional regulation[J]. Annu Rev Biochem, 1998, 67: 545-579.
    
    [35] Berger S L. Histone modifications in transcriptional regulation [J]. Curr Opin Genet Dev,2002, 12: 142–148.
    [36] Turner B M, Birley A J, Lavender J S. Histone H4 isoforms acetylated at specific lysineresides define individual chromosomes and chromatin domains in Drosophila polytene nuclei[J]. Cell, 1992, 69: 375-384.
    [37] Strahl B D, Allis C D. The language of covalent histone modifications [J]. Nature, 2000,403: 41-45.
    [38] Thomson S, Mahadevan L C, Clayton A L. MAP kinase-mediated signaling tonucleosomes and immediate-early gene induction [J]. Semin Cell Dev Biol, 1999, 10:205-214.
    [39] Cheung P, Allis C D, Sassone-Corsi P. Signaling to chromatin through histonemodification [J]. Cell, 2000, 103: 263-271.
    [40] Akhtar A, Becker P B. Activation of transcription through histone H4 acetylation byMOF, an acetyltransferase essential for dosage compensation [J]. Mol Cell, 2000, 5: 367-375.
    [41] Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplaybetween different covalent modification of the core histone tails[J]. Genes Dev, 2001, 15:2343-2360.
    [42] Kouzarides T. Histone methylation in transcriptional control[J]. Curr Opin Genet Dev,2002, 12: 198-209.
    [43] Grant P A. A tale of histone modifications[J]. Genome Biol,2001,2(4): 1-6.
    [44] Boggs B A, Cheung P, Heard E, et al. Differentially methylated forms of histone H3show unique association patterns with inactive human X chromosomes[J]. Nat Genet,2002,30: 73–76.
    [45] Heard E, Rougeulle C, Arnaud D, et al. Methylation of histone H3 at lys-9 is an earlymark on the X chromosome during X inactivation[J]. Cell,2001,107: 727–738.
    [46] Edmondson D G, Smith M M, Roth S Y. Repression domain of the yeast global repressorTup1 interact directly with histones H3 and H4[J]. Genes Dev,1996, 10: 1247-1259.
    [47] Cosma M P, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatinremodeling factors to a cell cycle- and developmentally regulated promoter[J]. Cell, 1999, 97:299-311.
    [48] Grozinger C M, Chao E D, Blackwell H E, et al. Identification of a class of smallmolecule inhibitors of the Sirtuin family of NAD-dependent deacetylases by phenotypicscreening[J]. J Biol Chem, 2001, 276: 38837–38843.
    [49] Spotswood H T, Turner B M. An increasingly complex code[J]. J Clin Invest, 2002, 110:577–582.
    [50] Tsai S C, Seto E. Regulation of histone deacetylase-2 by protein kinase CK2[J]. J BiolChem,2002, 277(35):31826-31833.
    [51] Galasinski S C, Resing K A, Goodrich J A, et al. Phosphatase inhibition leads to histonedeacetylases 1 and 2 phosphorylation and disruption of corepressor interactions[J]. J BiolChem, 2002, 277: 19618–19626.
    [52] Sterner D E and Berger S L. Acetylation of histones and transcription-related factors [J].Microbiology and Molecular Biology Reviews, 2000, 64: 435–459.
    
    [53] Chen H W, Tini M, Evans R M. HATs on and beyond chromatin[J]. Curr Opin Cell Biol,2001, 13: 218-224.
    [54] Carrozza M J, Utley R T, Workman J L, et al. The diverse functions of histoneacetyltransferase complexes. Trends in Genetics, 2003, 19(6): 321-329.
    [55] Struhl K. Histone acetylation and transcriptional regulatory mechanisms[J]. Genes Dev1998,12: 599-606.
    [56] Brown C E, Lechner T, Howe L, et al. The many HATs of transcription coactivators[J].Trends Biochem Sci, 2000, 25: 15-19.
    [57] Brown CE, Howe L, Sousa K, et al. Recruitment of HAT complexes by direct activatorinteractions with the ATM-related Tra1 subunit [J]. Science, 2001, 292: 2333–2337.
    [58] Utley R T, Ikeda K, Grant P A, et al.Transcriptional activators direct histoneacetyltransferase complexes to nucleosomes [J]. Nature, 1998, 394: 498–502.
    [59] Vignali M, Steger D J, Neely K E, et al. Distribution of acetylated histones resulting fromGal4-VP16 recruitment of SAGA and NuA4 complexes[J]. EMBO J, 2000, 19: 2629–2640.
    [60] Syntichaki P, et al. The Gcn5 bromodomain co-ordinates nucleosome remodelling[J].Nature, 2000, 404: 414–417.
    [61] Lo W S, Duggan L, Emre N C, et al. Snf1-a histone kinase thatworks in concert with thehistone acetyltransferase Gcn5 to regulate transcription [J]. Science, 2001, 293: 1142–1146.
    [62] Rea S, Eisenhaber F, O'Carroll D , et al. Regulation of chromatin structure bysite-specific histone H3 methyltransferases [J]. Nature, 2000, 406: 593–599.
    [63] Schiltz R L, Mizzen C A, Vassilev A, et al. Overlapping but distinct patterns of histoneacetylation by the human coactivators p300 and PCAF within nucleosomal substrates[J]. JBiol Chem, 1999, 274: 1189-1192.
    [64] Schiltz R L, Nakatani Y. The PCAF acetylase complex as a potential tumor suppressor[J].Biochimica Biophysica Acta, 2000, 1470: 37-53.
    [65] Krumm A L, Madisen X J, Yang R, et al. Long-distance transcriptional enhancement bythe histone acetyltransferase P/CAF[J]. Pro Natl Acad Sci USA, 1998, 95: 13501-13506.
    [66] Korzus E, Torchia J, Rose D W, et al. Transcription factor-specific requirements forcoactivators and their acetyltransferase functions[J]. Science, 1998, 279:703-707.
    [67] Bannister A J and Miska E A. Regulation of gene expression by transcription factoracetylation[J]. CMLS Cell Mol Life Sci, 2000, 57: 1184-1192.
    [68] Nourani A, Doyon Y, Utley R T, et al.Role of an ING1 growth regulator in transcriptionalactivation and targeted histone acetylation by the NuA4 complex[J]. Mol Cell Biol, 2001, 21:7629–7640.
    [69] Utley R T, Cote J. The MYST family of histone acetyltransferases[J]. Curr TopMicrobiol Immunol, 2003, 274: 203–236.
    [70] Gu W, Wei X, Pannuti A, et al. Targeting the chromatin-remodeling MSL complex ofDrosophila to its sites of action on the X chromosome requires both acetyl transferase andATPase activities [J]. EMBO J, 2000, 19: 5202–5211.
    [71] Kitabayashi I, Aikawa Y, Nguyen L A, et al. Activation of AML1-mediated transcriptionby MOZ and inhibition by theMOZ-CBP fusion protein[J]. EMBO J, 2001, 20: 7184–7196.
    [72] Otero G, Fellows J, Li Y, et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation[J]. Mol Cell, 1999, 3: 109-118.
    
    [73] Orphanides G, Reinberg D. RNA polymerase II elongation through chromatin[J]. Nature,2000, 407: 471-475.
    [74] Ehrenhofer-Murray A E, Rivier D H and Rine J. The role of Sas2, an acetyltransferasehomologue of Saccharomyces cerevisiae, in silencing and ORC function [J]. Genetics, 1997,145: 923-934.
    [75] Reifsnyder C, Lowell J, Clarke A, et al. Yeast SAS silencing genes and human genesassociated with AML and HIV-1Tat interactions are homologous with acetyltransferase [J].Nat Genet, 1996, 14: 42-49.
    [76] Osada S, Sutton A, Muster N, et al. The yeast SAS (something about silencing) proteincomplex contains a MYST-type putative acetyltransferase and functions with chromatinassembly factor ASF1[J]. Genes Dev, 2001, 15: 3155–3168.
    [77] Donze D, Kamakaka RT. RNA polymerase Ⅲ and RNA polymerase Ⅱpromotercomplexes are heterochromatin barriers in Saccharomyces cerevisiae [J]. EMBO J, 2001, 20:520-531.
    [78] Takechi S, Nakayama T. Sas3 is a histone acetyltransferase and requires a zinc fingermotif [J]. Biochem Biophys Res Commun, 1999, 266: 405-410.
    [79] Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeasthistone H4 lysine 16 and spreading of heterochromatin[J]. Nat Genet, 2002, 32: 378–383.
    [80] Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylationestablished by Sas2p and Sir2p functions as a shield against gene silencing[J]. Nat Genet,2002, 32: 370–377.
    [81] Grienenberger A, Miotto B, Sagnier T, et al. The MYST domain acetyltransferasechameau function in epigenetic mechanisms of transcriptional repression[J]. Curr Biol, 2002,12: 762-766.
    [82] Burley S K, Roeder RG. Biochemsitry and structural biology of transcription factor IID(TFIID) [J]. Annu Rev Biochem, 1996, 65: 769-799.
    [83] Mizzen C A, Yang X J, Kokubo T, et al. The TAFII250 subunit of TFIID has histoneacetyltransferase activity [J]. Cell, 1996, 87: 1261-1270.
    [84] O’Brien T, Tjian R. Funtional analysis of the human TAFII250 N-terminal kinase domain[J]. Mol Cell, 1998, 1: 905-911.
    [85] O’Brien T, Tjian R. Different functional domains of TAFII250 modulate expression ofdistinct subsets of mammalian genes [J]. Proc Natl Acad Sci USA, 2000, 97: 2456-2461.
    [86] Dunphy E L, Johnson T, Auerbach S S et al. Requirement for TAFII250 acetyltransferaseactivity in cell-cycle progression [J]. Mol Cell Biol, 2000, 20: 1134-1139.
    [87] Allard S, Utley R T, Savard J, et al. NuA4, an essential transcription adaptor/histone H4acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p[J]. EMBO J,1999, 18: 5108-5119.
    [88] Smith E R, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential forgrowth in yeast [J]. Pro Natl Acad Sci USA, 1998, 95: 3561-3565.
    [89] Clarke A S, Lowell J E, Jacobson S J, et al. Esa1p is an essential histone acetyltransferaserequired for cell cycle progression [J]. Mol Cell Biol, 1999, 19: 2515-2526.
    
    [90] Howe L, Auston D, Grant P, et al. Histone H3 specific acetyltransferases are essential forcell cycle progression [J]. Genes Dev, 2001, 15: 3144–3154.
    [91] McMahon S B, Wood M A, Cole M D. The essential cofactor TRRAP recruits thehistone acetyltransferase hGCN5 to c-Myc [J]. Mol Cell Biol, 2000, 20: 556–562.
    [92] Lang S E, McMahon S B, Cole M D, et al. E2F transcriptional activation requiresTRRAP and GCN5 cofactors [J]. J Biol Chem, 2001, 276: 32627–32634.
    [93] Deleu L, Shellard S, Alevizopoulos K, et al. Recruitment of TRRAP required foroncogenic transformation by E1A [J]. Oncogene, 2001, 20: 8270–8275.
    [94] Brand M, Moggs J G, Oulad-Abdelghani M, et al. UV-damaged DNA-binding protein inthe TFTC complex links DNA damage recognition to nucleosome acetylation [J]. EMBO J,2001, 20: 3187–3196.
    [95] Feaver W J, Svejstrup J Q, Bardwell L, et al. Dual roles of a multiprotein complex fromS. cerevisiae in transcription and DNA repair [J]. Cell, 1993, 75: 1379–1387.
    [96] Qin S, Parthun M R. Histone h3 and the histone acetyltransferase hat1p contribute toDNA double -strand break repair [J]. Mol Cell Biol, 2002, 22: 8353–8365.
    [97] Kimura A, Horikoshi M. Tip60 acetylate six lysines of a specific class in core histones invitro [J]. Genens Cells, 1998, 3: 789-800.
    [98] Ikura T, Ogryzko V V, Grigoriev M, et al. Involvement of the Tip60 histone acetylasecomplex in DNA repair and apoptosis [J]. Cell, 2000, 102: 463-473.
    [99] Choy J S, Kron S J. NuA4 subunit Yng2 function in intra-S-phase DNA damageresponse [J]. Mol Cell Biol, 2002, 22: 8215–8225.
    [100] Bird AW, Yu DY, Pray-Grant MG, et al. Acetylation of histone H4 by Esa1 is requiredfor DNA double-strand break repair [J]. Nature, 2002, 419: 411–415.
    [101] Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunitof the human initiator protein[J]. J Biol Chem, 1999, 274: 23027-23034.
    [102] Fox C A, Loo S, Dillin A, et al. The origin recognition complex has essential functionsin transcriptional silencing and chromosomal replication [J]. Genes Dev, 1995, 9: 911-924.
    [103] Verreault A. De novo nucleosome assembly: new pieces in an old puzzle [J]. Genes Dev,2000, 14: 1430-1438.
    [104] Parthun M R, Widom J, Gottschling D E. The major cytoplasmic histoneacetyltransferase in yeast: links to chromatin replication and histone metabolism [J]. Cell,1996, 87: 85-94.
    [105] Sobel R E, Cook R G, Perry CA, et al. Conservation of deposition -related acetylationsites in newly synthesized histone H3 and H4 [J]. Pro Natl Acad Sci USA, 1995, 92:1237-1241.
    [106] Ruiz-Garcia A B, Sendra R, Galiana M, et al. HAT1 and HAT2 proteins are componentsof a yeast nuclear histone acetyltransferase enzyme specific for free histone H4 [J]. J BiolChem, 1998, 273: 12599-12605.
    [107] Onate S A, Tsai S Y, Tsai M J, et al. Sequence and characterization of a coactivator forthe steroid hormone receptor superfamily [J]. Science, 1995, 270: 1354-1357.
    [108] Spencer T E, Jenster G, Burcin M M, et al. Steroid receptor coactivator-1 is a histoneacetyltransferase [J]. Nature, 1997, 389: 194-198.
    
    [109] Chen H, Lin R J, Xie W, et al. Regulation of hormone-induced histone hyperacetylationand gene activation via acetylation of acetylase [J]. Cell, 1999, 98: 675-686.
    [110] Vogelauer M, Wu J, Suka N, et al. Global histone acetylation and deacetylation in yeast[J]. Nature, 2000, 408: 495-498.
    [111] Berger S L. Local or Global [J]? Nature, 2000, 408: 412-414.
    [112] Hu P, Samudre K, Wu S, et al. CK2 phosphorylation of Bdp1 executes cellcycle-specific RNA polymerase III transcription repression [J]. Mol Cell, 2004, 16(1): 81-92.
    [113] Ogryzko V. Mammalian histone acetyltransferase complexes[J]. Medicina (B Aires),2000, 60 (2): 21-26.
    [114] Gray S G, Ekstrom T J. The human histone deacetylase family[J]. Exp Cell Res, 2001,262:75-83.
    [115] Lusser A, Brosch G, Loidl A, et al. Identification of maize histone deacetylase HD2 asan acidic nucleolar phosphoprotein [J]. Science, 1997, 277: 88-91.
    [116] Finnin M S, Donigian J R,Cohen A, et al.Structures of a histone deacetylase homologuebound to the TSA and SAHA inhibitors[J]. Nature, 1999, 401: 188–193.
    [117] Grozinger C M, Hassig C A, Schreiber S L. Three proteins define a class of humanhistone deacetylases related to yeast Hda1p [J]. Proc Natl Acad Sci USA, 1999, 96: 4868–4873.
    [118] Gray S G, Ekstrom T J. The human histone deacetylase family [J]. Exp Cell Res, 2001,262: 75–83.
    [119] Zhou X, Marks P A, Rifkind R A, et al. Cloning and characterization of a histonedeacetylase, HDAC9 [J]. Proc Natl Acad Sci USA, 2001, 98: 10572–10577.
    [120] Gao L, Cueto M A, Asselbergs F, et al. Cloning and functional characterization ofHDAC11, a novel member of the human histone deacetylase family [J]. J Biol Chem, 2002,277: 25748-25755.
    [121] De Ruijter A J M, Van Gennip A H, Caron H N, et al. Histone deacetylases(HDACs):characterization of the classical HDAC family[J]. Biochem J, 2003, 370: 737-749.
    [122] Venter J C, Adams M D, Myers E W, et al. The sequence of the human genome [J].Science, 2001, 291: 1304–1351.
    [123] Frye R A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins[J].Biochem Biophys Res Commun, 2000, 273: 793–798.
    [124] Yang W M, Inouye C, Zeng Y, et al. Transcriptional repression by YY1 is mediated byinteraction with a mammalian homolog of the yeast global regulator RPD3[J]. Proc Natl AcadSci USA, 1996, 93: 12845-12850.
    [125] Yang W M, Yao Y L, Sun J M, et al. Isolation and characterization of cDNAscorresponding to an additional member of the human histone deacetylase gene family[J]. JBiol Chem, 1997, 272: 28001-28007.
    [126] Inouye C J, Seto E. Relief of YY1-induced transcriptional repression by protein-proteininteraction with the nucleolar phosphoprotein B23[J]. J Biol Chem, 1994, 269: 6506-6510.
    [127] Lee J S, Galvin K M, See R H, et al. Relief of YY1 transcriptional repression byadenovirus E1A is mediated by E1A-associated protein p300[J]. Genes Dev, 1995,9:1188-1198.
    
    [128] Sears R, Ohtani K, Nevins J R. Identification of positively and negatively actingelements regulating expression of the E2F2 gene in response to cell growth signals [J]. MolCell Biol, 1997, 17: 5227-5235.
    [129] McArthur G A, Laherty C D, Queva C, et al. The Mad protein family linkstranscriptional repression to cell differentiation [J]. Cold Spring Harb Symp Quant Biol, 1998,63: 423-433.
    [130] Ayer D E, Lawrence Q A, Eisenman R N. Mad-Max transcriptional repression ismediated by ternary complex formation with mammalian homologs of yeast repressor Sin3[J].Cell, 1995, 80: 767-776.
    [131] Hassig C A, Fleischer T C, Billin A N, et al. Histone deacetylase activity is required forfull transcriptional repression by mSin3A [J]. Cell, 1997, 89: 341-347.
    [132] Heinzel T, Lavinsky R M, Mullen T M, et al. A complex containing N-coR, mSin3 andhistone deacetylase mediates transcriptional repression [J]. Nature, 1997, 387: 43-48.
    [133] Qian Y W, Lee E Y. Dual retinoblastoma-binding proteins with properties related to anegative regulator of ras in yeast [J]. J Biol Chem, 1995, 270: 25507-25513.
    [134] Zhang Y, Iratni R, Erdjument-Bromage H, et al. Histone deacetylases and SAP18, anovel polypeptide, are components of a human Sin3 complex[J]. Cell, 1997, 89: 357-364.
    [135] Laherty C D, Billin A N, Lavinsky R M, et al. SAP30, a component of the mSin3corepressor complex involved in N-coR-mediated repression by specific transcriptionfactors[J]. Mol Cell, 1998, 2: 33-42.
    [136] Chambon P. The retinoid signaling pathway: molecular and genetic analyses [J]. SeminCell Biol, 1994, 5:115-125.
    [137] Horlein A J, Naar A M, Heinzel T, et al. Ligand-independent repression by the thyroidhormone receptor mediated by a nuclear receptor co-repressor[J]. Nature, 1995, 377: 397-404.
    [138] Chen J D, Evans R M. A transcriptional co-repressor that interacts with nuclearhormone receptors [J]. Nature, 1995, 377:454-457.
    [139] Grozinger C M, Schreiber S L. Deacetylase enzymes: biological functions and the useof small-molecule inhibitors [J]. Chem Biol, 2002, 9: 3-16.
    [140] Ayer D E. Histone deacetylases: transcriptional repression with SINers and NuRDs [J].Trends Cell Biol, 1999, 9: 193–198.
    [141] Knoepfler P S, Eisenman R N. Sin meets NuRD and other tails of repression[J]. Cell,1999, 99: 447–450.
    [142] Tong J K, Hassig C A, Schnitzler G R, et al. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex [J]. Nature, 1998, 395: 917–921.
    [143] Zhang Y, LeRoy G, Seelig H P, et al. The dermatomyositis-specific autoantigen Mi2 isa component of a complex containing histone deacetylase and nucleosome remodelingactivities [J]. Cell, 1998, 95: 279–289.
    [144] You A, Tong J K, Grozinger C M, et al. CoREST is an integral component of theCoREST-human histone deacetylase complex [J]. Proc Natl Acad Sci USA, 2001, 98: 1454–1458.
    [145] Humphrey G W, Wang Y, Russanova V R, et al. Stable histone deacetylase complexesdistinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1[J]. J Biol Chem, 2001,276: 6817–6824.
    
    [146] Grozinger C M, Hassig C A, Schreiber S L. Three proteins define a class of humanhistone deacetylases related to yeast Hda1p[J]. Proc Natl Acad Sci USA, 1999, 96: 4868–4873.
    [147] Huang E Y, Zhang J, Miska E A, et al. Nuclear receptor corepressors partner with classII histone deacetylases in a Sin3-independent repression pathway[J]. Genes Dev, 2000, 14:45–54.
    [148] Dressel U, Bailey P J, Wang S C, et al. A dynamic role for HDAC-7 in MEF2 mediatedmuscle differentiation [J]. J Biol Chem, 2001, 276: 17007–17013.
    [149] Miska E A, Karlsson C, Langley E, et al. HDAC4 deacetylase associates with andrepresses the MEF2 transcription factor[J]. EMBO J, 1999, 18: 5099–5107.
    [150] Gartenberg M R. The Sir proteins of Saccharomyces cerevisiae: mediators oftranscriptional silencing and much more [J]. Curr Opin Microbiol, 2000, 3: 132–137.
    [151] Palladino F, Laroche T, Gilson E, et al. SIR3 and SIR4 proteins are required for thepositioning and integrity of yeast telomeres[J]. Cell, 1993,75: 543–555.
    [152] Lee S E, Paques F, Sylvan J, et al. Role of yeast SIR genes and mating type in directingDNA double-strand breaks to homologous and non-homologous repair paths [J]. Curr Biol,1999, 9: 767–770.
    [153] San-Segundo P A, Roeder G S. Pch2 links chromatin silencing to meiotic checkpointcontrol [J]. Cell, 1999, 97: 313–324.
    [154] Straight A F, Shou W, Dowd G J, et al. Net1, a Sir2-associated nucleolar proteinrequired for rDNA silencing and nucleolar integrity[J]. Cell, 1999, 97: 245–256.
    [155] Shou W, Seol J H, Shevchenko A, et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex [J].Cell,1999, 97: 233–244.
    [156] Bryk M, Banerjee M, Murphy M, et al. Transcriptional silencing of Ty1 elements in theRDN1 locus of yeast [J]. Genes Dev, 1997, 11: 255–269.
    [157] Smith J S, Boeke J D. An unusual form of transcriptional silencing in yeast ribosomalDNA [J]. Genes Dev, 1997, 11: 241–254.
    [158] Guarente L. Sir2 links chromatin silencing, metabolism, and aging [J]. Genes Dev, 2000,14: 1021–1026.
    [159] Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promotelongevity in Saccharomyces cerevisiae by two different mechanisms[J]. Genes Dev, 1999, 13:2570–2580.
    [160] Lin S J, Defossez P A, Guarente L. Requirement of NAD and SIR2 for life-spanextension by calorie restriction in Saccharomyces cerevisiae[J]. Science, 2000, 289: 2126–2128.
    [161] Brachmann C B, Sherman J M, Devine S E, et al. The SIR2 gene family, conservedfrom bacteria to humans, functions in silencing, cell cycle progression, and chromosomestability[J]. Genes Dev, 1995, 9: 2888–2902.
    [162] Xie J, Pierce M, Gailus-Durner V, et al. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae [J]. EMBO J, 1999, 18: 6448–6454.
    
    [163] Perrod S, Cockell M M, Laroche T, et al. A cytosolic NAD-dependent deacetylase,Hst2p, can modulate nucleolar and telomeric silencing in yeast [J]. EMBO J, 2001, 20: 197–209.
    [164] Muth V, Nadaud S, Grummt I, et al. Acetylation of TAF(I)68, a subunit of TIF- IB/SL1,activates RNA polymerase I transcription [J]. EMBO J, 2001, 20: 1353-1362.
    [165] Wang A H, Bertos N R, Vezmar M, et al. HDAC4, a human histone deacetylase relatedto yeast HDA1, is a transcriptional corepressor [J]. Mol Cell Biol, 1999, 19: 7816-7827.
    [166] Stunnenberg H G, Garcia-Jimenez C and Betz J L. Leukemia: the sophisticatedsubversion of hematopoiesis by nuclear receptor oncoproteins [J]. Biochim Biophys Acta,1998, 1423: 15-33.
    [167] Razin A. CpG methylation, chromatin structure and gene silencing-a three-wayconnection [J]. EMBO J, 1998, 17: 4905-4908.
    [168] Scanlan N J, Chen Y T, Williamson B, et al. Characterization of human colon cancerantigens recognized by autologous antibodies [J]. Int J Cancer, 1998, 76: 652-658.
    [169] Coffey D C, Kutko M C, Glick R D, et al. The histone deacetylase inhibitor, CBHA,inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically withall-trans retinoic acid [J]. Cancer Res, 2001, 61: 3591-3594.
    [170] Dangond F, Hafler DA, Tong J K, et al. Differential display cloning of a novel humanhistone deacetylase (HDAC3) cDNA from PHA-activated immune cells[J]. Biochem BiophysRes Commun, 1998, 242: 648-652.
    [171] Rundlett S E, Carmen A A, Kobayashi R, et al. HDA1 and RPD3 are members ofdistinct yeast histone deacetylase complexes that regulate silencing and transcription[J]. ProcNatl Acad Sci USA, 1996, 93: 14503-14508.
    [172] Landry J, Slama J T, Sternglanz R, et al. Role of NAD(+) in the deacetylase activity ofthe SIR2-like proteins [J]. Biochem Biophys Res Commun, 2000, 278: 685-690.
    [173] Chrivia J C, Kwok R P, Lamb N, et al. Phosphorylated CREB binds specifically to thenuclear protein CBP [J]. Nature,1993,365: 855-859.
    [174] Eckner R, Ewen M E, Newsome D, et al. Molecular cloning and functional analysis ofthe adenovirus E1A-associated 300-KD protein (p300) reveals a protein with properties of atranscriptional adaptor[J]. Genes Dev, 1994, 8: 869-884.
    [175] Giordano A, Avantaggiati L M. p300 and CBP : Partners for life and death [J]. J CelluarPhysiology, 1999, 181: 218-230.
    [176] Petrij F, Giles R H, Dauwerse H G, et al. Rubinstein-Taybi syndrome caused bymutations in the transcriptional co-activator CBP[J]. Nature, 1995, 376 : 348-351.
    [177] Borrow J, Stanton V P, Andresen J M, et al. The translocation t(8;16) (p11,p13) of acutemyeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein[J]. NatGenet, 1996, 14: 33-41.
    [178] Giles R H, Dauwerse H G, Van Ommen, et al. Do human chromosomal bands 16p13and 22q11-13 share ancestral origins[J]? Am J Hum Genet, 1997, 63:1240-1242.
    [179] Polesskaya A, Naguibneva I, Duquet A, et al. Interaction between acetylated MyoD andthe bromodomain of CBP and/or p300 [J]. Mol Cell Biol, 2001, 21: 5312-5320.
    
    [180] Chan M H, La Thangue B N. p300/CBP proteins: HATs for transcriptional bridges andscaffolds [J]. J Cell Science, 2001,114: 2363-2373.
    [181] Munshi N, Merika M, Yie J, et al. Acetylation of HMG I(Y) by CBP turns off IFNβexpression by disrupting the enhanceosome [J]. Mol Cell, 1998, 2: 457-467.
    [182] Kamei Y, Xu L, Heinzel T, et al. A CBP intergrator complex mediates transcriptionalactivation and AP1 inhibition by nuclear receptors [J]. Cell, 1996, 85: 403-414.
    [183] Lee C W, Sorensen T S, Shikama N, et al. Functional interplay between p53 and E2Fthrough co-activator p300[J]. Oncogene, 1998, 16: 2695-2710.
    [184] Avantaggiati M L, Ogrykko V, Gardner K, et al. Recruitment of p300/CBP inp53-dependent signal pathways [J]. Cell, 1997, 89: 1175-1184.
    [185] Janknecht R, Hunter T. Transcription control: versatile molecular glue [J]. Curr Biol,1996, 6: 22~23.
    [186] Zanger K, Radovick S, Wondisford F E. CREB binding protein recruitment to thetranscription complex requires growth factor-dependent phosphorylation of its GF box[J].Mol Cell, 2001, 7:551-558.
    [187] Hottiger M O, Felzien L K, Nabel G J. Modulation of cytokine-induced HIV geneexpression by competitive binding of transcription factors to the coactivator p300[J]. EMBO J,1998, 17: 3124-3134.
    [188] Puri P L, Sartorelli V, Yang X-J, et al. Differential roles of p300 and P/CAFacetyltransferases in muscle differentiation [J]. Mol Cell, 1998, 1: 35-46.
    [189] Giles R H, Peters D J, Breuning M H. Conjunction dysfunction: CBP/p300 in humandisease[J]. Trends Genet, 1998, 14(5): 178-183.
    [190] Goodman R H, Smolik S. CBP/p300 in cell growth, transformation, and development[J].Genes Dev, 2000, 14: 1553-1577.
    [191] Banerjee A C, Recupero A J, Mal A, et al. The adenovirus E1A 289R and 243R proteinsinhibit the phosphorylation of p300 [J]. Oncogene, 1994, 9: 1733-1737.
    [192] Perkins N D, Felzien L K, Betts J C, et al. Regulation of NF-κB by cyclin-dependentkinases associated with the p300 coactivator[J]. Science, 1997, 275: 523-527.
    [193] Ait-Si-Ali S, Ramirez S, Barre F-X, et al. Histone acetyltransferase activity of CBP iscontrolled by cycle-dependent kinases and oncoprotein E1A[J]. Nature, 1998, 396: 184-186.
    [194] Wang H-G H, Moran E, Yacuik P. E1A promotes association between p300 and pRb inmultimeric complexes required for normal biological activity[J]. J Virol, 1995, 69:7917-7924.
    [195] Hottiger M O, Nabel G J. Viral replication and the coactivators p300 and CBP[J].Trends in Microbiology, 2000, 8(12): 560-565.
    [196] Hamamori Y, Sartorelli V, Ogryzko V, et al. Regulation of histone acetyltransferasesp300 and pCAF by the bHLH protein twist and adenoviral oncoprotein E1A [J]. Cell, 1999,96: 405-413.
    [197] Blobel G A, Nakajima T, Eckner R, et al. CREB-binding protein (CBP) cooperates withtranscription factor GATA-1 and is required for erythroid differentiation [J]. Proc Natl AcadSci USA, 1998, 95: 2061-2066.
    [198] Zhang W and Bieker J J. Acetylation and modulation of erythroid Krüppel-like factor (EKLF) activity by interaction with histone acetyltransferases[J]. Proc Natl Acad Sci, 1998,
    95: 9855-9860.
    
    [199] Bradney C, Hjelmeland M, Komatsu Y, et al. Regulation of E2A activities by histoneacetyltransferases in B lymphocyte development[J]. J Biol Chem, 2003, 278(4): 2370-2376.
    [200] Snowden W A, Perkins D N. Cell cycle regulation of the transcriptional coactivatorsp300 and CREB binging protein[J]. Biochemical Pharmacology, 1998, 55: 1947-1954.
    [201] Vojtek A B, Taylor J, DeRuiter S L. Akt regulates basic helix-loop-helix transcriptionfactor-coactivator complex formation and activity during neuronal differentiation [J]. MolCell Biol, 2003, 23(13): 4417-4427.
    [202] Jang S I, Steinert P M. Loricrin expression in cultured human keratinocytes is controlledby a complex interplay between transcription factors of the Sp1, CREB, AP1, and AP2families[J]. J Biol Chem, 2002, 277(44): 42268-42279.
    [203] Grossman S R, Perez M, Kung A L, et al. p300/MDM2 complexes participate inMDM2-mediated p53 degradation[J]. Mol Cell, 1998, 2: 405-415.
    [204] Wang X, Taplick J, Geva N, et al. Inhibition of p53 degradation by Mdm2 acetylation[J].FEBS Lett, 2004, 561(1-3): 195-201.
    [205] Gayther S A, Batley S J, Linger L, et al. Mutations truncating the EP300 acetylase inhuman cancers[J]. Nat Genet, 2000, 24: 300-303.
    [206] Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBPand their roles in disease[J]. Histol Histopathol, 2002, 17(2): 657-668.
    [207] Panagopoulos I, Fioretos T, Isaksson M, et al. Fusion of the MORF and CBP genes inacute myeloid leukemia with the t(10;16)(q22;p13)[J]. Hum Mol Genet, 2001, 10: 395-404.
    [208] Taki T, Sako M, Tsuchida M, et al. The t(11 ;16)(q23 ;p13) translocation inmyelodysplastic syndrome fuses the MLL gene to the CBP gene[J]. Blood, 1997, 89 :3945-3950.
    [209] Ida K, Kitabayashi I, Taki T, et al. Adenoviral E1A-associated protein p300 is involvedin acute myeloid leukemia with t(11 ;22)(q23 ;q13)[J]. Blood, 1997, 90 : 4699-4704.
    [210] Kitabayashi I, Aikawa Y, Yokoyama A, et al. Fusion of MOZ and p300 histoneacetyltransferases in acute monocytic leukemia with a t(8 ;22)(p11 ;q13) chromosometranslocation [J]. Leukemia, 2001, 15 : 89-94.
    [211] Li F, Macfarlan T, Pittman R N, et al. Ataxin-3 is a histone-binding protein with twoindependent transcriptional corepressor activities [J]. J Biol Chem, 2002, 277(47):45004-45012.
    [212] Avots A, Buttmann M, Chuvpilo S, et al. CBP/p300 integrates Raf/Rac-signalingpathways in the transcriptional induction of NF-ATc during T cell activation[J]. Immunity,1999, 10: 515-524.
    [213] Sisk T J, Gourley T, Roys S, et al. MHC class Ⅱ transactivator inhibits IL-4 genetranscription by competing with NF-AT to bind the coactivator CREB binding protein(CBP)/p300[J]. J Immunol, 2000, 165: 2511-2517.
    [214] Vanden Berghe W, de Bosscher K, Boone E, et al. The nuclear factor-κB engagesCBP/p300 and histone acetyltransferase activity for transcriptional activation of theinterleukin-6 gene promoter [J]. J Biol Chem, 1999, 274: 32091-32098.
    
    [215] Huang S M, McCance D J. Down regulation of the interleukin-8 promoter by humanpapillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF[J]. J Virol, 2002, 76: 8710-8721.
    [216] Yamashita M, Ukai-Tadenuma M, Kimura M, et al. Identification of a conservedGATA3 response element upstream proximal from the interleukin-13 gene locus [J]. J BiolChem, 2002, 277: 42399-42408.
    [217] Bannert N, Avots A, Baier M, et al. GA-binding protein factors, in concert with thecoactivator CREB binding protein/p300, control the induction of the interleukin-16 promoterin T lymphocytes[J]. Proc Natl Acad Sci USA, 1999, 96: 1541-1546.
    [218] 刘春艳, 陆军, 李琳, 等. 转录辅因子 CBP/p300 提高转录因子 C/EBP 介导的人白细胞介素 5(IL-5)基因启动子活性[J]. 科学通报,2004,49 (4) : 347-351.
    [219] Liu C, Lu J, Tan J, et al. Human interleukin-5 expression is synergistically regulated byhistone acetyltransferase CBP/p300 and transcription factors C/EBP, NF-AT and AP-1[J].Cytokine, 2004, 27: 93-100.
    [220] Sun H, Lu J, Wei L, et al. Histone acetyltransferase activity of p300 enhances theactivation of IL-12 p40 promoter[J]. Mol Immunol, 2004, 41 (12): 1241-1246.
    [221] 孙海晶, 陆军, 徐鑫, 等. p300 和 HDAC3 介导的可逆的乙酰化作用参与调控IL-18p1 启动子荧光素酶报告基因活性[J]. 科学通报,2004,49 (9): 863-868.
    [222] Serrador J M, Cabrero J R, Sancho D, et al. HDAC6 deacetylase activity links thetubulin cytoskeleton with immune synapse organization [J]. Immunity, 2004, 20 (4): 417-428.
    [223] Valapour M, Guo J, Schroeder J T, et al. Histone deacetylation inhibits IL4 geneexpression in T cells [J]. J Allergy Clin Immunol, 2002, 109 (2): 238-245.
    [224] Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2activity and enhances IL-8 gene expression: role of tyrosine nitration [J]. Biochem BiophysRes Commun, 2004, 315 (1): 240-245.
    [225] Ashburner B P, Westerheide S D, Baldwin AS Jr. The p65 (RelA) subunit ofNF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2to negatively regulate gene expression[J]. Mol Cell Biol, 2001, 21 (20): 7065-7077.
    [226] Hastie N D. The genetics of Wilms’ tumor- a case of disrupted development [J]. AnnuRev Genet, 1994, 28: 523-558.
    [227] Miyagawa K, Kent J, Moore A, et al.Loss of WT1 function leads to ectopic myogenesisin Wilms’ tumour[J]. Nat Genet, 1998, 18: 15-17.
    [228] Dehbi M, Ghahremani M, Lechner M, et al. The paired-box transcription factor, PAX2,positively modulates expression of the Wilms’ tumor suppressor gene(WT1)[J]. Oncogene,1996, 13: 447-453.
    [229] Dehbi M, Pelletier J. PAX8-mediated activation of the WT1 tumor suppressor gene[J].EMBO J, 1996,15: 4297-4306.
    [230] Ryan G, Steele-Perkins V, Morris J F, et al. Repression of Pax-2 by WT1 during normalkidney development [J]. Development, 1995, 121: 867-875.
    [231] Luetteke N C, Qiu T H, Fenton S E, et al. Targeted inactivation of the EGF andamphiregulin genes reveals distinct roles of the EGF receptor ligands in mouse mammarygland development [J]. Development, 1999, 126: 2739-2750.
    
    [232] Hosono S, Gross I, English M A, et al. E-cadherin is a WT1 target gene[J]. J Biol Chem,2000, 275: 10943-10953.
    [233] Mayo M W, Wang C Y, Drouin S S, et al. WT1 modulates apoptosis bytranscriptiionally upregulating the bcl-2 proto-oncogene[J]. EMBO J, 1999, 18: 3990-4003.
    [234] Jadresic L, Leake J, Gordon I, et al. Clinicopathologic review of twelve children withnephropathy, Wilms’ tumor, and genital abnormalities (Drash syndrome)[J]. J Pediatr, 1990,117: 717-725.
    [235] Yang Y, Jeanpierre C, Dressler G R, et al. WT1 and PAX-2 podocyte expression inDenys-Drash syndrome and isolated diffuse mesangial sclerosis [J]. Am J Pathol, 1999,154:181-192.
    [236] Kikuchi H, Takata A, Akasaka Y, et al. Do intronic mutations affecting splicing ofWT1 exon 9 cause Frasier syndrome [J]? J Med Genet, 1998, 35: 45-48.
    [237] Mrowka C, Schedl A. Wilms’ tumor suppressor gene WT1: from structure to renalpathophysiologic features [J]. J Am Soc Nephrol, 2000, 11: S106-S115.
    [238] Baudry D, Hamelin M, Cabanis M-O, et al. WT1 splicing alterations in Wilms’ tumors[J]. Clin Cancer Res, 2000, 6: 3957-3965.
    [239]Pelletier J, Bruening W, Li F P, et al. WT1 mutations contribute to abnormal genitalsystem development and hereditary Wilms’tumor[J]. Nature, 1991, 353: 431-434.
    [240] Kreidberg, J A, Sariola H, Loring J M, et al. WT-1 is required for early kidneydevelopment [J]. Cell, 1993, 74: 679-691.
    [241] Shen W H, Moore C C, Ikeda K L, et al. Nuclear receptor steroidogenic factor 1regulates the mullerian inhibiting substance gene: a link to the sex determination cascade [J].Cell, 1994, 77: 651-661.
    [242] Kim J, Prawitt D, Bardeesy N, et al. The Wilms’ tumor suppressor gene (WT1) productregulates Dax-1 gene expression during gonadal differentiation [J]. Mol Cell Biol, 1999,19:2289-2299.
    [243] Hossain A, Saunders G F. The human sex-determining gene SRY is a direct target ofWT1 [J]. J Biol Chem, 2001, 276:16817-16823.
    [244] Pritchard Jones K, King-Underwood L. The Wilms’ tumour gene WT1 in leukaemia [J].Leukemia Lymphoma, 1997,27, 207-220.
    [245] Sambrook J, Russell D W. 分子克隆[M]. 第三版. 黄培堂等译. 北京: 科学出版社.2002.
    [246] 卢圣栋. 现代分子生物学实验技术[M]. 第二版. 北京: 高等教育出版社, 1993.
    [247] Fraizer G C, Wu Y J, Hewitt S M, et al. Transcriptional regulation of the human Wilms’tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter [J]. J Biol Chem,1994, 269(12): 8892-8900.
    [248] Grunstein M. Histone acetylation in chromatin structure and transcription [J]. Nature,1997, 389: 349-352.
    [249] Fletcher T M, Hansen J C. The nucleosomal array: structure /function relationships [J].Crit Rev Eukaryote Gene Expr, 1996, 6: 149-188.
    [250] Sheppard K-A, Rose D W, Haque Z K, et al. Transcriptional activation by NF-κBrequires multiple coactivators[J]. Mol Cell Biol, 1999, 19(9): 6367-6368.
    
    [251] Moran E. DNA tumor virus transforming proteins and the cell cycle[J]. Curr OpinGenet Dev, 1993, 3(1): 63-70.
    [252] Jones N. Transcriptional modulation by the adenovirus E1A gene[J]. Curr TopMicrobiol Immunol, 1995, 199: 59-80.
    [253] Shikama N, Lyon J, La Thangue N B. The p300/CBP family: intergrating signals withtranscription factors and chromatin[J]. Trends Cell Biol, 1997, 7:230-236.
    [254] Chakravarti D, Ogryzko V, Kao H Y, et al. A viral mechanism for inhibition of p300 andPCAF acetyltransferase activity [J]. Cell, 1999, 96(3): 393-403.
    [255] Tomita1 A, Towatari M, Tsuzuki S, et al. c-Myb acetylation at the carboxyl -terminalconserved domain by transcriptional co-activator p300 [J]. Oncogene, 2000, 19: 444 -451.
    [256] Sano Y,Ishii S. Increased affinity of c-Myb for CREB-binding Protein (CBP) afterCBP-induced acetylation [J]. J Biol Chem, 2001, 276(5): 3674-3682.
    [257] Kawahara K-i, Kawabata H, Aratani S, et al. Hyper nuclear acetylation (HNA) inproliferation,differentiation and apoptosis[J].Ageing Research Reviews, 2003, 2:287-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700