SIRT1调控Wnt信号通路影响间充质干细胞成脂定向的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物脂肪组织的沉积不仅仅是增加已存在的脂肪细胞中的脂类储藏,而且始终伴随着从祖细胞生成新的脂肪细胞的过程,即“脂肪生成(adipogenesis)"。脂肪生成包括起始阶段多能干细胞向前脂肪细胞“定型”,以及随后前脂肪细胞向成熟脂肪细胞“分化”。在过去的二十年中,人们对调控脂肪生成的调网络,特别是控制前脂肪细胞向脂肪细胞“分化”的转录级联已经基本清楚。而在“定型”阶段,虽然目前已有一些转录因子和信号通路也陆续被证实,但由于缺少前脂肪细胞的标志基因,因此,多能的间充质干细胞(Mesenchymal stem cells, MSCs)向前脂肪细胞“定型”的特异性定型因子及其分子机制有待进一步研究。
     已有研究证实,SIRT1在前脂肪细胞分化中,不仅可以去乙酰化组蛋白,调控转录因子的转录活性;而且可以去乙酰化脂肪生成关键转录因子。此外,在MSCs细胞命运决定中,SIRT1可以促进MSCs的成骨分化,而抑制MSCs的成脂分化。但SIRT1调控MSCs成脂定向的分子机制尚不明确,有待进一步阐明。
     本研究由两部分组成,第一部分为体外细胞实验,研究SIRT1通过Wnt信号通路的对MSCs细胞成脂定向的影响,并阐明SIRT1通过调控Wnt信号通路,影响MSCs分化形成脂肪细胞的分子机制。第二部分为体内活体试验,以SIRT1敲除的小鼠为研究对象,通过动物活体验证SIRT1与脂肪形成的关系;同时以分离的小鼠的胚胎成纤维细胞(mouse embryonic fibroblasts, MEFs)为材料,进一步探讨了SIRT1调控MSCs成脂定向的分子机制。主要研究内容和结果如下:
     第一部分,体外细胞实验。在C3H10T1/2细胞中,对SIRT1用激活剂或抑制剂处理,或干涉/过表达SIRT1后,研究SIRT1对脂肪生成表型及成脂标志基因mRNA和蛋白水平的影响。在此基础上,研究干涉SIRT1对Wnt信号靶基因和关键蛋白的表达及Wnt信号通路报告系统活性的影响;用Real-time PCR芯片筛选出受SIRT1调控Wnt信号通路拮抗物;并稳定干涉这些Wnt信号通路拮抗物后,研究对成脂表型及成脂标志基因mRNA和蛋白水平的影响:通过ChIP和IP等手段,研究SIRT1调控Wnt信号通路的分子机制。主要结果如下:
     1.添加SIRT1的激活剂白藜芦醇抑制了C3H10T1/2细胞的成脂表型,且成脂标志基因(PPARγ, aP2和adiponectin)的mRNA和蛋白表达也显著抑制;而添加SIRT1的抑制剂烟酰胺则促进了C3H10T1/2细胞的脂滴形成,成脂标志基因(PPARyγ, aP2和adiponectin)的mRNA和蛋白表达丰度显著上调(P<0.05)。白藜芦醇处理显著增加了6h和12h的S期细胞数量(P<0.05),烟酰胺处理对细胞周期影响不显著(P>0.05)。
     2.在C3H10T1/2细胞中干涉SIRT1,成脂诱导后,增加了油红O染色的脂滴的数目,且显著提高了成脂标志基因(PPARy, aP2和adiponectin的mRNA和蛋白表达丰度;而过表达SIRT1组,视野中油红O染色的脂滴较少,显著抑制了成脂标志基因(PPARγ, aP2和adiponectin)的mRNA和蛋白表达。表明激活SIRT1抑制了MSCs细胞的成脂定向;而抑制SIRT1的活性,则促进了MSCs细胞的成脂定向。
     3.在C3H10T1/2细胞中干涉SIRT1,显著抑制了Wnt信号通路靶基因CyclinD1的mRNA和蛋白表达水平(P<0.05)以及Wnt信号通路关键分子β-catenin的蛋白水平;Wnt信号通路报告系统实验结果显示,干涉SIRT1显著抑制了Wnt信号通路报告系统的活性(P<0.05);此外,通过转染β-catenin的突变体质粒,结果发现SIRT1对Wnt信号通路的调控是依赖β-catenin的。
     4.Wnt信号PCR芯片结果及对芯片的验证结果显示,激活SIRT1显著抑制了Wnt信号通路胞外拮抗物sFRPl和sFRP2以及胞内拮抗物Dactl的mRNA表达水平(P<0.05);而抑制SIRT1显著提高了Wnt信号通路胞外拮抗物sFRP1和sFRP2以及胞内拮抗物Dactl的mRNA表达水平(P<0.05)。这表明,SIRT1对Wnt信号通路的调控可能是通过Wnt信号的胞外拮抗物sFRP1和sFRP2,以及Wnt信号的胞内拮抗物Dactl来实现的。
     5.分别建立稳转干涉SIRT1和干涉Wnt信号通路拮抗物的细胞材料:pLKO.1-SIRT1、pLKO.1-SIRT1+pLKO.1-sFRP1, pLKO.1-SIRT1+pLKO.1-sFRP2, pLKO.1-SIRT1+pLKO.1-Dact和pLKO.1-SIRT1+pLKO.1-sFRP1+pLKO.1-sFRP2;成脂诱导这些稳转的细胞,结果显示与pLKO.1-SIRT1组相比,这些细胞的形成的脂滴较少,且成脂标志基因(PPARγ, aP2和adiponectin)的mRNA和蛋白的表达下调;Wnt信号通路报告系统实验结果显示,与pLKO.1-SIRT1组相比,提高了Wnt信号通路的活性。以上结果表明,在MSCs细胞成脂定向过程中,SIRT1可能通过Wnt信号拮抗物sFRP1、sFRP2和Dact1来作用的。
     6. ChIP结果显示,干涉SIRT1显著增加了sFRP1.sFRP2和Dact1的启动子区域的组蛋白的H3K9和H4K16的乙酰化水平(P<0.05)。此外,IP结果显示,干涉SIRT1显著增加了β-catenin的乙酰化水平,且减少了β-catenin进入细胞核内的水平。这表明,SIRT1可以通过去乙酰化组蛋白和非组蛋白两种方式调控Wnt信号通路。
     第二部分,体内活体实验。首先,以SIRT1单敲的小鼠(SIRT1+/-)为研究对象,SIRT1野生型小鼠(SIRT1+/+)为对照,验证SIRT1与脂肪形成的关系。正常饮食饲喂12w后,对小鼠称重并取样,对各部位脂肪组织和肝脏称重,并计算脂肪组织与体重的比值;检测血液中甘油三酯的含量;通过外观和HE染色观察脂肪组织的形态;并检测了皮下和内脏脂肪组织中成脂标志基因的变化。然后,分离13.5的小鼠胚胎的MEFs细胞,经基因型鉴定后,对不同SIRT1基因型(SIRT1+/+、SIRT1+/.和SIRT1-/-)的MEFs细胞成脂诱导,研究SIRT1对脂肪生成表型及成脂标志基因mRNA和蛋白水平的影响;此外,以不同SIRT1基因型的MEFs细胞为材料,通过ChIP和IP等手段进一步探讨SIRT1调控Wnt信号通路的分子机制。主要结果如下:
     1.小鼠正常饮食饲喂12w后,SIRT1+/-小鼠的外观正常,但体重显著低于SIRT1+/+小鼠(P<0.05);脂肪组织和肝脏质量没有显著差异(P>0.05),但提高了SIRT1+/.小鼠的脂肪与体重质量比(P<0.05):血液中甘油三酯的含量也没有显著差异(P>0.05)。以上结果表明,SIRT1敲除影响了小鼠生长,但并不影响脂肪组织和肝脏组织的发育,相反可以促进脂肪的形成。
     2.对脂肪组织的形态研究结果显示,不同基因型小鼠的棕色脂肪组织和附睾脂肪组织外观差异不显著;HE染色结果显示,SIRT1+/.小鼠脂肪组织脂肪细胞的体积有增加的趋势。
     3.SIRT1+/小鼠显著提高了皮下脂肪(腹股沟脂肪)中PPARy的mRNA表达丰度(P<0.05),对内脏脂肪(附睾脂肪)中PPARγ的mRNA表达没有显著差异(P>0.05);aP2和adiponectin的mRNA在两种基因型小鼠的皮下和内脏脂肪组织中的表达也没有差异。
     4.成脂诱导MEFs细胞后,SIRT1+/和SIRT1-/组的MEFs细胞脂滴数目较多,而SIRT1+/组最多;SIRT1+/-组的成脂标志基因(PPARγ, aP2和adiponectin)的表达丰度极显著或显著高于SIRT1+/+和SIRT1-/-组(P<0.01;P<0.05);而SIRT1-/.组的成脂标志基因(PPARγ, aP2和adiponectin)的表达丰度极显著高于SIRT1+/+(P<0.01)。以上结果表明,SIRT1缺失则促进了MEFs细胞的脂肪生成,SIRT1单缺失具有更强的成脂能力。
     5. ChIP结果显示,在SIRT1缺失的MEFs细胞中,显著增加了sFRP1、sFRP2和Dactl的启动子区域的组蛋白的H3K9和H4K16的乙酰化水平(P<0.05)。IP结果显示,干涉SIRT1缺失增加了P-catenin的乙酰化水平。这表明在SIRT1缺失的MEFs细胞中,SIRT1也可以通过去乙酰化组蛋白和非组蛋白两种方式调控Wnt信号路。
     本研究的主要结论:
     SIRT1对间充质干细胞命运选择具有决定性作用,激活SIRT1抑制了MSCs细胞的成脂定向,而抑制SIRT1则促进了MSCs细胞的成脂定向。其机制是一方面SIRT1通过去乙酰化Wnt信号的拮抗物启动子区域的组蛋白,抑制Wnt信号的拮抗物的表达,解除了对Wnt信号通路的拮抗,从而激活Wnt信号通路,抑制脂肪的生成;另一方面SIRT1通过去乙酰化Wnt信号的关键蛋白β-catenin,促进β-catenin在核内的积累,促进Wnt信号通路靶基因活性,抑制脂肪的生成。
Animal fat tissue deposition is not only greater the existing lipid stored in fat cells, and always new adipocytes are growing from progenitor cells, also known as adipogenesis. Adipogenesis can be divided into two related stages:commitment and terminal differentiation. Within the last two decades it has also become clear how the activity of these transcription factors control differentiation from preadipocytes to adipocytes. During commitment, although there are some transcription factors and signaling pathways have been confirmed, due to the lack of preadipocyte marker genes. Thus, the specific factors and molecular mechanism need further research during determination process.
     Previous studies reported that SIRT1participate in regulation of adipocyte differentiation, and mediate transcription and post-translation modifications, can directly deacetylate histones and various transcription factors about nonhistones. In addition, SIRT1markedly inhibited adipocyte and promoted osteoblast differentiation during fate determination of MSCs. But the underlying molecular mechanism remains to be investigated.
     This study composes of two parts that were cell experiment and animal experiment. In vitro experiment, we studied that SIRT1regulate MSCs commitment to adipocyte lineage through Wnt signalling pathway, and elucidated the molecular mechanism about SIRT1regulation of Wnt signaling antagonists. In vivo, the heterozygous KO (SIRT1+/-) mice and wild type (WT, SIRT1+/+) littermates were used as subjects in the study. We firstly validated the relation between SIRT1and adipogenesis. The MEFs were isolated and as mainly research material. The molecular mechanism of SIRT1regulation of MSCs commitment to adipocyte lineage was made future investigated. The main contents and results are as follows:
     The first part:In vitro experiment.1. C3H10T1/2MSCs were treated with SIRT1activator (resveratrol)/inhibitor (nicotinamide) for2d, or were transfected RNAi/overexpression plasmid of SIRT1, then induced by adipogenic medium to study whether SIRT1regulates MSCs commitment to adipocyte lineage.2. C3H10T1/2cells were transfected RNAi plasmid of SIRT1, the cells were harvested. The Wnt signalling pathway report activity and the target genes were determined that to study whether SIRT1regulation of adipogenic commitment through Wnt signalling pathway.3. C3H10T1/2MSCs were treated with resveratrol/inhibitor; the cells were harvested and screening of Wnt antagonists by profiler PCR Array. The stable transfection of cell lines about RNAi of Wnt signaling antagonists were induced by adipogenic medium. Wnt signalling pathway were determined that to study whether SIRT1regulation of adipogenic commitment through regulating Wnt signaling antagonists.4. Using ChIP and IP, the mechanisms underlying of SIRT1regulation of Wnt signalling were analysis in infected cell. The main results are as follows:
     1. Activation of SIRT1by resveratrol inhibited the lipid accumulation and adipogenic gene expression, while inhibition of SIRT1by nicotinamide promoted the lipid accumulation and adipogenic gene expression of C3H10T1/2cells. Resveratrol treatment of C3H10T1/2cells markedly increased the number of cells at the S phase for6h and12h (P<0.05), whereas nicotinamide treatment failed to elicit any substantiate effect on C3H10T1/2cells.
     2. Overexpression of SIRT1in C3H10T1/2cells blocked lipid lipid accumulation and adipogenic gene expression, shRNA-medited knockdown of SIRTl had the opposite effect. Thus, the combined date from gain-and loss-of function consistently demonstrate that SIRT1acts as a repressor of adipogenesis in vitro.
     3. SIRT1RNAi significantly inhibited Cyclin D1expression of Wnt signalling target gene and β-catenin of key factor of Wnt signalling target gene. shRNA-medited knockdown of SIRT1could significantly suppressed Wnt reporter activity. The results of β-catenin reporter assay showed that a β-catenin-dependent.
     4. The results of Wnt signalling by profiler PCR Array showed that resveratrol treatment inhibited sFRP1and sFRP2gene expression of extracellular antagonists of the Wnt signalling pathway and Dact1mRNA expression of intracellular antagonists of the Wnt signalling pathway. In contrast, nicotinamide promoted sFRP1, sFRP2and Dact1 gene. The results of PCR Array revealed that SIRT1regulate Wnt signalling by inhibited sFRP1, sFRP2and Dactl expression.
     5. We used lentivirus to generate C3H10T1/2stable cell lines carrying pLKO.1-SIRT1、pLKO.1-SIRT1+pLKO.1-sFRPl、pLKO.1-SIRT1+pLKO.1-sFRP2, pLKO.1-SIRT1+pLKO.1-Dactl and pLKO.1-SIRT1+pLKO.1-sFRP1+pLKO.1-sFRP2. The stable transected cells were subjected to adipogenic differentiation protocol, and samples were collected for adipogenic analysis. Compared with cells infected with the pLKO.1-SIRT1vector, stale cells down-regulated SIRT1and Wnt signalling antagonists accumulated much less fat as determined by Oil red O staining and had a reduction in adipogenic maker gene expression. The stable cells infected with SIRT1and Wnt signalling antagonist's vector increased Wnt reporter activity.
     6. We performed ChIP assay in C3H10T1/2cells and abserved robust increases in acetylation of H3K9and H4K16at the sFRPI, sFRP2and Dactl promoters with shRNA Knockdown of SIRT1. We performed IP assay in C3H10T1/2cells and abserved that SIRT1deacetylaes β-catenin to promote its accumulation in the nucleus.
     The second part: In vivo experiment. The heterozygous KO (SIRT1+/-) mice and wild type (WT, SIRT1+/+) littermates were used as subjects in the study. The SIRT1+/+mice and SIRT1+/-mice maintained on the regular chow diet for12w, blood was collected first, and then liver, intrescapular brown adipose tissue, intrescapular adipose tissue, inginal fat, epididymal fat and perirenal fatwere taken and weighed for the tissues to body weight ratio. Histology study on adipose tissue by HE staining.2. The MEFs were isolated and as mainly research material. The molecular mechanism of SIRT1regulation of MSCs commitment to adipocyte lineage was made future investigated. The main contents and results are as follows:
     1. The appearance was no difference in SIRT1+/-mice compare with SIRT1+/+mice, but the body weigh had a reduction. Although SIRT1+/-mice exhibited no different in fat weigh and liver weigh, the ratio of fat mass to body weigh was significantly higher compare with SIRT1+/+mice, suggesting that the fat content is increased in the null mice.
     2. The appearance and HE staining showed that SIRT1+/+mice display moderately enlarged adipose depots relative to SIRT1+/+littermates when assessed by histology.
     3. Expression of PPARy mRNA was much higher in inginal fat of SIRT+/-mice and was not change in epididymal fat of SIRT1+/-mice. Expression of aP2and adiponectin mRNA was not change in epididymal fat and inginal fat of SIRT1+/-mice.
     4. MEF cells were prepared from13.5d embryo and induced for adipogenesis in the culture medium. Compared with WT cells lipid accumulation in differentiated cells from SIRT+/-and SIRT1-/-MEF were enhanced as observed by the red color from the Oil red-O staining. SIRT1+/-MEFs exhibited significant elevation in mRNA and protein for PPARγ, aP2and adiponectin, followed by the SIRT1-/-MEFs. The results suggest that SIRT1null cell promote adipogenesis, Adipogenic maker genes, while heterozygous SIRT1have greater ability of adipogenic commitment.
     5. We performed ChIP assay in MEFs and abserved robust increases in acetylation of H3K9and H4K16at the sFRPl, sFRP2and Dactl promoters in null cells of SIRT1. IP assay showed that in null cells of SIRT1increases acetylation of (3-catenin.
     In summary, the conclusions of this study are:
     1. SIRT1is a negative regulator of MSCs commitment to adipocyte lineage.
     2. SIRT1may affect MSC fate by regulating Wnt signalling pathway. On the one hand, SIRT1deacetylate hisone of sFRP1, sFRP2and Dactl promoters, inhibit the sFRPl, sFRP2and Dactl mRNA expression, and remove the inhibition for Wnt signaling, then activate Wnt signaling pathway. On the other hand, SIRT1deacetylates β-catenin to promote its accumulation in the nucleus leading to transcription of genes for blocking adipogenesis of MSCs.
引文
1.J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南.第三版.(黄培堂译).科学出版社,2002
    2.罗何峰.EPA诱导成肌细胞转分化成脂肪细胞的分子机理研究.[博士学位论文].武汉:华中农业大学图书馆,2012
    3. Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A, Vignon F, Langin D, Barbacid M, Fajas L. Cdk4 promotes adipogenesis through PPARγ activation. Cell Metab, 2005,2:239-249
    4. Abdou HS, Atlas E, Hache RJ. Liver-enriched inhibitory protein (LIP) actively inhibits preadipocyte differentiation through histone deacetylase 1 (HDAC1). J Biol Chem,2011,286:21488-21499
    5. Abdou HS, Atlas E, Hache RJ. A positive regulatory domain in CCAAT/enhancer binding protein beta (C/EBPBeta) is required for the glucocorticoid-mediated displacement of histone deacetylase 1 (HDAC1) from the C/ebpalpha promoter and maximum adipogenesis. Endocrinology, 2013,154: 1454-1464
    6. Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res, 2001,7:1466-1473
    7. Ahmad N, Lingrel JB. Kruppel-like factor 2 transcriptional regulation involves heterogeneous nuclear ribonucleoproteins and acetyltransferases. Biochemistry,2005, 44: 6276-6285
    8. Akella JS, Wloga D, Kim J, Starostina NQ Lyons-Abbott S, Morrissette NS, Dougan ST, Kipreos ET, Gaertig J. MEC-17 is an alpha-tubulin acetyltransferase. Nature, 2010,467:218-222
    9. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J. Sirtl regulates aging and resistance to oxidative stress in the heart. Circ Res,2007,100:1512-1521
    10. Aoyama M, Agari K, Sun-Wada GH, Futai M, Wada Y. Simple and straightforward construction of a mouse gene targeting vector using in vitro transposition reactions. Nucleic Acids Res, 2005,33:e52
    11. Arnsdorf EJ, Tummala P, Jacobs CR. Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PloS one,2009,4:e5388
    12. Backesjo CM, Li Y, Lindgren U, Haldosen LA. Activation of Sirtl decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res,2006,21:993-1002
    13. Bai L, Pang WJ, Yang YJ, Yang GS. Modulation of Sirtl by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem,2008,307:129-140
    14. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D. SirTl gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab,2008,8:333-341
    15. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol, 2014,10:24-36
    16. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K. Resveratrol improves health and survival of mice on a high-calorie diet. Nature,2006,444:337-342
    17. Becker T, Haferkamp S. Molecular Mechanisms of Cellular Senescence, under CC BY 3.0 license,2013
    18. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA. Regulation of Wnt signaling during adipogenesis. J Biol Chem, 2002,277:30998-31004
    19. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA,2005,102:3324-3329
    20. Bilkovski R, Schulte DM, Oberhauser F, Gomolka M, Udelhoven M, Hettich MM, Roth B, Heidenreich A, Gutschow C, Krone W, Laudes M. Role of WNT-5a in the determination of human mesenchymal stem cells into preadipocytes. J Biol Chem, 2010,285:6170-6178
    21. Bober E, Fang J, Smolka C, Ianni A, Vakhrusheva O, Kriiger M, Braun T. Sirt7 promotes adipogenesis by binding to and inhibiting Sirtl. BMC Proc,2012,6:P57
    22. Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling:recent advances and challenges. Biochim Biophys Acta,2010,1804: 463-475
    23. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW. SirTl regulates energy metabolism and response to caloric restriction in mice. PloS one, 2008,3:e1759
    24. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism:understanding longevity. Nat Rev Mol Cell Biol,2005,6:298-305
    25. Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, Easlon EJ, Lin SJ, Guarente L. Sirtl regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS biology,2006,4: e31
    26. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo JY, Gu W, Guarente L. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging cell,2007,6: 759-767
    27. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: a critical review. Cell Signal,2011,23:609-620
    28. Brown AJ, Fisher DA, Kouranova E, McCoy A, Forbes K, Wu Y, Henry R, Ji D, Chambers A, Warren J. Whole-rat conditional gene knockout via genome editing. Nat methods,2013,10:638-640
    29. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,2004,303:2011-2015
    30. Cadigan KM, Liu YI. Wnt signaling:complexity at the surface. J Cell Sci,2006,119: 395-402
    31. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature,2010,466: 1110-1114
    32. Calvanese V, Lara E, Suarez-Alvarez B, Dawud RA, Vazquez-Chantada M, Martinez-Chantar ML, Embade N, Lopez-Nieva P, Horrillo A, Hmadcha A. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci USA,2010,107:13736-13741
    33. Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance. Physiol Rev,2004,84:277-359
    34. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature,2009,458:1056-1060
    35. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment:going back to the future. JLipid Res,2012a,53:227-246
    36. Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA. Wnt6, Wnt10a and Wnt 10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone,2012b,50: 477-489
    37. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids Res, 2011, 39:e82
    38. Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR, Kandror KV. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res,2011,52:1693-1701
    39. Chalkiadaki A, Guarente L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab, 2012, 16: 180-188
    40. Chatterjee TK, Idelman G, Blanco V, Blomkalns AL, Piegore MG, Jr., Weintraub DS, Kumar S, Rajsheker S, Manka D, Rudich SM, Tang Y, Hui DY, Bassel-Duby R, Olson EN, Lingrel JB, Ho SM, Weintraub NL. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. JBiol Chem,2011,286:27836-27847
    41. Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. Tissue-specific regulation of SIRT1 by calorie restriction. Gene Dev, 2008, 22:1753-1757
    42. Chen L, Song J, Cui J, Hou J, Zheng X, Li C, Liu L. microRNAs regulate adipocyte differentiation. Cell Biol Int, 2013,37: 533-546
    43. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA,2003,100:10794-10799
    44. Cherasse Y, Maurin AC, Chaveroux C, Jousse C, Carraro V, Parry L, Deval C, Chambon C, Fafournoux P, Bruhat A. The p300/CBP-associated factor (PCAF) is a cofactor of ATF4 for amino acid-regulated transcription of CHOP. Nucleic Acids Res, 2007,35:5954-5965
    45. Choi Y, Um SJ, Park T. Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes (Lond),2013,37: 881-884
    46. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrin Met,2009,20: 16-24
    47. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med,2007,4: e76
    48. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science, 2004, 305:390-392
    49. Cole KA, Harmon AW, Harp JB, Patel YM. Rb regulates C/EBPβ-DNA-binding activity during 3T3-L1 adipogenesis. Am JPhysiol Cell Ph, 2004, 286:C349-354
    50. Cousin W, Fontaine C, Dani C, Peraldi P. Hedgehog and adipogenesis:fat and fiction. Biochimie,2007,89: 1447-1453
    51. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs):characterization of the classical HDAC family. Biochem J, 2003,370:737-749
    52. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science,2011,334:806-809
    53. Elsen M, Raschke S, Tennagels N, Schwahn U, Jelenik T, Roden M, Romacho T, Eckel J. BMP4 and BMP7 induce the whit e-to-brown transition of primary human adipose stem cells. Am J physiol Cell Ph, 2014, 306:C431-440
    54. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem,2004,279: 52361-52365
    55. Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril M-B, Miard S, Auwerx J. The retinoblastoma-histone deacetylase 3 complex inhibits PPARy and adipocyte differentiation. Dev Cell,2002,3:903-910
    56. Farmer SR. Obesity: Be cool, lose weight. Nature, 2009, 458:839-840
    57. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr, 2011,93:884S-90
    58. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PloS one,2008, 3:e2020
    59. Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, Fulda S, Wabitsch M. Resveratrol regulates human adipocyte number and function in a Sirtl-dependent manner. Am J Clin Nutr, 2010, 92:5-15
    60. Fontaine C, Cousin W, Plaisant M, Dani C, Peraldi P. Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells. Stem Cells, 2008, 26: 1037-1046
    61. Fruhbeck G. Overview of Adipose Tissue and Its Role in Obesity and Metabolic Disorders. In Yang KP. Adipose Tissue Protocols.2th ed. London: The University of Western Ontario Press,2001.1-22
    62. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V. Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Mol Cell, 2003, 12: 51-62
    63. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell, 2008, 14: 661-673
    64. Gabay O, Zaal KJ, Sanchez C, Dvir-Ginzberg M, Gagarina V, Song Y, He XH, McBurney MW. Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine,2013, 80: 613-620
    65. Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, Valente S, Guerrini U, Caruso D, Mai A, Saez E, De Fabiani E, Crestani M. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes,2013,62:732-742
    66. Gao Y. The role of Tip60 in adipogenesis. 2013, Utrecht University, Utrecht, Dutch
    67. Gerhart-Hines Z, Rodgers JT, Bare O, Kim CLSH, Kim SH, Mostoslavsky R, Alt FW, Wu ZD, Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha. EMBO J,2007, 26: 1913-1923
    68. Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen-Banerjee S, DePina A, Haspel R, Jain MK. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. JBiol Chem,2002, 277:34322-34328
    69. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science, 2011,333: 1109-1112
    70. Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes:the extraordinary plasticity of the adipose organ. Eur JEndocrinol,2014, 170: R159-171
    71. Giralt A, Hondares E, Villena JA, Ribas F, Diaz-Delfin J, Giralt M, Iglesias R, Villarroya F. Peroxisome proliferator-activated receptor-gamma coactivator-lalpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J Biol Chem, 2011,286:16958-16966
    72. Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions:metabolism, cell death and aging. Biochem J, 2012, 444:1-10
    73. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis.J Mol BioL, 2004, 338: 17-31
    74. Grunwald DJ, Eisen JS. Headwaters of the zebrafish-emergence of a new model vertebrate. Nat Rev Genet,2002,3:717-724
    75. Guarente L. Mitochondria--a nexus for aging, calorie restriction, and sirtuins? Cell, 2008,132:171-176
    76. Guilinger JP, Pattanayak V, Reyon D, Tsai SQ, Sander JD, Joung JK, Liu DR. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat methods, 2014, 11:429-435
    77. Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM, Roby YA, Kulaga H, Reed RR, Spiegelman BM. Transcriptional control of preadipocyte determination by Zfp423. Nature,2010,464:619-623
    78. Gupta RK, Mepani RJ, Kleiner S, Lo JC, Khandekar MJ, Cohen P, Frontini A, Bhowmick DC, Ye L, Cinti S, Spiegelman BM. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab,2012,15:230-239
    79. Haberland M, Carrer M, Mokalled MH, Montgomery RL, Olson EN. Redundant control of adipogenesis by histone deacetylases 1 and 2. J Biol Chem, 2010, 285: 14663-14670
    80. Haddad JJ. Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun,2004,316:969-977
    81. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Gene Dev, 2006, 20: 2913-2921
    82. Han L, Zhou R, Niu J, McNutt MA, Wang P, Tong T. SIRT1 is regulated by a PPARy-SIRT1 negative feedback loop associated with senescence. Nucleic Acids Res,2010,38:7458-7471
    83. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell stem cell,2008,2:241-251
    84. Hansen T. The Nobel Prize in physiology or medicine 2007. Scand J Immunol,2007, 66:603
    85. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirtl Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. Cire Res,2010,107:1470-1482
    86. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nature medicine,2013,19:1252-1263
    87. Hartig SM, He B, Long W, Buehrer BM, Mancini MA. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. J Cell BioL,2011,192:55-67
    88. Hasegawa R, Tomaru Y, de Hoon M, Suzuki H, Hayashizaki Y, Shin JW. Identification of ZNF395 as a novel modulator of adipogenesis. Exp Cell Res, 2013, 319:68-76
    89. Hermans K, Daskalopoulos EP, Blankesteijn WM. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis Tissue Repair, 2012,5:16
    90. Holloway KR, Calhoun TN, Saxena M, Metoyer CF, Kandler EF, Rivera CA, Pruitt K. SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc Natl Acad Sci USA,2010,107:9216-9221
    91. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem,2008, 283:20015-20026
    92. Hsu C-P, Odewale I, Alcendor RR, Sadoshima J. Sirtl protects the heart from aging and stress. Biol Chem,2008,389:221-231
    93. Huang H, Song TJ, Li X, Hu L, He Q, Liu M, Lane MD, Tang QQ. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA,2009,106:12670-12675
    94. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells, 2010,28: 357-364
    95. Hussain M, Rao M, Humphries AE, Hong JA, Liu F, Yang M, Caragacianu D, Schrump DS. Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells. Cancer Res, 2009,69:3570-3578
    96. Hutley L, Shurety W, Newell F, McGeary R, Pelton N, Grant J, Herington A, Cameron D, Whitehead J, Prins J. Fibroblast growth factor 1:a key regulator of human adipogenesis. Diabetes,2004,53:3097-3106
    97. Inoue M, Tanabe H, Matsumoto A, Takagi M, Umegaki K, Amagaya S, Takahashi J. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor gamma modulator in adipocytes and macrophages. Biochem Pharmacol, 2012,84:692-700
    98. Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell stem cell,2010,7:36-41
    99. James AW, Leucht P, Levi B, Carre AL, Xu Y, Helms JA, Longaker MT. Sonic Hedgehog influences the balance of osteogenesis and adipogenesis in mouse adipose-derived stromal cells. Tissue Eng Part A,2010,16:2605-2616
    100. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L, Lee PL, Chan MT, Stanton LW, Liu ET, Cheyette BN, Yu Q. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer cell,2008,13:529-541
    101. Jin Q, Zhang F, Yan T, Liu Z, Wang C, Ge X, Zhai Q. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Res,2010,20:470-479
    102.Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science,2012,337:816-821
    103.Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab,2007,6:105-114
    104.Johmura Y, Osada S, Nishizuka M, Imagawa M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J Biol Chem,2008,283:2265-2274
    105.Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest,2006, 116: 1784-1792
    106.Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest,2009, 119: 1420-1428
    107.Kanazawa A, Tsukada S, Kamiyama M, Yanagimoto T, Nakajima M, Maeda S. Wnt5b partially inhibits canonical Wnt/beta-catenin signaling pathway and promotes adipogenesis in 3T3-L1 preadipocytes. Biochem Biophys Res Commun, 2005, 330: 505-510
    108.Kanfi Y, Peshti V, Gil R, Naiman S, Nahum L, Levin E, Kronfeld-Schor N, Cohen HY. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging cell, 2010, 9:162-173
    109.Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY. The sirtuin SIRT6 regulates lifespan in male mice. Nature,2012,483:218-221
    110.Kang Q, Song WX, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He BC, Park JK, Jiang W, Tang Y, Huang J, Su Y, Zhu GH, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo GW, Pan X, Shen J, Vokes T, Reid RR, Haydon RC, Luu HH, He TC. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev, 2009, 18:545-559
    111.Kang S, Akerblad P, Kiviranta R, Gupta RK, Kajimura S, Griffin MJ, Min J, Baron R, Rosen ED. Regulation of early adipose commitment by Zfp521. PLoS Biol, 2012, 10:e1001433
    112.Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem,2011,286: 7629-7640
    113.Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 2003,116:2627-2634
    114.Kim EY, Kim WK, Kang HJ, Kim JH, Chung SJ, Seo YS, Park SG, Lee SC, Bae KH. Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. JLipid Res, 2012, 53:1864-1876
    115.Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng CX. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab,2010, 12:224-236
    116.Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARy through the production of endogenous ligand. Proc Natl Acad Sci USA, 1998, 95: 4333-4337
    117.Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells,2009,27:3093-3102
    118.Klaus S. Brown Adipocyte Differentiation and Function in Energy. Adipose Tissue. Landesbioscience Press,2001.82-96
    119.Klingenspor M, Fromme T. Brown adipose tissue. Adipose Tissue Biology: Springer,2012:39-69
    120.Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBOJ,2008,27:1017-1028
    121.Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Research Rev,2011,10:205-215
    122.Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. JMol endocrinol,2011,46: R65-72
    123.Lagathu C, Christodoulides C, Virtue S, Cawthorn WP, Franzin C, Kimber WA, Nora ED, Campbell M, Medina-Gomez G, Cheyette BN, Vidal-Puig AJ, Sethi JK. Dactl, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes,2009,58:609-619
    124.Lagathu C, Christodoulides C, Tan CY, Virtue S, Laudes M, Campbell M, Ishikawa K, Ortega F, Tinahones FJ, Fernandez-Real JM, Oresic M, Sethi JK, Vidal-Puig A. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity. Int J Obes (Lond),2010,34:1695-1705
    125.Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 2002, 295:1089-1092
    126.Lan F, Cacicedo JM, Ruderman N, Ido Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. JBiol Chem,2008,283:27628-27635
    127.Laurent G, German NJ, Saha AK, de Boer VCJ, Fischer F, Boanca G, Dephoure N, Vaitheesvaran B, Davies M, Gygi SP, Muoio DM, Kurland IJ, Steegborn C, Ruderman NB, Haigis MC. SIRT4 controls the balance between lipid synthesis and catabolism by repressing malonyl-CoA decarboxylase. BMC Proceedings, 2012, 6: P30
    128.Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, Walsh MJ. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem, 2005, 280:26941-26952
    129.Li H, Li T, Wang S, Wei J, Fan J, Li J, Han Q, Liao L, Shao C, Zhao RC. miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res, 2013,10: 313-324
    130.Li W, Zhong C, Li L, Sun B, Wang W, Xu S, Zhang T, Wang C, Bao L, Ding J. Molecular basis of the acetyltransferase activity of MEC-17 towards alpha-tubulin. Cell Res,2012,22:1707-1711
    131.Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin,2013,45:51-60
    132.Li Y, He X, He J, Anderstam B, Andersson G, Lindgren U. Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells:a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res, 2011,26:2656-2664
    133.Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Jin Y. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis, 2013,4: e600
    134.Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Ann Rev Cell Dev Bi,2004,20: 781-810
    135.Lomb DJ, Laurent G, Haigis MC. Sirtuins regulate key aspects of lipid metabolism. Biochim Biophys Acta,2010,1804: 1652-1657
    136.Lowe CE, O'Rahilly S, Rochford JJ. Adipogenesis at a glance. J Cell Sci, 2011,124: 2681-2686
    137.Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001,107: 137-148
    138.Luu L, Dai FF, Prentice KJ, Huang X, Hardy AB, Hansen JB, Liu Y, Joseph JW, Wheeler MB. The loss of Sirtl in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing. Diabetologia, 2013, 56:2010-2020
    139.Lyle RE. Regulation and Expression of Retinoblastoma Proteins p107 and p130 during 3T3-L1 Adipocyte Differentiation. JBiol Chem, 1997,272:10117-10124
    140.Maizels N. Genome engineering with Cre-loxP. J Immunol,2013,191:5-6
    141.Martinez-Redondo P, Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer, 2013,4:148-163
    142.McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M. The Mammalian SIR2 alpha Protein Has a Role in Embryogenesis and Gametogenesis. Mol Cell Biol,2003,23:38-54
    143.McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Current molecular medicine,2011,11:304-316
    144.Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrin Met,2013,24:48-57
    145.Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature,2007,450:712-716
    146.Mitterberger MC, Zwerschke W. Mechanisms of resveratrol-induced inhibition of clonal expansion and terminal adipogenic differentiation in 3T3-L1 preadipocytes. J Gerontol A Biol Sci Med Sci,2013,68:1356-1376
    147.Modica S, Wolfrum C. Bone morphogenic proteins signaling in adipogenesis and energy homeostasis. Biochim Biophys Acta, 2013,1831:915-923
    148.Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest,2008,118:3588-3597
    149.Moreno-Navarrete JM, Fernandez-Real JM. Adipocyte Differentiation. New York Dordrecht Heidelberg London, 2012.17-38
    150.Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, Kadowaki T, Matsuki Y, Ogawa W, Hiramatsu R, Kasuga M. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem,2005,280:12867-12875
    151.Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol, 2012,10: e1001314
    152.Moschen AR, Wieser V, Gerner RR, Bichler A, Enrich B, Moser P, Ebenbichler CF, Kaser S, Tilg H. Adipose tissue and liver expression of SIRT1,3, and 6 increase after extensive weight loss in morbid obesity. JHepatol,2013,59:1315-1322
    153.Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Meneur C, Permutt MA, Imai S. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab,2005,2:105-117
    154.Murano I, Morroni M, Zingaretti MC, Oliver P, Sanchez J, Fuster A, Pico C, Palou A, Cinti S. Morphology of ferret subcutaneous adipose tissue after 6-month daily supplementation with oral beta-carotene. Biochim Biophys Acta, 2005, 1740: 305-312
    155.Murphy MP. How mitochondria produce reactive oxygen species. Biochem J, 2009, 417:1-13
    156.Nakagawa T, Guarente L. Sirtuins at a glance. J Cell Sci,2011,124:833-838
    157.Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell, 2008, 134: 329-340
    158.Nakamura Y, Ogura M, Ogura K, Tanaka D, Inagaki N. SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett, 2012, 586: 4076-4081
    159.Nasrin N, Wu X, Fortier E, Feng Y, Bare OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. JBiol Chem,2010,285:31995-32002
    160.Nebbioso A, Dell'Aversana C, Bugge A, Sarno R, Valente S, Rotili D, Manzo F, Teti D, Mandrup S, Ciana P, Maggi A, Mai A, Gronemeyer H, Altucci L. HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J Mol endocrinol, 2010,45:219-228
    161.Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha. J Biol Chem, 2005,280: 16456-16460
    162.Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest,2010,120: 3455-3465
    163.Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature, 1998, 395:137-143
    164.Ogura M, Nakamura Y, Tanaka D, Zhuang X, Fujita Y, Obara A, Hamasaki A, Hosokawa M, Inagaki N. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun,2010,393:73-78
    165.Okamura M, Kudo H, Wakabayashi K, Tanaka T, Nonaka A, Uchida A, Tsutsumi S, Sakakibara I, Naito M, Osborne TF, Hamakubo T, Ito S, Aburatani H, Yanagisawa M, Kodama T, Sakai J. COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc Natl Acad Sci USA,2009,106:5819-5824
    166.Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, Nishimura G, Maemura K, Yamauchi T, Kubota N, Suzuki R, Kitamura T, Akira S, Kadowaki T, Nagai R. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab,2005,1:27-39
    167.Okamura M, Inagaki T, Tanaka T, Sakai J. Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis,2010,6:24-32
    168.Ou X, Chae HD, Wang RH, Shelley WC, Cooper S, Taylor T, Kim YJ, Deng CX, Yoder MC, Broxmeyer HE. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood,2011,117:440-450
    169.Pang W, Wang Y, Wei N, Xu R, Xiong Y, Wang P, Shen Q, Yang G. Sirtl inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction. PloS one,2013,8:e71576
    170.Park JR, Jung JW, Lee YS, Kang KS. The roles of Wnt antagonists Dkkl and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell proliferation,2008,41:859-874
    171.Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, Coombes RC, Fuchter MJ, Hsiao CD, Lam EWF. SIRT Inhibitors Induce Cell Death and p53 Acetylation through Targeting Both SIRT1 and SIRT2. Mol Cancer Ther,2010,9:844-855
    172.Pei H, Yao Y, Yang Y, Liao K, Wu JR. Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ, 2011,18:315-327
    173.Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, Bach T, Zhao Y. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PloS one,2012,7: e37162
    174.Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. JBiomed Biotechnol, 2011,2011:371832
    175.Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschop MH. Sirtl protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA,2008,105: 9793-9798
    176.Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, Olfert IM, McCurdy CE, Marcotte GR, Hogan MC. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-y coactivator-lα (PGC-1α) deacetylation following endurance exercise. J Biol Chem, 2011,286: 30561-30570
    177.Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley BW, Chambon P, Auwerx J. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell,2002,111:931-941
    178.Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature,2004,429:771-776
    179.Pillarisetti S. A review of Sirtl and Sirtl modulators in cardiovascular and metabolic diseases. Recent Pat Cardiovasc Drug Discov,2008,3:156-164
    180.Pospisilik JA, Schramek D, Schnidar H, Cronin SJ, Nehme NT, Zhang X, Knauf C, Cani PD, Aumayr K, Todoric J, Bayer M, Haschemi A, Puviindran V, Tar K, Orthofer M, Neely GG, Dietzl G, Manoukian A, Funovics M, Prager G, Wagner O, Ferrandon D, Aberger F, Hui CC, Esterbauer H, Penninger JM. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell, 2010,140: 148-160
    181.Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol,2007,19: 612-617
    182.Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, Herman JQ Baylin SB. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet,2006,2:e40
    183.Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab,2009,9:327-338
    184.Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim DH, Kemper JK, Li X. Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor lalpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol, 2012,32:1226-1236
    185.Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell,2012,150:620-632
    186.Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem, 2006, 281:39915-39924
    187.Quach JM, Walker EC, Allan E, Solano M, Yokoyama A, Kato S, Sims NA, Gillespie MT, Martin TJ. Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem, 2011,286:4186-4198
    188.Rahman S, Islam R. Mammalian Sirtl:insights on its biological functions. Cell Commun Signal, 2011,9:11
    189.Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr,2011,6:93-108
    190.Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA,2007, 104:12861-12866
    191.Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett,2008,582:46-53
    192.Rodriguez RM, Fernandez AF, Fraga ME Role of sirtuins in stem cell differentiation. Genes Cancer,2013,4: 105-111
    193.Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Bi,2000,16:145-171
    194.Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol,2006,7:885-896
    195.Ross SE. Inhibition of Adipogenesis by Wnt Signaling. Science, 2000,289:950-953
    196.Sakamoto J, Miura T, Shimamoto K, Horio Y. Predominant expression of Sir2a, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett, 2004,556:281-286
    197.Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between Oxidative Stress and SIRT1:Impact on the Aging Process. International journal of molecular sciences, 2013,14:3834-3859
    198.Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol, 2012, 4: a008417
    199.Sasaki T, Maier B, Bartke A, Scrable H. Progressive loss of SIRT1 with cell cycle withdrawal. Aging cell, 2006, 5:413-422
    200.Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes, 2006,55:1537-1545
    201.Schug TT, Xu Q, Gao H, Peres-da-Silva A, Draper DW, Fessler MB, Purushotham A, Li X. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol Cell Biol,2010,30: 4712-4721
    202.Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008,454: 961-967
    203.Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. Prdml6 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest,2011,121:96-105
    204.Semenov MV, Habas R, Macdonald BT, He X. SnapShot: Noncanonical Wnt Signaling Pathways. Cell, 2007,131:1378
    205.Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem,2011,286:7468-7478
    206.Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J,2010,427:1-17
    207.Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem,2007,76:75-100
    208.Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, Mobasheri A. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells:potential role of Runx2 deacetylation. PloS one,2012,7:e35712
    209.Shan T, Ren Y, Wang Y. Sirtuin 1 affects the transcriptional expression of adipose triglyceride lipase in porcine adipocytes. JAnim Sci,2013,91:1247-1254
    210.Shang Y, Zhang C, Wang S, Xiong F, Zhao C, Peng F, Feng S, Yu M, Li M, Zhang Y. Activated β-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy,2007,9:667-681
    211.Shastry BS. Genetic knockouts in mice:an update. Experientia,1995,51:1028-1039
    212.Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem,2005,280:13560-13567
    213.Shimano H. SREBPs:physiology and pathophysiology of the SREBP family. FEBS J,2009,276:616-621
    214.Silvestri C, Martella A, Poloso NJ, Piscitelli F, Capasso R, Izzo A, Woodward DF, Di Marzo V. Anandamide-derived prostamide F2alpha negatively regulates adipogenesis. J Biol Chem,2013,288:23307-23321
    215.Simic P, Zainabadi K, Bell E, Sykes DB, Saez B, Lotinun S, Baron R, Scadden D, Schipani E, Guarente L. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med,2013,5:430-440
    216.Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ, Jr., Lazar MA. Propagation of adipogenic signals through an epigenomic transition state. Gene Dev,2010,24: 1035-1044
    217.Sterner DE, Berger SL. Acetylation of Histones and Transcription-Related Factors. Microbiol Mol Biol Rev,2000,64: 435-459
    218.Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab, 2007, 6:307-319
    219.Sun F, Wang J, Pan Q, Yu Y, Zhang Y, Wan Y, Li X, Hong A. Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun, 2009,380: 660-665
    220.Sun L, Goff LA, Trapnell C, Alexander R, Lo KA, Hacisuleyman E, Sauvageau M, Tazon-Vega B, Kelley DR, Hendrickson DG, Yuan B, Kellis M, Lodish HF, Rinn JL. Long noncoding RNAs regulate adipogenesis. Proc Nat1 Acad Sci USA,2013,110: 3387-3392
    221.Symonds ME. Brown adipose tissue growth and development. Scientifica,2013, 2013:305763
    222.Takahashi N, Kawada T, Yamamoto T, Goto T, Taimatsu A, Aoki N, Kawasaki H, Taira K, Yokoyama KK, Kamei Y, Fushiki T. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator-activated receptor gamma. J Biol Chem,2002, 277:16906-16912
    223.Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA,2004,101:9607-9611
    224.Tang QQ, Gronborg M, Huang H, Kim JW, Otto TC, Pandey A, Lane MD. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA,2005,102:9766-9771
    225.Tang QQ, Lane MD. Adipogenesis:from stem cell to adipocyte. Annual review of biochemistry,2012,81:715-736
    226.Tchernof A. Regional Differences in Adipose Tissue Metabolism in Women: Minor Effect of Obesity and Body Fat Distribution. Diabetes,2006,55:1353-1360
    227.Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS. Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol, 2005,25:706-715
    228.Trung LQ, Espinoza JL, Takami A, Nakao S. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition. PloS one,2013,8:e55183
    229.Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature,2008,454:1000-1004
    230.Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res, 2008,659:40-48
    231.van Beekum O, Brenkman AB, Grontved L, Hamers N, van den Broek NJ, Berger R, Mandrup S, Kalkhoven E. The adipogenic acetyltransferase Tip60 targets activation function 1 of peroxisome proliferator-activated receptor gamma. Endocrinology, 2008,149:1840-1849
    232.van den Berghe G. The role of the liver in metabolic homeostasis:implications for inborn errors of metabolism. J Inherit Metab Dis,1991,14:407-420
    233.Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res, 2008,102:703-710
    234.Varjosalo M, Taipale J. Hedgehog:functions and mechanisms. Gene Dev, 2008,22: 2454-2472
    235.Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE, Jr., MacDougald OA, Peterson CA. WntlOb deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell, 2005, 16: 2039-2048
    236.Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P. Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E beta-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem,2011,286:6049-6060
    237.Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Gene Dev,2010,24:1403-1417
    238.Wang Y, Sul HS. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab,2009,9: 287-302
    239.Wang Y, Zhao L, Smas C, Sul HS. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol Cell Biol,2010,30:3480-3492
    240.Weems J, Olson AL. Class II histone deacetylases limit GLUT4 gene expression during adipocyte differentiation. JBiol Chem, 2011,286:460-468
    241.Weems JC, Griesel BA, Olson AL. Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes,2012, 61:1404-1414
    242.Wei S, Zhang L, Zhou X, Du M, Jiang Z, Hausman GJ, Bergen WG, Zan L, Dodson MV. Emerging roles of zinc finger proteins in regulating adipogenesis. Cellular and molecular life sciences: CMLS, 2013,70: 4569-4584
    243.Weir HJ, Lane JD, Balthasar N. SIRT3:A Central Regulator of Mitochondrial Adaptation in Health and Disease. Genes Cancer,2013, 4: 1181-24
    244.Wilson JH. Pointing fingers at the limiting step in gene targeting. Nat Biotechnol, 2003,21:759-760
    245. Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci USA,2007, 104:2703-2708
    246.Wu J, Srinivasan SV, Neumann JC, Lingrel JB. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry,2005,44:11098-11105
    247.Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell,2012,150:366-376
    248.Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease. Neuro-Signals, 2011,19:163-174
    249.Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J, Ye J. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology,2010,151:2504-2514
    250.Xu F, Burk D, Gao Z, Yin J, Zhang X, Weng J, Ye J. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/ mice. Endocrinology,2012,153:1706-1716
    251.Yang W, Guo X, Thein S, Xu F, Sugii S, Baas PW, Radda GK, Han W. Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of alpha-tubulin. Biochem J,2013,449:605-612
    252.Yang Z, Bian CJ, Zhou H, Huang S, Wang SH, Liao LM, Zhao RC. MicroRNA hsa-miR-138 Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Through Adenovirus EID-1. Stem Cells Dev, 2011,20: 259-267
    253.Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Ronty M, Kinnula VL, Rahman I. SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Invest, 2012, 122: 2032-2045
    254.Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 2004, 23:2369-2380
    255.Yin H, Pasut A, Soleimani VD, Bentzinger CF, Antoun G, Thorn S, Seale P, Fernando P, van Ijcken W, Grosveld F, Dekemp RA, Boushel R, Harper ME, Rudnicki MA. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab, 2013, 17: 210-224
    256.Yoo EJ, Chung JJ, Choe SS, Kim KH, Kim JB. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem, 2006, 281: 6608-6615
    257.Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab,2011,14: 528-536
    258.Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C, Bandyopadhyay G, Olefsky JM. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab, 2010, 298:E419-428
    259. You L, Pan L, Chen L, Chen JY, Zhang X, Lv Z, Fu D. Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts. J Transl Med, 2012, 10:11
    260.Yu YH, Chang YC, Su TH, Nong JY, Li CC, Chuang LM. Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARgamma activity. J Lipid Res, 2013,54: 2391-2399
    261.Yuan H, Wang Z, Li L, Zhang H, Modi H, Home D, Bhatia R, Chen W. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood, 2012a, 119:1904-1914
    262.Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST, Yue W, Pei XT. SIRT1 is required for long-term growth of human mesenchymal stem cells. JMol Med,2012b, 90: 389-400
    263.Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific micro RNA and miR-30 as a key regulator of human adipogenesis. Genome Biol, 2011,12:R64
    264.Zhang J. The direct involvement of SirTl in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J Biol Chem,2007, 282:34356-34364
    265.Zhang L, Gao X, Wen J, Ning Y, Chen YG. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem,2006, 281:8607-8612
    266.Zhang S, Remillard CV, Fantozzi I, Yuan JX-J. ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am JPhysiol Cell Ph,2004, 287: C1192-C1201
    267.Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R. The histone deacetylase Sirt6 regulates glucose homeostasis via Hifl alpha. Cell,2010, 140:280-293
    268.Zhou H, Shang L, Li X, Zhang X, Gao G, Guo C, Chen B, Liu Q, Gong Y, Shao C. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells. Exp Cell Res, 2009, 315:2953-2962
    269.Zhou Y, Peng J, Jiang S. Role of histone acetyltransferases and histone deacetylases in adipocyte differentiation and adipogenesis. Eur J Cell Biol, 2014, doi: 10.1016/j.ejcb.2014.03.001. [Epub ahead of print]
    270.Zillikens MC, Uitterlinden AG, van Leeuwen JP, Berends AL, Henneman P, van Dijk KW, Oostra BA, van Duijn CM, Pols HA, Rivadeneira F. The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcified Tissue Int, 2010,86: 116-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700