基于寡核苷酸芯片的地中海贫血特异性DNA甲基化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地中海贫血是一组由于血红蛋白的珠蛋白肽链(α、β、γ)的合成抑制、失衡,引起无效造血和溶血性贫血。目前,对于这类疾病尚无有效的治疗方法,只能通过遗传筛查及产前诊断选择性的淘汰地贫患儿以控制这类疾病的发生和传播。传统诊断地中海贫血的方法实验周期长,且只能诊断临床上常见的几种基因缺失或点突变所引起的地中海贫血。因此,迫切需要寻求一种新的具有组织特异性的分子靶标,为地中海贫血的诊断提供新途径。
     目前,在应用于这种高度异质性遗传病的各种分子诊断方法中,快速简便的基因芯片技术引人注目。因为,常规的基因和蛋白质组学的已不能满足临床的需要,尤其对于反复妊娠发病的或者轻型的地中海贫血患者而言,传统的分子诊断方法不能检测到基因突变或片段缺失,对于这部分病例,经典的遗传学理论无法解释其发病机制。表观遗传学的进展,为地中海贫血寻求和发现新的更简便、更精确、易于推广的诊断方法,提供了可能。
     表观遗传学是与遗传学(genetic)相对应的概念,指的是基于非基因序列改变所致的基因表达水平变化,如DNA甲基化和染色质构象变化等。从目前的研究来看,X染色体剂量补偿、DNA甲基化、组蛋白密码、基因组印记、表观基因组学和人类表观基因组计划等问题都是表观遗传学研究的内容。有文献报道,在任何时候,细胞内都有处于活化状态的基因和失活状态的基因。在发育过程的不同时期发生不同类型的基因转录。有关地中海贫血在表观遗传学甲基化修饰的研究虽有报道,但既不系统又未起到指导临床诊断作用。随着DNA甲基化检测技术的发展和完善,通过寻找受甲基化调控的新位点来诊断和治疗疾病已经逐渐成为相关肿瘤和遗传病的分子诊断和治疗的手段之一。文献报道,在珠蛋白基因转录、发育调控过程中,DNA甲基化起着关键作用。以分子杂交为基础的微阵列技术应用于DNA甲基化检测中,这种方法是基于杂交的寡核苷酸微阵列,是一种在基因组中寻找新位点的方法。通过这种高通量的方法,我们可以找到基因启动子区高度甲基化的基因位点。目前为止,通过微阵列芯片技术检测单基因遗传病地中海贫血鲜有报道。受此启发,本研究拟通过DMH甲基化芯片技术分析地中海贫血中相关分子的表观遗传学甲基化修饰规律和特点,以期能寻求和发现新的诊断地中海贫血的方法,提高地中海贫血的早期诊断率和筛查准确率,为临床早期筛查和诊断地中海贫血胎儿开拓新途径。
     本课题由三部分组成,即建立DNA甲基化芯片平台;应用已成熟的基因表达谱芯片进一步筛选基因组地中海贫血新的位点,利用甲基化特异PCR(MSP)验证芯片结果并探讨甲基化差异位点与地中海贫血相关性;通过Sequenom甲基化质谱测序平台对IGSF4基因启动子区测序,观察IGSF4基因在地中海贫血中的甲基化状态,并探讨其与地中海贫血发病机制的关系。
     主要结果如下:
     1. DNA甲基化芯片模型建立, DNA甲基化芯片数据处理系统完成。
     2.通过DMH芯片及其MAS系统的功能分类共发现11条与血液病及遗传病直接相关的有甲基化变化基因,分别为CBFB、HDAC3、IL12A、PLAT、RTKN、RAD52、PTGS1、DGUOK、MRE11A和THRA(ratio>2.0)。
     3.基因LARP2、HDAC3、THRA在β-地中海贫血中呈高度甲基化状态(ratio>2.0),提示LARP2、HDAC3、THRA的高度甲基化可能成为表观遗传学上调控β-珠蛋白的机制之一。
     4.经MassARRAY甲基化质谱测序方法对23例地中海贫血和5例正常对照血样对比分析,结果显示,被检测的IGSF4启动子区12个CpG位点在地中海贫血中相对于正常外周血甲基化程度明显增高,呈高度甲基化状态(P<0.01),提示IGSF4基因的高度甲基化可能成为导致地中海贫血的机制之一。
     5.表达谱芯片数据分析结果显示表达上调基因共有159个,下调基因共有92个。通过MAS系统分析得到与IGSF4途径相关的基因位点CSF1、CSF2、TPO、HBB、HBD、HBA和CBLC与正常外周血相比呈表达下调(ratio<0.50); CD45、AZU1和IL1B呈表达上调(ratio>2.0),提示与珠蛋白相关的基因通过表达量不同相互作用调控珠蛋白的生成和表达。
     6. IGSF4基因实时定量PCR (Real-time PCR)验证结果显示,与正常外周血比,该基因在地中海贫血中呈低表达,且有显著性差异(ratio=0.18,ratio<0.50),提示IGSF4基因在地中海贫血中相对于正常外周血而言表达下调。
Thalassaemia is a group of genetic abnormalities characterized the underproduction of (α、β、γ) globin chain leads to a reduced red cell life span, increased haemolysis and ineffective erythropoiesis. To date, compared to the the traditional diagnosis method of thalassemia, our group has pursued another gene-wide profiling approach for diagnosingβ-thalassemia, because of the lack of a sharply and validated screening approach for early detection. Additionally, the traditional diagnosis method of thalassemia needs long cycles of experiment, and there is very little data linking genome-wide information of its mRNA expression level. In order to control the occurrence and spread of this disease, we only depend on the genetic screening and prenatal diagnosis to make selective elimination for such anemias fetal In clinic. Therefore, an urgent need to find a new and tissue-specific molecular targets will provide a new way for prenatal diagnosis in thalassemia from epigenetic inheritance perspective.
     At present, To understand the molecular mechanisms on the occurrence and development of the high degree of heterogeneity of genetic diseases in genome-wide level becomes the new trends of modern biomedical research. Additionally, more and more applications of the bio-chip technology have been used by its advantages of low consumption, high-throughput in the various fields of biomedicine. Because conventional gene and proteome can’t be satisfied with the need of clinic, especially for the patients of repeated pregnancy or mitis thalassemia. For this part of cases, classical theory of genetics can not explain the pathogenesy. With the development of epigenetics, the epigenetics modification offers the possibility to explore and discover more convenient, precise and easy to spread method for thalassemia.
     Epigenetic regulation is a process by which phenotype is modified without alterations in genotype, this heritable process is linked to epigenetic states involving DNA methylation and changes in chromatin conformation, which maintain transcriptional status throughout mitosis and DNA replication. In current study, epigenetics includes X chromosome dosage compensation, DNA methylation, histone code, genomic imprinting, and the epigenetic genomics and human genome project and other problems.As it reported, DNA methylation in chromatin play crucial role in the developmentally-regulated activation and switching of globin gene transcription. DNA microarray technology has made it possible to profile and quantify the expression of thousands of genes simultaneously based on the technology of molecular hybridization. Using this method, we found the hypermethylation in the promoter region of a gene is associated with a lower expression and plays an important role in gene silencing. Recently, the field of DNA methylation has grown ramatically and become one of the most dynamic and rapidly developing branches of molecular biology. However, there has been little study in the area when it comes to genome-wide profiling of the promoter methylation. Here, we used a genome-wide profiling method called Differential Methylation Hybridization (DMH) to search for the differential changed genes in order to establish epigenetic marks in thalassemia for early prenatal diagnosis.
     The study is composed of three parts for the investigation of thalassemia. That is, to establish a microarry platform of DNA methylation; using genome-wide expression profile chips to screen new differential changed genes in thalassemia, and according to the results of expression profile chips, significant genes of DNA methylation were verified by MSP, in order to investigate the relationship with thalassemia; the DNA methylation sequence of IGSF4 gene promoter region was detected by sequenom spectrometry platform and observed its methylation status in thalassemia, to explore the relationship between gene IGSF4 and thalassemia.
     The main results and conclusion of the study are as follows:
     1. The microarry platform of DNA methylation had been established, and the following data processing system had been finished.
     2. The differential changed genes of CBFB、HDAC3、IL12A、PLAT、RTKN、RAD52、PTGS1、DGUOK、MRE11A and THRA were showed the variation of DNA methylation through DMH chips and MAS(ratio>2.0).
     3. Gene LARP2 ,HDAC3 and THRA were hypermethylation inβ-thalassemia (ratio>2.0). It suggested hypermethylation of genes LARP2 ,HDAC3 and THRA may be one of the mechanisms on epigenetic regulation ofβ-globin.
     4. Trough Sequenom MassARRAY methylation analysis for 23 cases of thalassemia comparation with 5 cases of normal blood, the results showed hypermethylation of 12 CpG sites in the promoter region of IGSF4 (P<0.01). It suggests hypermethylation of IGSF4 inβ-thalassemia could be one of the mechanisms induced thalassemia.
     5. The differences in gene expression patterns for mRNA microarray display, 159 genes were upregulated and 92 genes were downregulated in both groups. Trough the MAS system and the function analysis of pathway, genes related to IGSF4 were screened out, they were CSF1、CSF2、TPO、HBB、HBD、HBA and CBLC, which were downregulated in thalassemia(ratio<0.50); the expression of genesCD45、AZU1 and IL1B were upregulated in thalassemia(ratio>2.0). It suggests genes associated with the globin gene play the role in its regulation through the differential expression levels.
     6. The result of Real-time PCR showed a lower level of IGSF4 inβ-thalassemia patients versus the control (ratio=0.18,ratio<0.50). It suggested the expression of IGSF4 was downregulated in thalassemia.
引文
1. L i Cuilian, Yane Yuehuane, DaiHongjian, et al. Detection ofβ-thalassem ia by PCR connected with reverse dot blot. China Pediatr Blood Cancer, 2007, 2(12): 9-16.
    2. Pfister S, Schlaeger C,Mendrzyk F, et al. Array-based profiling of reference- independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medul-loblastoma. Nucleic Acids Res, 2007, 35(7): e51.
    3. Wu C T, Morris J R. Genes, genetics and epigenetics: a correspondence [J]. Science, 2001, 293: 1103-1105
    4. Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L.and Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 2006,37: 853-862.
    5. G.D. Ginder, M.N. Gnanapragasam, O.Y. Mian, The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development, Curr. Top.Dev. Biol. 2008 (82):85–116.
    6. Yan P S, Chen C M, Shi H, et al. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr, 2002, 132(Suppl.8): 2430S~2434S.
    7. Estecio M R, Yan P S, Ibrahim A E, et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res, 2007, 17(10): 1529~1536.
    8. Ching, T-T, Maunakea, AK, Jun, P, Hong, C, Zardo, G, Pinkel, D, Albertson, DG, Fridlyand, J, Mao, J-H, Shchors, K, et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3 Nat. Genet, 2005(37): 645-651 .
    9. Weber M, Hellmann I, Stadler M B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4): 457~466.
    10. Ibrahim A E, Thome N P, Baird K, et al. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res, 2006, 34(20): e136.
    11. Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3bare essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247~257.
    12. Li E. Chromatin modification and epigenetic reprogramming.in mammalian development. Nat. Rev. Genet, 2002, 3(9): 662~673.
    13. Nuovo G J, Plaia T W, Belinsky S A, et al. In situ detection of the hypermethylation- induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci USA, 1999, 96(22): 12754~12759.
    14. Oakeley E J, Schmitt F, Jost J P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques, 1999, 27(4): 744~6,748~50,752.
    15. Oefner P J, Bonn G K, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. Chromatogr, 1992, 625(2): 331~340.
    16. Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA, 1997, 94(21): 11721~11725.
    17. Wu J, Issa J P, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH3T3 cells. Proc Natl Acad Sci USA, 1993, 90(19): 8891~8895.
    18. Smiraglis D J, Plass C. The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene, 2002, 21(35): 5414~5426.
    19. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D: Quantitative highthroughput analysis of DNA methylation patterns by basespecific cleavage and mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 2005,102(44):15785-15790.
    20. Yu J, Zhang L, Chen A L, et al. Identification of the gene transcription and apoptosis mediated by TGF-β-Smad2/3-Smad4 signaling. J Cell Physiol, 2008, 215(2): 422~433.
    21. Herman J G, Graff J R, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996, 93(18): 9821~9826.
    22. Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol thatyields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA, 1992, 89(5): 1827~1831.
    23. Bearzatto A, Szadkowski M, Macpherson P, et al. Epigenetic regulation of the MGMT and hMSH6 DNA repair genesin cells resistant to methylating agents. Cancer Res, 2000, 60(12): 3262~3270.
    24. Hatada I, Fukasawa M, Kimura M, et al. Genome-wide profiling of promoter methylation in human. Oncogene, 2006, 25(21): 3059~3064.
    25. Fukasawa M, Kimura M, Morita S, et al. Microarray analysis of promoter methylation in lung cancers. J Hum Genet, 2006, 51(4): 368~374.
    26. Nouzova M, Holtan N, Oshiro M M, et al. Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J. Pharmacol. Exp. Ther, 2004, 311(3): 968~981.
    27. Christine M. Kiefera, Chunhui Houa, Jane A. Little b, Ann Deana. Epigenetics ofβ-globin gene regulation. Mutation Research 647 (2008) 68–76.
    28. XING-WANG XIE, MING-HUI MEI, WEI-JIA LIAO, et al. Expression of CIITA- related MHCII molecules in tumors linked to prognosis in hepatocellular carcinoma. International Journal of Oncology, 2009,34: 681-688.
    29. Xiong, Z. and Laird, P.W. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res.1997, 25, 2532-2534.
    30. Tang, Y. Up-regulation of the expression of costimulatory molecule CD40 in hepatocytes by hepatitis B virus X antigen. [J].Biochemical and Biophysical Research Communications, 2009, 384(1): 12-17.
    31. Rountree MR, Bachman KE, Herman JG, Baylin SB: DNA methylation, chromatin inheritance, and cancer. Oncogene 2001, 20(24):3156-3165.
    32. Jones PA, Takai D.The role of DNA methylation in mammalian epigenetics. Science 2001, 293(5532):1068-1070.
    33. Wakaguri H, Yamashita R, Suzuki Y et al. DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 2008:36: 97-101.
    34. Turker, M.S. and Bestor, T.H. Formation of methylation patterns in the mammalian genome. Mutat. Res. 1997, 386, 119–130.
    35. E.W.Tobi, L.H.Lumey, R.P.Talens.et al. DNA methylation differences after exposure toprenatal famine are common and timing- and sex-specific. Hum Mol Genet 2009 (18): 4046-4053.
    36. Quantitative highthroughput analysis of DNA methylation patterns by basespecific cleavage and mass spectrometry. [J]. Proceedings of the National Academy of Sciences of the United States of America 2005,102(44):15785-15790.
    37. De Laat, W., Klous, P., Kooren, J. et al. Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol 2008:82: 117–139.
    38. Robert-Jan Palstra, Wouter de Laat, Frank Grosveld et al. Beta-globin regulation and long-range interactions. Adv Genet 2008:61:107-42.
    39. Maria Gazouli, Eleni Katsantoni, Theodoros Kosteas et al. Persistent fetalγ-globin expression in adult transgenic mice following deletion of two silencer elements located 3′to the human Aγ-globin gene. Mol Med 2009:online:doi: 10.2119.
    40. Krogan, N. J., J. Dover, A. Wood, J. Schneider, J. Heidt, M. A. Boateng, K. Dean, O. W. Ryan, A. Golshani, M. Johnston, J. F. Greenblatt, and A.Shilatifard. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 2003(11):721–729.
    41. Sawado T, Halow J, Im H et al. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription. Blood 2008: 112: 406-414.
    42. Romulo Martin Brena, Tim Hui-Ming Huang , Christoph Plass. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 2006:84: 365–377.
    43. Stefania Bottardi, Julie Ross, Natacha Pierre-Charles, et al. Lineage-specific activators affect b-globin locus chromatin in multipotent hematopoietic progenitors, The EMBO Journal, 2006(25): 3586-3595.
    44. Tirawat Wannatung, Pathrapol Lithanatudom, Amporn Leecharoenkiat,et al. Increased erythropoiesis of b-thalassaemia /Hb E proerythroblasts is mediated by high basal levels of ERK1/2 activation, British Journal of Haematology, 2009,(07): 794-806.
    45. Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol, 2007, 8(4): 307-318.
    46. Huck Hui Ng, David N. Ciccone, Katrina B. Morshead. et al. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: A potential mechanism for position-effect variegation. PNAS. 2003 (4): 1820-1825.
    47. Cory M. Valley, Lisa M. Pertz, Bala S. Chromosome-wide, allele-specific analysis of the histone code on the human X chromosome. Human Molecular Genetics. 2006 (15): 2335-2347.
    48. Hogune Im, Changwon Park,Qin Feng, et al. Dynamic Regulation of Histone H3 ethylated at Lysine 79 within a Tissue-specific Chromatin Domain . J Mol Biol, 2006, 359(1): 86-96.
    49. Jin LH, Choi JK, Kim B.et al. Requirement of Split ends for epigenetic regulation of Notch signal-dependent genes during infection-induced hemocyte differentiation, Molecular and Cellular Biology. 2009 (29):6.
    50. Stefania Bottardi, Angélique Aumont, Frank Grosveld et al. Developmental stage–specific epigenetic control of human -globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood, 2003.(5):1540-1569.
    51. Routledge, S. J., and N. J. Proudfoot. Definition of transcriptional promoters in the human _-globin locus control region. J. Mol. Biol. 2002.(323):601–611.
    52. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev, 2005, 6(11): 838-849.
    53. Hayashi K, Yoshida K, Matsui Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature, 2005, 438(7066): 374-378.
    54. Bannister, A. J., R. Schneider, F. A. Myers, A. W. Thorne, C. Crane-Robinson,and T. Kouzarides.. Spatial distribution of di- and tri-methyl lysine 36of histone H3 at active genes. J. Biol. Chem. 2005 (280):17732–17736.
    55. Gurvich, N; Berman MG, Wittner BS et al. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J. 2004 (9): 1166–1168.
    56. Daan Noordermeer, Miguel R. Branco, Erik Splinter et al. Transcription and Chromatin Organization of a Housekeeping Gene Cluster Containing an Integratedβ-Globin Locus Control Region. PLoS Genet 2008:4: e1000016.
    57. Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription[J]. Cell Mol Life Sci, 2002, 59(2):241–257.
    58. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Proc Natl Acad Sci USA, 1992, 89(5):1827–1831.
    59. Mathias Ehrich, Scott Zoll, Sudipto Sur,et al. A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Research, 2007, 35: e29.
    60. Tost J, Schatz P, Schuster M, et al. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry[J]. Nucleic Acids Res, 2003, 31(9): e50.
    61. Rakyan VK, Hildmann T, Novik KL, et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project[J]. PLoS Biol,2004, 2(12): e405.
    62. Kaminsky, Zachary A. DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics. 2009 (2): 240.
    63. Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation.Nucleic Acids Res,2002,30(4):e15.
    64. Robert F., Pokholok D.K., Hannett N.M.et al. Global position and recruitment of HATs and HDACs in the yeast genome. Mol. Cell. 2004 (16):199–209.
    65. Huiliang Li, William D Richardson. Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nature Neuroscience. 2009 (12):815– 817.
    66. O.J. Rando and K.J. Verstrepen. Timescales of Genetic and Epigenetic Inheritance. Cell. 2007, (4): 655–668.
    67. Hatada, I, Fukasawa, M, Kimura, M, Morita, S, Yamada, K, Yoshikawa, T, Yamanaka, S, Endo, C, Sakurada, A, Sato, M, et al. Genome-wide profiling of promoter methylation in human Oncogene, 2006 (25): 3059-3064 .
    68. Hess CJ, Errami A, Berkhof J, et al .Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia. Leuk Lymphoma . 2008;49(6):1132-41.
    69. Petersen D, Chandramouli GV, Geoghegan J, et al.Three microarray platforms: ananalysis of their concordance in profiling gene expression. BMC Genomics, 2005,6(1):63.
    70. Grzegorz W.B, Satoshi Y, Andre A, et al. Human embryonic stem cells hemangioblast express HLA-antigens. Journal of Translational Medicine. 2009, 7:27 doi:10.1186.
    71. Edna D.S, Kanjaksha G,Roshan C. A Comparison of the Choice of Monoclonal Antibodies for Recovery of Fetal Cells From Maternal Blood Using FACS for Noninvasive Prenatal Diagnosis of Hemoglobinopathies. Clinical Cytometry.2009 (76B):175–180.
    72. Tagoh H, Himes R, Clarke D, et al. Transcription factor complex formation and chromatin fine structure alterations at the CSF-1 receptor locus during maturation of myeloid precursor cells. Genes Dev. 2002;16: 1721-1737.
    73. Isaac B. Houston, Kelly J. Huang, Serena R. et al. PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Experimental Hematology, 2007 (35): 374-384.
    1. Wu C T, Morris J R. Genes, genetics and epigenetics: a correspondence [J]. Science, 2001, 293: 1103-1105
    2. Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L.and Schubeler, D. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet., 2006(37), 853-862.
    3. G.D. Ginder, M.N. Gnanapragasam, O.Y. Mian, The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development, Curr. Top.Dev. Biol. 2008 (82): 85–116.
    4. Franchina M, Kay PH Evidence that cytosine residues within 5′-CCTGG-3′pentanucleotides can be methylated in human DNA independently of the methylating system that modifies 5′-CG-3′dinucleotides. DNA Cell Biol 2000 (19):521–526
    5. Malone CS, Miner MD, Doerr JR, Jackson JP, Jacobsen SE, Wall R, Teitell M CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc Natl Acad Sci U S A 2001 (98):10404–10409
    6. Baylin, S. B., and Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet., 2000(16): 168–174,.
    7. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000 (97):5237–5242
    8. Mayer W, Niveleau A, Walter J, et al. Embryogenesis-demethylation of the zygotic paternal genome[ J] . Nature, 2000, 403( 6769) : 501-502.
    9. Santos F, Hendrich B, Reik W,et al. Dynamic reprogramming of DNAmethylation in the early mouse embryo [ J] . Development Biol,2002, 241( 1) : 172-182.
    10. Beaujean N, Taylor J, Gardner J, et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer[ J] . Biol Reprod, 2004, 71( 1) : 185-193.
    11. Dahl C, Guldberg P. DNA methylation analysis techniques [J]. Biogerontology, 2003, 4(4): 233-250.
    12.董玉玮,侯进慧,朱必才等.表观遗传学的相关概念和研究进展[J].生命的化学, 2005, 22(1): 1-3.
    13.张永彪,褚嘉祐.表观遗传学与人类疾病的研究进展[J].遗传, 2005, 27(3):466-472.
    14. Plath K, Mlynarczyk ES, Nusinow DA, et al. Xist RNA and the mechanism of X chromosome inactivation [J] . Annu Rev Genet, 2002, 36: 233-278.
    15. Sado T, OkanoM, Li E, et al. De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation [J] .Development, 2004,131( 5) : 975-982.
    16. Wutz A, Jaenisch R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation[ J] . Cell, 2000, 5( 4) : 695-705.
    17. Bird A. DNAmethylation patterns and epigenetic memory[J] . GenesDev, 2002, 16( 1) : 6-21.
    18. Hung MS, Shen CK. Eukaryotic methyl-CpG-binding domain proteins and chromatin modification[J] . Cell, 2003, 2( 5) : 841-846.
    19. Li, B., L. Howe, S. Anderson, J. R. Yates III, and J. L. Workman. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 2003.(278):8897–8903.
    20. Yan P S, Chen C M, Shi H, et al. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J Nutr, 2002, 132(Suppl.8): 2430S~2434S.
    21. Estecio M R, Yan P S, Ibrahim A E, et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res, 2007, 17(10): 1529~1536.
    22. Pfister S, Schlaeger C,Mendrzyk F, et al. Array-based profiling of reference- I ndependent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medul-loblastoma. Nucleic Acids Res, 2007, 35(7): e51.
    23. Weber M, Hellmann I, Stadler M B, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet, 2007, 39(4): 457~466.
    24. Ibrahim A E, Thome N P, Baird K, et al. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res, 2006, 34(20): e136.
    25. Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3): 247~257.
    26. Li E. Chromatin modification and epigenetic reprogramming.in mammaliandevelopment. Nat. Rev. Genet, 2002, 3(9): 662~673.
    27. Nuovo G J, Plaia T W, Belinsky S A, et al. In situ detection of the hypermethylation- induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci USA, 1999, 96(22): 12754~12759.
    28. Oakeley E J, Schmitt F, Jost J P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques, 1999, 27(4): 744~6,748~50,752.
    29. Oefner P J, Bonn G K, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. Chromatogr, 1992, 625(2): 331~340.
    30. Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA, 1997, 94(21): 11721~11725.
    31. Wu J, Issa J P, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH3T3 cells. Proc Natl Acad Sci USA, 1993, 90(19): 8891~8895.
    32. Avent N D , Finning K M, Martin P G, et al . Prenatal detection off etal blood group status[J] . Vox Sang ,2000 ,78 :1552162.
    33. [33] Lo Y M, Chiu R W, Chan K C , et al . Free f etal DNA in maternal circulation[J] . JAMA ,2004 ,292(23) :2835.
    34. [34] Poon L L , Leung T N , Lau T K, et al . Diff erential DNA methylation between f etus and mother as a st rategy for detecting fetal DNA in maternal plasma[J] . Clin Chem,2002 ,48 :35241.
    35. Pickard B , Dean W, Engemann S , et al . Epigenetic targeting in the mouse zygote marks DNA f or later methylation : a mechanism for maternal eff ects in development [J] . Mech Dev ,2001 ,103(122) :35247.
    1. Haussecker, D., N. J. Proudfoot. Dicer-dependent turnover of intergenic transcripts from the humanβ-globin gene cluster. Mol. Cell. Biol 2005:25:9724–9733.
    2. Sawado T, Halow J, Im H et al. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription. Blood 2008:112: 406-414.
    3. Kosak, S. T., Scalzo, D., Alworth, S. V. et al. Coordinate gene regulation during hematopoiesis is related to genomic organization. PLoS Biol 2007:5: e309.
    4. Sripichai, O., Makarasara, W., Munkongdee, T., et al. A scoring system for the classification of beta-thalassemia/Hb E disease severity. American Journal of Hematology 2008:83: 482–484.
    5. Axel Schumacher, Philipp Kapranov, Zachary Kaminsky et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Research 2006:34: 528–542.
    6. Hajkova,P., el-Maarri,O., Engemann,S.et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol. Biol 2002:200: 143–154.
    7. Tang, Y et al. Up-regulation of the expression of costimulatory molecule CD40 in hepatocytes by hepatitis B virus X antigen. [J].Biochemical and Biophysical Research Communications 2009:384: 12-17.
    8. Ehrich M, Nelson MR, Stanssens P et al. Quantitative highthroughput analysis of DNA methylation patterns by basespecific cleavage and mass spectrometry. [J]. Proceedingsof the National Academy of Sciences of the United States of America 2005:102:15785-15790.
    9. Yu J, Zhang L, Chen A L et al. Identification of the gene transcription and apoptosis mediated by TGF-β-Smad2/3-Smad4 signaling. [J].Cell Physiol 2008:215: 422-433.
    10. Wakaguri H, Yamashita R, Suzuki Y et al. DBTSS: database of transcription start sites, progress report. Nucleic Acids Res 2008:36: 97-101.
    11. Stefania Bottardi, Angélique Aumont, Frank Grosveld et al. Developmental stage–specific epigenetic control of human -globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood 2003:5:1540-1569.
    12. Carter D, Chakalova L, Osborne CS et al. Long-range chromatin regulatory interactions in vivo. Nat Genet 2002:32: 623-626.
    13. Romulo Martin Brena, Tim Hui-Ming Huang , Christoph Plass. Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 2006:84: 365–377.
    14. Ching,T.T., Maunakea,A.K., Jun,P., Hong,C. et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nature Genet 2005:37:645–651.
    15. Weber,M., Davies,J.J., Wittig,D.et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet 2005:37:853–862.
    16. Lippman,Z., Gendrel,A.-V., Colot,V.et al. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods 2005:2:219–224.
    17. Yan,P.S., Chen,C.-M., Shi,H. et al. Applications of CpG island microarrays for high-throughput analysis of DNA methylation. J. Nutr 2002:132: S2430–S2434.
    18. Deatherage DE, Potter D, Yan PS, et al. Methylation analysis by microarray. Methods Mol Biol 2009:556:117-39.
    19. Tompa,R., McCallum,C.M., Delrow,J. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMO METHYLASE3. Curr. Biol 2002:12: 65–68.
    20. Weber,M., Davies,J.J., Wittig,D. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet 2005:37: 853–862.
    21. Axel Schumacher, Philipp Kapranov1, Zachary Kaminsky et al. Microarray-based DNA methylation profiling:technology and applications. Nucleic Acids Research 2006 :34: 528–542.
    22. Schumacher A, Weinh?usl A, Petronis A. et al. Application of microarrays for DNA methylation profiling. Methods Mol Biol 2008:439:109-29.
    23. Maryam Zare, Ferdous Rastgar Jazii, Mohammad Reza Alivand et al. Qualitative analysis of Adenomatous Polyposis Coli promoter: Hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker, BMC Cancer 2009:10:1186-1198.
    24. Paola Parrella, Antonella la Torre, Massimiliano Copetti et al. High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas. Journal of Biomedicine and Biotechnology 2009:10: 1155-1163.
    25. T. Mikeska, C. Bock, O. EI-Maarri et al.“Optimization of quantitative MGMT promoter methylation analysis using Pyrosequencing and combined bisulfite restriction analysis,”Journal of Molecular Diagnostics 2007:9: 368–381.
    26. Steven A. Belinsky. GENE-PROMOTER HYPERMETHYLATION AS A BIOMARKER IN LUNG CANCER. NATURE REVIEWS 2004:4:1038-1049.
    27. Feng Tian, Xian-Zhang Hu, Xuan Wu et al. Dynamic chromatin remodeling events in hippcampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1. J. Neurochem 2009:109: 1375–1388.
    28. Hao Sun, Saranyan K. Palaniswamy, Twyla T. Pohar et al. MPromDb: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-chip experimental data. Nucleic Acids Research 2006:34: 99-103.
    29. Suzuki,Y., Yamashita,R., Sugano,S. and Nakai,K. DBTSS, DataBase of Transcriptional Start Sites: progress report. Nucleic Acids Res 2004:32:78–81.
    30. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat RevGenet 2002:3:415–428.
    31. Kerenyi, M. A., Grebien, F., Gehart, H. et al. Stat 5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood 2008:112: 3878–3888.
    32. Reik W, Dean W, Walter J Epigenetic reprogramming in mammalian development. Science 2001:293:1089–1093.
    33. Bank. A. Regulation of human fetal hemoglobin: new players, new complexities. Blood 2006 :107: 435–443.
    34. Wozniak, R. J. and Bresnick, E. H. Epigenetic control of complex loci during erythropoiesis. Curr. Top. Devel. Biol. 2008 (82): 55–83.
    35. Ross J, Bottardi S, Bourgoin V et al. Differential requirement of a distal regulatory region for pre-initiation complex formation at globin gene promoters. Nucleic Acids Res 2009:online: doi:10.1093.
    36. Fathallah, H., Portnoy, G., Atweh, G. F. Epigenetic analysis of the human a- and b-globin gene clusters. Blood Cell Mol. Dis 2008:40: 166–173.
    37. De Laat, W., Klous, P., Kooren, J. et al. Three-dimensional organization of gene expression in erythroid cells. Curr. Top. Dev. Biol 2008:82: 117–139.
    38. Hugues Beauchemin , Marie Trudel. Evidence for a Bigenic Chromatin Subdomain in Regulation of the Fetal-to-Adult Hemoglobin Switch. Mol Cell Biol 2009:29: 1635–1648.
    39. Maria Gazouli, Eleni Katsantoni, Theodoros Kosteas et al. Persistent fetalγ-globin expression in adult transgenic mice following deletion of two silencer elements located 3′to the human Aγ-globin gene. Mol Med 2009:online:doi: 10.2119.
    40. Robert-Jan Palstra, Wouter de Laat, Frank Grosveld et al. Beta-globin regulation and long-range interactions. Adv Genet 2008:61:107-42.
    41. Daan Noordermeer, Miguel R. Branco, Erik Splinter et al. Transcription and Chromatin Organization of a Housekeeping Gene Cluster Containing an Integratedβ-Globin Locus Control Region. PLoS Genet 2008:4: e1000016.
    42. Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009:88:400-408.
    43. CE′CILE BOUSQUET-ANTONELLI, JEAN-MARC DERAGON. A comprehensiveanalysis of the La-motif protein superfamily. RNA 2009:15:750–764.
    44. Bird A.. DNA methylation patterns and epigenetic memory. Genes Dev 2002:16: 6–21.
    45. A.A. Best, H.G. Morrison, A.G. McArthur et al. Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia, Genome Res 2004:14:1537–1547.
    46. Theo Sijtse Palstra RJ. Close encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation. Brief Funct Genomic Proteomic 2009:8:297-309.
    1. TirawatWannatung, PathrapolLi thanatudom, AmpornLeecharoenkiat,etal.Increased erythropoiesis of b-thalassaemia/HbE proery throblasts is mediated by high basal levels of ERK1/2 activation, British Journal of Haematology 2009;07:794-806.
    2. Yo-ichi Ishida, Kiyoshi Yamashita, Hidenori Sasaki, et al. Activation of complement system in adult T-cell leukemia (ATL) occurs mainly through lectin pathway: A serum proteomic approach using mass spectrometry.Cancer Letters 2008; 271:167-177.
    3. Tagoh H, Himes R, Clarke D, et al. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 2002;16: 1721-1737.
    4. Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation.Nucleic Acids Res 2002;30:e15.
    5. Mathias, L.A., Fisher, T.C., Zeng, L., Meiselman, H.J., Weinberg, K.I., Hiti, A.L. & Malik, P. Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Experimental Hematology 2000; 28:1343–1353.
    6. Solar GP, Kerr WG, Zeigler FC, Hess D, Donahue C, de Sauvage FJ, et al. Role of c-mpl in early hematopoiesis. Blood 1998;92:4-10.
    7. Sripichai, O., Makarasara, W., Munkongdee, T., Kumkhaek, C.,Nuchprayoon, I., Chuansumrit, A., Chuncharunee, S., Chantrakoon,N., Boonmongkol, P., Winichagoon, P. & Fucharoen, S. A scoring system for the classification of beta-thalassemia/Hb E disease severity. American Journal of Hematology 2008;83: 482–484.
    8. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 2006; 24:1140-1150.
    9. XING-WANG XIE, MING-HUI MEI, WEI-JIA LIAO,et al. Expression of CIITA-related MHCII molecules in tumors linked to prognosis in hepatocellular carcinoma, INTERNATIONAL JOURNAL OF ONCOLOGY 2009;34: 681-688.
    10. Stefania Bottardi, Julie Ross, Natacha Pierre-Charles, et al. Lineage-specific activators affect b-globin locus chromatin in multipotent hematopoietic progenitors. The EMBO Journal 2006;25: 3586-3595.
    11. Struhl K Transcriptional activation: mediator can act after preinitiation complex formation. Mol Cell 2005;17:752–754.
    12. Graf T Differentiation plasticity of hematopoietic cells. Blood 2002; 99:3089–3101.
    13. Galanello, R., Brosch, G., Migliaccio, A.R. & Migliaccio, G. Identification of two new synthetic histone deacetylase inhibitors that modulate globin gene expression in erythroid cells from healthy donors and patients with thalassemia. Molecular Pharmacology 2007;72:1111–1123.
    14. Leach KM, Vieira KF, Kang SH, Aslanian A, Teichmann M, Roeder RG, Bungert J Characteri- -zation of the human beta-globin downstream promoter region. Nucleic Acids Res 2003;31: 1292-1301.
    15. Linda Marie Starnes, Antonio Sorrentino, Elvira Pelosi, et al. NFI-A directs the fate of hematopoietic progenitors to the erythroid or granulocytic lineage and controlsβ-globin and G-CSF receptor expression. Blood 2009;8:1182-1214.
    16. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631-644.
    17. CARMEN KA, YEE CHUEN, KAREN LI, MO YANG, et al. Interleukin-1βup-regulates the expression of thrombopoietin and transcription factors c-Jun, c-Fos, GATA-1, and NF-E2 in megakaryocytic cells. J Lab Clin Med 2004;143:75-88.
    18. Francesca Campus, Paolo Lova, Alessandra Bertoni, et al. Thrombopoietin Complements Gi- but Not Gq-dependent Pathways for IntegrinαIIbβ3 Activation and Platelet Aggregation. THE JOURNAL OF BIOLOGICAL CHEMISTRY 2005;280: 24386–24395
    19. Pina C, May G, Soneji S, Hong D, Enver T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell 2008;2:264-273.
    20. AerbajinaiW, Zhu J, Gao Z, et al. Thalidomide induces gamma– globin gene expression through increased reactive oxygen species– mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood 2007;110: 2864 - 2871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700