含氟丙烯酸酯乳液的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含氟丙烯酸酯聚合物由于具有独特的长链氟烷基结构,因而具有极低的表面自由能,能赋予基材良好的憎水憎油性。含氟丙烯酸酯的乳液聚合以水为介质,对环境无污染,被广泛应用于涂料、织物及皮革整理剂等领域。由于含氟单体价格高昂,人们希望在满足性能要求的同时,尽量减少氟单体的用量,因此如何在水分散体系中高效合成具有理想结构和性能的含氟共聚物有着重要的理论与现实意义。本论文采用了核壳乳液聚合、无皂乳液聚合以及乳液共混方法制备了储存性稳定、具有优良疏水疏油的含氟丙烯酸酯乳液,系统的研究了含氟乳液聚合过程的影响因素,并对乳胶膜的结构和性能进行了深入研究。论文的研究内容和成果包括如下四点:
     第一,采用阴-非离子型乳化剂磺基琥珀酸癸基聚氧乙烯(6)醚酯二钠(DNS-628),甲基丙烯酸十二氟庚酯(DFHMA)、丙烯酸六氟丁酯(HFBA)以及甲基丙烯酸三氟乙酯(TFEMA)为含氟丙烯酸酯单体,丙烯酸(AA)为功能单体,KPS为引发剂,通过半连续加料方式合成了含氟丙烯酸酯共聚乳液。研究了引发剂用量、乳化剂用量、功能单体用量和含氟单体用量对乳液聚合过程以及乳胶膜性能的影响。应用热重分析(TG)、透射电子显微镜(TEM)、傅立叶红外光谱仪(FTIR)和激光散射粒度分析等手段对乳液和乳胶膜进行了表征。发现选用具有较长含氟侧链的DFHMA为含氟单体时,制得的乳胶膜具有较优的表面性能,乳胶膜对水的接触角达到105.5°,对十六烷的接触角为75°,表面能为12.95 mN/m,吸水率为12.7%,具有很好的疏水疏油性能。乳液最佳的聚合条件是KPS用量为0.6wt%,DNS-628用量为3.5wt%,AA用量为1wt%,DFHMA用量为8wt%。X射线光电子能谱(XPS)表明含氟丙烯酸酯共聚乳液在成膜过程中,含氟组分会在乳胶膜-空气界面富集,形成具有氟元素浓度从乳胶膜-空气界面到乳胶膜-玻璃界面递减的梯度分布结构。
     第二,以烯丙氧基壬基酚聚氧乙烯(10)醚单磷酸(ANPEO10-P1)为反应型乳化剂,甲基丙烯酸全氟辛基乙酯(PFEA)为含氟丙烯酸酯单体,采用超声预乳化方式,通过预乳化-半连续加料方式合成出具有核壳结构的无皂含氟丙烯酸酯共聚乳液。探讨了核壳结构乳液聚合过程的影响因素。随着反应型乳化剂用量的增加,乳液的转化率增大,聚合稳定性先增大后减小。随着壳层中的含氟单体用量的增加,乳胶膜的对水接触角增大,耐水性提高,热稳定性提高。乳液最佳的聚合条件为:反应温度为70℃,KPS用量为0.35wt%,ANPEO10-P1用量为5wt%,PFEA用量为6wt%,滴加时间为3h。此条件下乳胶粒子大小为70nm,多分散指数为1.02。变角XPS表明核壳结构更有利于乳液成膜时含氟组分向乳胶膜表面富集,有效的降低了乳胶膜的表面张力,乳胶膜对水接触角达到109.5°,对十六烷接触角达到82°,具有优异的疏水疏油性能。
     第三,以PFEA为含氟丙烯酸酯单体,双丙酮丙烯酰胺(DAAM)为功能性单体,通过超声预乳化-半连续加料法合成了含有酮羰基的无皂核壳型含氟丙烯酸酯共聚乳液,并采用己二酸二酰肼(ADH)为交联剂,制备了粒子大小均匀、粒径分布窄,可室温交联的核壳型含氟丙烯酸酯共聚物乳液。研究了DAAM用量和PFEA用量对乳液聚合过程以及乳胶膜性能的影响。采用TG、FTIR、TEM、SEM以及激光粒度分析仪等手段对自交联含氟乳液及乳胶膜进行了表征。随着DAAM用量的增加,乳胶粒粒径变小,聚合物交联度增加,吸水率减小,热稳定性增大。核壳乳液聚合过程中,DAAM在壳聚合阶段加入可以显著提高乳液成膜后的交联度和耐水性。同时变角XPS分析表明,交联含氟乳胶膜中氟元素含量随着乳胶膜表面深度的增加呈梯度递减分布。
     第四,采用反应型乳化剂ANPEO10-P1为主乳化剂,含氟表面活性剂双(十三氟庚酯)磷酸铵(FSP)为助乳化剂,采用一次性投料法合成了无皂甲基丙烯酸三氟乙酯均聚物乳液(PTFEMA),并通过与丙烯酸酯共聚物乳液共混制备了具有良好疏水疏油性能的含氟共混乳液。研究了无皂甲基丙烯酸三氟乙酯均聚物乳液的反应条件以及乳液共混比例对共混乳液性能的影响。用DSC、TG、TEM、ATR和XPS等手段对共混乳液及乳胶膜进行了表征。FSP的引入提高了聚合乳液的稳定性,随着FSP用量的增加,凝胶率下降。乳液最佳的聚合条件为:反应温度为75℃,超声乳化时间为12min,KPS用量为0.6wt%,ANPEO10-P1用量为4wt%,FSP用量为0.4wt%,此时乳胶粒子平均粒径为69nm。随着PTFEMA在共混乳液比例的增加,乳胶膜对水对十六烷的接触角增大,表面能降低。当PTFEMA与PBA-MMA质量比为4:5时,共混乳液室温成膜后,对水的接触角达到94°,对十六烷的接触角达到64°。XPS分析表明,共混乳胶膜-空气表面的氟元素含量为7.9%,而乳胶膜-玻璃面的氟元素含量仅为0.9%,说明在共混乳液成膜过程中,小粒径且低表面张力的PTFEMA自组织向乳胶膜表面迁移,在乳胶膜-空气界面富集。
The fluorinated polyacrylate has the extremely low surface energy because of unique long chain fluorinated alkyl structure, and it endows the substrate with good water and solvent resistance. In recent years, fluorinated polyacrylate emulsion with water as medium which is environmental friendly has attracted the increasing attention of many investigators. Fluorinated polyacrylate has a wide range of applications in surface coatings, such as water and oil repellency for textile, paper and leather. However, the relatively high market price of the fluorinated monomers restricts their practical applications. The challenge is how to minimize the amount of fluorinated compositions whereas the reasonable surface properties can be maintained. In this work, the fluorine-containing polyacrylate emulsion was prepared by core-shell emulsion polymerization, emulsifier-free emulsion polymerization and latex blending method. The preparation and characterization of the emulsion were studied, and the structure and properties of latex film were investigated. The main research contents and achievements are listed as following:
     Firstly, the fluorine-containing acrylate copolymer emulsion was synthesized by emulsion polymerization through semi-continuous method using DNS-628 as emulsifier, acrylic acid (AA) as functional monomer and dodecafluoroheptyl methacrylate (DFHMA) as fluorinated acrylate monomer. The effects of initiator amount, emulsifier amount, AA amount, DFHMA amount on the emulsion polymerization and properties of the latex film were studied. The latices and its films were characterized by using TG, TEM, FTIR, XPS and laser particle diameter analyzer. It is found that the latex film using DFHMA as fluorinated monomer has better surface properties, the water contact angle and cetane contact angle of the film is 105.5°and 75°respectively, while the water absorption is 12.7% and the surface energy of the film is 12.95mN/m simultaneously. The optimal polymerization condition is 0.6wt% KPS, 3.5wt% DNS-628, 1wt% AA and 8wt% DFHMA in this system, and XPS shows there is an enrichment of fluorine element on the film-air interface.
     Secondly, the soap-free fluorine-containing acrylate latices with core-shell structure were prepared by the pre-emulsification and semi-continuous polymerization method, using perfluorooctylethyl methacrylate (PFEA) as fluorinated acrylate monomer and monophosphoric acid allyloxy nonylphenoxy poly(ethyleneoxy)(10) ether (ANPEO10-P1) as reactive emulsifier. The effects of polymerization conditions on the conversion and polymerization stability were discussed in detail. The optimal polymerization condition is 70℃of polymerization temperature, 0.35wt% KPS, 5wt% ANPEO10-P1 , 6wt% PFEA and 3h of dropping time in this system, the average particle size of the latex is 70nm and the polydispersity is 1.02, and the water contact angle and cetane contact angle of the film is 109.5°and 82°respectively, while the water absorption is 8.8%. With the increasing of PFEA amount, the latex film shows higher water contact angle, better water-resistance and thermal stability. XPS analysis with different take-off angels proves that the fluorine concentration in the film has the tendency to extend into the film-air interface and occupy the air–film interface during the formation of the latex film. Compared to the latex film without core-shell structure, the latex film with core-shell structure shows higher fluorine concentration, which proves the core-shell structure benefit the enrichment of fluorine component at the film-air interface.
     Thirdly, the fluorine-containing acrylate latex with a core-shell structure was synthesized using perfluorooctylethyl methacrylate(PFEA) as fluorinated acrylate monomer and diacetone acrylamide(DAAM) as functional monomer by pre-emulsification and semi-continuous polymerization method. The ambient self-crosslinkable latex was attained with the addition of adipic dihydrazide(ADH) as crosslinking agent. The influence of DAAM and PFEA amount on the emulsion polymerization and film properties were studied. The latices and latices films were characterized by using TG, TEM, SEM, FTIR, XPS and laser particle diameter analyzer. The results show with the increasing of DAAM amount, the latex average particle size decreases, the crosslinking degree of the film increases, the water absorption of the film decrease and the thermal stability of the film increases. Compared to the addition of DAAM in core polymerization, the addition of DAAM in shell polymerization improves the crosslinking degree and the water-resistance of the latex film. Finally, the XPS analysis proves the enrichment of perfluoroalkyl groups on film-air interface.
     Finally, the soap-free latex of poly(trifluoroethyl methacrylate) was synthesized with ANPEO10-P1 as reactive emulsifier and phosphoric acid bis(tridecafluorooctyl) ester ammonium salt(FSP) as co-emulsifier. And by blending of poly(trifluoroethyl methacrylate) emulsion with polyacrylate copolymer emulsion, the fluorine-containing latex blends were prepared. The polymerization conditions of poly(trifluoroethyl methacrylate) latex and the influence of mass ratio of PTFEMA latex to PBA-MMA latex on the properties of latex blends were studied. The latex and latex blends were characterized by using TG, DSC, TEM, FTIR, XPS and laser particle diameter analyzer. The optimal polymerization condition of PTFEMA latex is 75℃of polymerization temperature, 12min of ultrasonic processing time, 0.6wt% KPS, 4wt% ANPEO10-P1 , and 0.4wt% FSP. With the increasing of PTFEMA mass ratio, the surface energy of the latex blend film decreases. When the mass ratio of PTFEMA to PBA-MMA is 4:5, the water contact angle and cetane contact angle is 94°and 64°respectively, showing good water-resistance and oil-resistance. XPS analysis indicates the fluorine content is 7.9% at the film-air interface and 0.9% at film-glass interface, which prove that the PTFEMA polymer has the tendency to transfer to the surface of the latex blend film during the film formation and the fluorine content enrich at the outer space of latex film.
引文
[1] Iezzi R A, Gaboury S, Wood K. Acrylic-fluoropolymer mixtures and their use in coatings. Progress in Organic Coatings, 2000, 40:55-60.
    [2] Malshe V C, Sangaj N S. Fluorinated acrylic copolymers Part I: Study of clear coatings. Progress in Organic Coatings, 2005, 53:207-211.
    [3] Castelvetro V, Aglietto M, Ciardelli F, et al. Structure control, coating properties, and durability of fluorinated acrylic-based polymers. Journal of Coatings Technology, 2002, 70: 57-66.
    [4]饶厚曾,李国华.有机氟涂料的研究[J].塑料工业, 1996, (2):4-6.
    [5] Akihiko A, Masao U. Water Fluoropolymers for Paint Use[J], Journal of Fluorine Chemistry, 2000, 104(1):47-51.
    [6] Poggio T, Kapeliouchko V. Multimodal Fluoropolymer Dispersions[J]. Progress in Organic Coatings, 2003, 48:310-315.
    [7] Nomura M, Tobita H, Suzuki K. Emulsion Polymerization: Kinetic and Mechanistic Aspects [J]. Advances in Polymer Science, 2005, 175: 1-128.
    [8] Schork F J, Luo Y, Smulders W, et al. Miniemulsion Polymerization [J]. Advances in Polymer Science, 2005, 175: 129-255.
    [9] Chow P Y, Gan L M. Microemulsion Polymerizations and Reactions [J]. Advances in Polymer Science, 2005, 175: 257-298.
    [10] Miyazaki H, Terada K, Sato T, et al. Effect of Poly(vinylacetate/vinyl alcohol) Copolymer with a Thiol End Group as a Steric Stabilizer on Dispersion Polymerization of Styrene[J]. Journal of Applied Polymer Science, 1996, 60(12): 2149-2157.
    [11]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社, 2000, 11-55.
    [12] Harkins W D. A General Theory of the Mechanism of Emulsion Polymerization [J]. Journal of American Chemical Society, 1947, 69(6): 1428-1444.
    [13] Harkins W D. A General Theory of the Reaction Loci in Emulsion Polymerization [J]. Journal of Chemical Physics, 1946, 13: 381-382.
    [14] Smith W V. Chain Initiation in Styrene Emulsion Polymerization [J]. Journal of the American Chemical Society, 1949, 71(12): 4077-4082.
    [15] Smith W V, Ewart R H. Kinetics of Emulsion Polymerization [J]. Journal of Chemical Physics, 1948, 13: 592-599.
    [16] Asua J M. Miniemulsion Polymerization [J]. Progress in Polymer Science, 2002, 27: 1283-1346.
    [17] Capek L, Chern C S. Radical Polymerization in Direct Mini-Emulsion Systems [J]. Advances in Polymer Science, 2001, 155: 101-165.
    [18] Antonietti M, Landfester K. Polyreactions in Miniemulsion [J]. Progress in Polymer Sciecnce, 2002, 27: 689-757.
    [19] Landfester K. Polyreactions in Miniemulsion [J]. Macromolecular Rapid Communications, 2001, 22: 896-936.
    [20] Chen Y, Cheng S, Wang Y, Zhang C. Chemical Components and Properties of Core-Shell Acrylate Latex Containing Fluorine in the Shell and Their Films[J]. Journal of Applied Polymer Science, 2005, 99:107-114.
    [21] Landfester K, Rothe R, Antonietti M. Convenient Synthesis of Fluorinated Latexes and Core-Shell Structures by Miniemulsion Polymerization[J]. Macromolecules, 2002, 35:1658-1662.
    [22] Schork F J, Poehlein G W, Wang S, et al. Miniemulsion Polymerization[J]. Colloid Surface, 1999, 153:39-45.
    [23] Antonietti M, Landfester K. Polyreactions in miniemulsions[J]. Progress in Polymer Science, 2002, 27:689-757.
    [24] Chern C S, Chen T J. Effect of Ostwald ripening on styrene miniemulsion stabilized by reactive cosurfactants[J]. Colloids and Surfaces A, 1998, 138: 65-74.
    [25] Chern C S, Liou Y C, Chen T J. Particle nucleation loci in styrene miniemulsion polymerization using alkyl methacrylates as the reactive cosurfactant[J]. Macromolecular Chemical Physics, 1998, 199: 1315-1322.
    [26] Hour T P, Schulman J H. Transparent water-in-oil dispersions: The oleopathic hydromicelle [J]. Nature, 1943, 152: 102-103.
    [27] Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron microscopy [J]. Journal of Physics Chemistry, 1959, 63(10): 1677-1680.
    [28] Stoffer J O, Bone T. Stabilization at high temperature [J]. Journal of Polymer Science, Part A: Polym Chem, 1980, 18(8): 2641-2645.
    [29] Atik S S, Thomas J K. Polymerized microemulsions [J]. Journal of American Chemical Society, 1981, 103(14): 4279-4280.
    [30] Atik S S, Thomas J K. Photochemistry in polymerized microemulsion systems [J]. Journal of American Chemical Society, 1981, 104(22): 5868-5874.
    [31] Chu D Y, Thomas J K. Photophysical and photochemical studies on a polymeric intramolecular micellar system [J]. Macromolecules, 1989, 20(9): 2133-2138.
    [32] Ferrick M R, Murtagh J, Thomas J K. Synthesis and characterization of polystyrene latex particles [J]. Macromolecules, 1989, 22(4): 1515-1517.
    [33] Aguiar A, Gonzalez-Villegas S, Rabelero M, et al. Core-Shell Polymers with Improved Mechanical Properties Prepared by Microemulsion Polymerization[J]. Macromolecules, 1999, 32(20): 6767-6771.
    [34] Moumen N, Pileni M P, Mackay R A. Polymerization of methacrylate in a W/O microemulsion stabilized by a methacrylate surfactant [J]. Colloids and Surfaces, 1999, 151: 409-417.
    [35]张万忠,乔学亮,陈建国.微乳液法合成纳米材料的进展[J].石油化工, 2005, 1: 84-88.
    [36]吕锌锌,刘少杰,刘杰,等.微乳液作为药物载体研究进展[J].化学通报, 2004, 67: 551-556.
    [37] Klier J, Christophel, Turker J. Properties and Applications of Microemulsions [J]. Advanced Material, 2000, 12(23): 1751-1757.
    [38] He G, Pan Q, Rempel G L. Synthesis of Poly(methyl methacrylate) Nanosize Particles by Differential Microemulsion Polymerization [J]. Macromolecular Rapid Communication, 2003, 24: 585-588.
    [39]柯昌美,汪厚植,强敏,等.高固含量聚丙烯酸酯纳米微乳液的制备与性能研究[J].精细石油化工进展, 2005, 6(9): 12-16.
    [40]叶强,周炜,刘华蓉,等.双连续相微乳液辐射聚合制备多孔材料的研究[J].高分子学报, 2005, 1: 40-46.
    [41] Wilians D J. Morphology of the monomer-polymer particle in styrene emulsion polymerization[J]. Journal of Polymer Science, Part A, 1970, 1:2617-2622.
    [42] M Okubo, Ando M, Yamada A, et al. Studies on suspension and emulsion: Anomalous composite polymer and emulsion particles with wide produced by seeded emulsion polymerization[J]. Journal of Polymer Science: Polymer Letter Edition, 1981, 19:143-153.
    [43] Okubo M, Yamada A, Matsumoto T. Estimation of morphology of composite polymer emulsion particles by the soap titration method[J]. Journal of Polymer Science: Polymer Letter Edition, 1980, 18: 3219-3228.
    [44] Matsumoto T, Okubo M, Katsuta Y. Studies on suspension and emulsion II: Peculiar morphology of composite polymer particles produced by seeded emulsion polymerization[J]. Journal of Polymer Science : Polymer Letter Edition, 1982, 20: 45-51.
    [45]张心亚,瞿金清,蓝仁华,等.核壳聚合和核壳结构聚合物乳液[J].现代化工, 2002, 22:58-61.
    [46]何卫东,潘才元.核壳聚合物粒子[J].功能高分子学报, 1997, 10:110-117.
    [47] Dimonie V, K1ein A, Vanderhoff J W. Polymerization mechanism and morphology evolvement of emulsion with core-shell[J]. Polymer Science, 1984, 173:2197-2199.
    [48] Stutman D R, Klein A, Vanderhoff J W. The mechanism of core-shell inversion in two-stage latex[J]. Industry and Engineering & Chemistry Products Research and Development, 1985, 54:404-408.
    [49] Sperling L H, Chiu T W, Thomas D A. Polymerization condition&development of a core-shell morphology in PMMA/PSt latex particles[J]. Journal of Applied Polymer Science, 1973, 322:2443-2445.
    [50]谭必恩,张洪涛,胡芳,等.加料方法对St-BA-MAA乳胶粒子的影响[J].高分子材料科学与工程, 2000, 16(3): 39-41.
    [51]管蓉,艾照全,李建宗,等.聚合物工艺对丙烯酸酯乳液性能的影响[J].高分子材料科学与工程, 1997, 13(3): 123-126.
    [52]邱光鸿.预乳化在乳液聚合中的应用[J].涂料工业, 1994, (1): 20-22.
    [53]赵科,孙培勤,刘大壮.核壳乳液聚合乳胶粒形态理论研究进展[J].高分子材料科学与工程, 2003, 6(19):14-17.
    [54] Jonsson J L, Hassander H L, Jsson L H, et al. Morphology of two-phase PSt/PMMA Latex Particles Prepared Under Different Polymerization Conditions [J]. Macromolecules, 1991, 24: 126-131.
    [55] Erik J J, Karlsson O J, Hassander H. Shell-layer stability in core-shell particles prepared with different initiators [J]. Macromolecules, 2001, 34: 1512-1514.
    [56]魏平,廖兵,庞浩.核-壳结构聚合物微粒的研究进展[J].高分子材料科学与工程. 2004, 20(4): 38-41.
    [57]孟勇,翁志学,单国荣.聚硅氧烷/甲基丙烯酸甲酯核壳结构的复合粒子的制备[J].应用化学, 2004, 21(2): 139-173.
    [58]程时远,闰翠娥,马世安.乳化剂对复合胶粒核-壳结构的影响[J].高分子材料科学与工程, 1996, 12(5): 128-131.
    [59] Chen Y C, Dimonie V, Aasser M S. Particle morphology in artificial composite polymer latex [J]. Journal of Applied Polymer Science, 1992, 46: 691-706.
    [60] Okubo M, Seike M, Matsumoto T. Studies on suspension and emulsion: composite polymer emulsion film with temperature-sensitive properities [J]. Journal of Applied Polymer Science, 1983, 28: 383-390.
    [61] Merkrl M P, Dimonie V L, EL-Aasser M S. Process Parameters and their Effect on Grafting Reactions in Core-Shell Latex [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25:1755-1767.
    [62] Mills M F, Gibert R G, Napper D H. Effect of Polymerization Kinetics on Particle Morphology in Herterogenous System[J], Macromolecules. 1990, 23: 4247-4257.
    [63] Chem C S, Poehlein G W. Polymerization in Nonuniform Latex Particles: Distribution of Free Radicals [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25: 617-635.
    [64] Rois L, Hidalgo M, Cavaile J P, et al. PSt/P (BA-MAA) Core-Shell Emulsion Polymers, Part I, Synthesis and Colloidal Characterization [J]. Colloid and Polymer Science, 1991, 269: 812-824.
    [65] Okubo M, Yamaguchi S, Matsumoto T. Morphology of Composite Polymer Emulsion Particles Consisting of Two Kinds of Polymers between whichionic Bonding Intermolecular Interaction Operates [J]. Journal of Applied Polymer Science, 1986, 31: 1075-1082.
    [66] Maria J U, Harold A S, Jose M A, et al. Reactive Surfactants in Heterophase Polymerization: Synthesis and Screening of Polymerizable Surfactants (Surfmers) with Varying Reactivity in High Solids Styrene-Butyl Acrylate-Acrylic Acid Emulsion Polymerization [J]. Journal of Applied Polymer Science, 1997, 66: 1803-1820.
    [67] Montoya G A, Sherrington D C. Reactive Surfactants in Heterophase Polymerization XXIII. Synthesis and Characterisation of Novel Dialkyl Maleate Cationic Surfmers[J]. Polymer, 1999, 40: 1067-1079.
    [68] Abele S, Gauthier C, Graillat C, et al. Films from Styrene-Butyl Acrylate Lattices using Malefic or Succinic Surfactants: Mechanical Properties, Water Rebound and Grafting of the Surfactants[J]. Polymer, 2000, 41: 1147-1155.
    [69] Jin L Q, Liu Z L, Xu Q H, et al. Preparation of Soap-Free Cationic Emulsion Using Polymerizable Surfactant[J]. Journal of Applied Polymer Science, 2006, 99:1111-1116.
    [70] Toshiuky T, Mitsuru W. Acrylic Polymer/Silica Hybrids Prepared by Emulsifier-Free Emulsion Polymerization and the Sol-Gel Process[J]. Journal of Polymer Science, Part A : Polymer Chemistry, 2005, 44:273-280.
    [71] Kang K, Kan C Y, Du Y, et al. Morphology control of soap-free seeded P(St-EA-AA) latex particles[J]. European Polymer Journal, 2005, 41: 1510-1518.
    [72] Fowkes F M. Attractive forces at Interfaces [J]. Industry and Engineering Chemistry, 1964, 56(12): 40-52.
    [73] Bonis L J. Surface Analysis -‘Interdisciplinary Aspects of Surface Phenomena’[J]. Industry and Engineering Chemistry, 1964, 56(7): 40-43.
    [74] Shimizy R N, Demarquette N R. Evaluation of surface energy of solid polymers using different models [J]. Journal of Applied Polymer Science, 2000, 76: 1831-1845.
    [75] Sheiko S, Lermann E, Moller M. Self-Dewetting of Perfluoroalkyl Methacrylate Films on Glass[J]. Langmuir, 1996, 12:4015-4024.
    [76] Tsibouklis J, Graham P, Eaton P J, Smith J R, et al. Poly(perfluoroalkyl methacrylate) Film Structures: Surface Organization Phenomena, Surface Energy Determinations and Force of Adhesion Measurements[J] . Macromolecules, 2000, 33: 8460-8465.
    [77] Hollway J H. Why Fluorine in Coatings [J]. Surface Coatings International, 1995, 2: 50-51.
    [78] Berreta J F, Calvetb D, Collete A, et al. Fluorocarbon associative polymers [J]. Current Opinion in Colloid and Interface, 2003, 8: 296-306.
    [79] Lyengar D H, Penct S M, Dai C A. Surface segregation studies of fluorine-containing diblock copolymers[J]. Macromolecules, 1996, 29: 1229-1234.
    [80]李辰楠,孙公权,任素贞,等.应用于燃料电池的全氟磺酸膜及其改性[J].科学通报, 2005, 50(19): 2049-205.
    [81]王亚琴,张宏伟.燃料电池用含氟质子交换膜的研究现状[J].材料导报, 2005, 19(3): 93-96.
    [82]程时远,陈艳军.氟化丙烯酸酯聚合物的制备及表面性能的研究进展[J].高分子材料科学与工程, 2003, 19 (3): 49-53.
    [83]谢孔良.有机氟系列多功能整理剂的研究进展[J].纺织科学研究, 1995, (3): 12-16.
    [84]山边正显,松尾仁.含氟材料的研究开发[M].上海:华东理工大学出版社, 2003, 145-147.
    [85]刘国杰.超耐候性的氟树脂涂料[J].中国涂料, 1995, (3):21-26.
    [86]边蕴静.氟碳树脂涂料[J].中国涂料, 2000, 6:22-25.
    [87]路同红,陈正国,陈时远,等.全氟丙烯酸酯类聚合物合成及应用[J].胶体与聚合物, 2000, 18(2):31-34.
    [88] Kurt A W. Optimizing the exterior durability of new fluoropolymer coatings[J]. Progress in organic coatings, 2001, 43:207-213.
    [89] Forsythe J S, Hill D J. The use of crosslinking promoters in ther-Radiolysis of Poly(tetrafluoroethylene-co-perfluoromethylvinyl ether[J]. Journal of Applied Polymer Science, 1999, 73:169-175.
    [90]黄月文,刘伟区.含氟丙烯酸酯改性苯丙共聚物表面处理剂的研究[J].新型建筑材料, 2005, 11:10-12.
    [91]熊征蓉,段辉,汪厚植.含氟丙烯酸酯共聚物的制备及性能[J].武汉科技大学学报(自然科学版), 2006, 29(2):137-139.
    [92] Robert A H.Polymeric fluorocarbon siloxanes,emulsions and surface coatings thereof[P]. US:5442011.
    [93]张海霞,赵兴顺,丁小斌,等.含氟丙烯酸酯共聚物的制备及其膜表面性质的初步研究[J].新型建筑材料, 2005, (5): 9-11.
    [94] Shimokawa W, Fukazawa Y. Fluorine-containing acrylic polymer aqueous emulsion[P]. JP: 0517538, 1993-01-26.
    [95]邓宝祥,解如阜.含氟化合物的乳液聚合[J].天津纺织工学报,1996 ,15(1) :6-9.
    [96] Park I J, Lee S B, Choi C K. Surface Properties of the Fluorine-Containing Graft Copolymer of Poly(perfluoroalkylethyl methacrylate)-g-poly(methyl methacrylate) [J] . Macromolecules, 1998, 31:7555-7558.
    [97]陈艳军,王艺峰,陈沛智.甲基丙烯酸六氟丁酯-丙烯酸酯共聚物乳液研究[J].涂料工业, 2005, 35(9):28-32.
    [98] Y.Suzuki. Oil-and water-repellent fluoropolymer dispersions with good mechanical stability[P], JP 04164990, 1992-06-10.
    [99] Tsuda N, Imoto K, Mitsuhata N, et al. Aqueous Fluoropolymer Dispersion Composition[P]. US, 6350806, 2002-02-26.
    [100] Landfester K, Rothe R, Antonietti M. Convenient Synthesis of Fluorinated Latexes and Core-Shell Structures by Miniemulsion Polymerization[J]. Macromolecules, 2002, 35: 1658-1662.
    [101] Cheng S, Chen Y, Chen Z. Core-shell latex containing fluorine polymer rich in shell[J]. Journal of Applied Polymer Science, 2002, 85:1147-1153.
    [102] Chen Y, Zhang C, Wang Y. Study of self-crosslinking acrylate latex containg fluorine [J]. Journal of Applied Polymer Science, 2003, 90:3609-3616.
    [103] Gao J, Wang X, et al. Synthesis and characterization of novel fluorine-containing polymer emulsion with core/shell structure[J]. Journal of Fluorine Chemistry, 2006, 127:282-286.
    [104] Zhang C, Chen Y. Investigation of fluorinated polyacrylate latex with core-hell structure[J]. Polymer International, 2005, 54:1027-1033.
    [105] Jong W, In J P, Kim D K, et al. Surface properties of cote-shell particles containing perfluoroalkyl acrylate in shell[J]. Surface Science, 2003, 328:532-535.
    [106]徐祖顺,陈中华,涂伟萍,等.含氟聚合物乳液的研究及应用[J].功能高分子学报, 2000, 13(2):229-232.
    [107]徐峰.氟表面活性剂及在涂料中的应用[J].化学建材, 2001, 1:29-31.
    [108]张珍英,管蓉,陈正国.含氟乳化剂丙烯酸酯乳液的制备及性能[J].胶体与聚合物2001,19(1):11-13.
    [109]王猛,马东旭,傅宏伟,等.水性涂料用氟树脂的初步研究[J].涂料技术, 2001, 3:5-8.
    [110] Asakawa A, Unoki M. Waterborne fluoropolymersfor use[J]. Journal of Fluorine Chemistry, 2000, 104:47-51.
    [111] Matsumoto K, Kubota M, Matsuoka H, et al. Water-soluble Fluorine-containing Amphiphilic Block Copolymer: Synthesis and Aggregation Behavior in Aqueous Solution[J]. Macromolecules, 1999, 32(10):7122-7127.
    [112] Grampel R D, Ming W, Gildenpfening A, et al. Surface studies of partially fluorinated polymethacrylates: a combined XPS and LEIS analysis[J]. Progress in organic coatings, 2002, 45:373-379.
    [113] Beamson G, Alexander M R. Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymer[J]. Surface and Interface Analysis, 2004, 36(4):323-333.
    [114] Winter R, Nixon P, Terjeson R J, et al. Perfluorinated polymer surface comprising SF5-terminated long-chain perfluoroacrylate[J]. Journal of Fluorine Chemistry, 2002, 115(2): 107-114.
    [115] Linemann R F, Malner T E, et al. Latex Blends of Fluorinated and Fluorine-Free Acrylates: Emulsion Polymerization and Tapping Mode Atomic Force Microscopy of Film Formation[J]. Macromolecules, 1999, 32(6):1715-1721.
    [116]武利民,于在璋,李伯耿,等.交联丙烯酸丁醋乳液聚合研究[J].涂料工业, 1992, (1):1-4.
    [117]陆荣.常温交联型苯丙乳胶漆的探讨[J].涂料工业, 1986, (6):10-14.
    [118] Grawe J R, Bufkin B G. Survey of the Applications Properties and Technology of Crosslinking Emulsions(II)[J]. Journal of Coatings Techno1ogy, 1978, 50(643):67-83.
    [119] Wiese H, Rupaner R.Influence of metal ions on the alkali-swelling behavior of carboxylated acrylic polymer latexes[J]. Colloid and Polymer Science, 1999, 277(4):372-375.
    [120] Hayashi R, Aoki M, Tsukamoto T, Kato Y, et al. Water-based Crosslinking Resin compositions for Water- and Solvent-resistant Coatings[P]. JP:05222296, 1993-08-31.
    [121] Abe S, Aoki M, Tsukamoto T. Self-crosslinking Resin Aqueous Dispersion Compositions[P]. JP: 6272742, 1987-04-03.
    [122] Yoshio N, Shigeru M, Shohei K, et al. Resin Composition[P]. US: 6770709, 2004-08-03.
    [123] Shiraishi S. Aqueous Resin Dispersion and Coating Composition Prepared therefrom [P]. JP:200119856, 2001-01-23.
    [124] Kriessmann I, Awad R R, Gsoll H, et al. Aqueous Self-curing, Core-shell Copolymer Dispersions, Process for Their Preparation and Their Use as Binders for Laquer Coatings[P]. EP:995780, 2000-04-26
    [125] Tobita H, Umagai M K, Aoyagi N. Microgel Formation in Emulsion Polymerization [J]. Polymer, 2000, 41(2):481-487.
    [126] Yanauchi T, Kato Y, Kato T. Curable Water-thinned Polycarbonyl Compound Base Coating Compositions for Porous Substrates with Improved Water Resistance and Adhesion[P]. JP:99349856, 1999-12-21.
    [127]蒋硕健.双丙酮丙烯酰胺与己二酰肼在水乳液与水溶性聚合物后交联中的应用[J].中国涂料, 2003, (3):24-28.
    [128]付校坤. DAAM在建筑内外墙乳胶漆中的应用.上海涂料,2004, 42(2):33-34.
    [129] Sugiyama T, Shibata T. Aqueous Compositions Containing Acetoacetate Functional Polymer and Multifunctional Amine[P]. EP:74450A21, 996-11-27.
    [130] Hayashi R, Aoki M, Tomita T, et al. Aqueous Dispersed Resin Composition[P]. EP:619 342,1994-10-12.
    [131] Esser R J. Crosslinkable Aqueous Single Package Storage-stable Surface Coating Compositions[P]. WO:9316133,1993-08-19.
    [132] Esser R J, Devona J E, Setzke D E, et al. Waterbased Crosslinkable Surface Coatings[J]. Progress in Organic Coatings, 1999, 36(1):45-52.
    [133] Feng J, Pham H P, Macdonald M A, et al. Formation and Crosslinking of Latex Films through the Reaction of Acetoacetoxy Groups with Diamines under Ambient Conditions[J]. Journal of Coatings Techno1ogy, 1998, 70(881):57-68.
    [134] Pieter J A, Dalen L, Lumping R R. Analytical aspects and film properties of two-pack acetoacetate functional latexes[J]. Progress in Organic Coatings, 1996, 27(1):73-78.
    [135]行德宏明,栗山智,大隅辰也.聚合物组合物的水分散液[P]. CN:1131959, 1996-09-25.
    [136] Chen J M. Aqueous Silylated Polymer Curable Compositions[P]. W0:9730120, 1997-08-21.
    [137] Harui N, Agawa T. Novel Ambient Temperature Curable Two-Component Waterborne Silicone-Acrylic Coatings[J]. Journal of Coatings Techno1ogy, 1998, 70(880):73-77.
    [138]侯有军,潘慧铭.室温交联型硅丙微胶乳的合成研究I.硅烷单体对聚合稳定性和胶膜性能的影响[J].离子交换与吸附, 2003, 19: 1-8.
    [139]侯有军,潘慧铭.室温交联型硅丙微胶乳的合成研究II.改性微胶乳的粒径控制及其微观形态表征[J].离子交换与吸附, 2004, 20:171-177.
    [140]侯有军,潘慧铭.室温交联型硅丙微胶乳的合成研究III.聚合工艺对聚合稳定性及胶膜性能的影响[J].离子交换与吸附, 2004, 20:248-253.
    [141] Hollway J H. Why Fluorine in Coatings[J]. Surface Coating International, 1995, 2:50-51.
    [142] Morita Y, Ogisu H, Kubo M. Surface Properties of Perfluoroalkyl Ethyl Acrylate/n-alkyl Acrylate[J]. Journal of Applied Polymer Science, 1999, 73: 1741-1749.
    [143] Witte D, Piessens G, Dams R. Fluorochemical Intermediates, Surfactants and Their use in Coatings[J]. Surface Coatings International, 1995, (2):58-64.
    [144] Saidi S, Guittard F, Geribaldi S. Monomers Reactivity Ratios of Fluorinated Acrylates-Styrene Copolymers[J]. Polymer International, 2002, 51:1058-1062.
    [145] Bongiovanni R, Malucelli G, Lombardi V, et al. Surface Properties of Methacrylic Copolymers Containing a Perfluoropolyether Structure[J]. Polymer, 2001, 42:2299-2305.
    [146] Tirelli N, Ahumada O, Suter U W, et al. Investigation on the Wettability Properties of Thin Films of Methacrylic Polymers with Partially Fluorinated Side Chains[J]. Macromolecular Chemistry and Physics, 1998, 199:2425-2431.
    [147] Ameduri B, Bogiovnni R, Lombardi V, et al. Effect of the Structural Parameters of a Series of Fluoromonoacrylates on the Surface Properties of Cured Films[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39:4227-4235.
    [148] Goncharenko A V. Optical Properties of Core-Shell Particle Composites I Linear Response[J]. Chemical Physics Letters, 2004, 386:25-31.
    [149] Cheng S Y, Chen Y J, Chen Z G. Core-shell Latex Containing Fluorinated Polymer Rich in Shell[J]. Journal of Applied Polymer Science, 2001, 85:1147-1153.
    [150] Ha J W, Park I J, Lee S B, et al. Preparation and Characterization of Core-Shell Particles Containing Perfluoroalkyl Acrylate in the Shell[J]. Macromolecules, 2002, 36:6811-6818.
    [151] Ha J W, Park I J, Kim D K, Lee S B. Surface Properties of Core-Shell Particles Containing Perfluoroalkyl Acrylate in Shell[J]. Surface Science, 2003, 532 328-333.
    [152] Chen Y J, Zhang C C, Wang Y F, et al. Study of Self-crosslinking Acrylate Latex Containing Fluorine[J]. Journal of Applied Polymer Science, 2003, 90:3609-3616.
    [153] Ha J W, Park I J, Lee S B. Hydrophobicity and Sliding Behavior of Liquid Droplets on the Fluorinated Latex Films[J]. Macromolecules, 2005, 38:736-744.
    [154] Dreher W R, Jarrett W L, Urban M W. Stable Nonspherical Fluorine-containing Colloids Dispersions: synthesis and film formation[J]. Macromolecules, 2005, 38:2205-2212.
    [155] Stubbs J M, Sundberg D C. Core-shell and other Multiphase Latex Particles-confirming their Morphologies and Relating Those to Synthesis Variables[J]. Journal of Coatings Technology and Research, 2008, 5:169-180.
    [156] Kang K, Kan C Y, Du Y, et al. Synthesis and Properties of Soap-free Poly(methyl methacrylate-ethyl acrylate-methacrylic acid) Latex Particles Prepared by Seeded Emulsion Polymerization[J]. European Polymer Journal, 2005, 41:439-445.
    [157] Yang S F, Xiong P T, Gong T, et al. St-BA Copolymer Emulsion Prepared by using Novel cCationic Maleic Dialkyl Polymerizable Emulsifier[J]. European Polymer Journal, 2005, 41:2973-2979.
    [158] Guyot A. Advances in Reactive Surfactants[J]. Advances in Colloid Interface Science, 2004, 108:3-22.
    [159] Yang T T, Yao L, Peng H, et al. Characterization of a Low-wettable Surface Based on Perfluoroalkyl Acrylate Copolymers[J]. Journal of Fluorine Chemistry, 2006, 127:1105-1110.
    [160] Beamson G, Alexander M R. Angle-resovled XPS of Fluorinated and Semi-fluorinated Side-chain Polymer[J]. Surface and Interface analysis, 2004, 36:323-333.
    [161] Grampel R D, Ming W, Gildenpfennig A, et al. Surface Studies of Partially Fluorinated Polymethacrylates: a combined XPS and LEIS analysis[J]. Progress in Organic Coatings, 2002, 42:702-710.
    [162] Zhang Q H, Lu L X, Chen F Q, et al. Surface Structure and Properties of Fluorocopolymers Studied by XPS and Contact Angle[J]. Chemical Journal of Chinese Universities, 2006, 27:790-792.
    [163] Saidi S, Guittard F, Guimon C, et al. Synthesis and Characterization of Copolymers Based on Styrene and Partially Fluorinated Acrylates[J]. European Polymer Journal, 2006, 42:702-710.
    [164]徐龙贵.氟树脂涂料的研究动向[J].电镀与涂饰, 2001, 20(4): 30-33.
    [165]刘小华,熊婷,陈德本,等.水性室温交联聚丙烯酸酯乳液的流变性[J].高分子材料科学与工程, 2006, 22(1): 111-114.
    [166]张梅,尹延柏,文生雷,等.聚合工艺对室温交联丙烯酸乳胶漆性能的影响[J].涂料工业, 2005, 35(7): 21-24.
    [167] Esser R J, Devona J E, Setzke D E, et al. Waterbased Crosslinkable Surface Coatings [J]. Progress in Organic Coatings, 1999, 36(1): 45-52.
    [168] Teng G, Soucek M D, Yang X F, et al. Effects of the Addition Mode of Cycloaliphatic Dipoxide on the Morphology and Film Properties of Crosslinkable Core-Shell Latex [J]. Journal of Applied Polymer Science, 2003, 88(2): 245-257.
    [169] Gao J Z, Wang X M, Wei Y X, et al. Synthesis and Characterization of a Novel Fluorine-containing Polymer Emulsion with Core/Shell Structure[J]. Journal of Fluorine Chemistry, 2006, 127:282-286.
    [170] Chen S, Yan W C, Chen L, et al. Morphology and Microstructure of Core-Shell Hybrid Latexes Containing Fluoropolymer and Acrylic Copolymer[J]. Colloid and Polymer Science, 2006, 284:413-421.
    [171] Qin Z G, Tu W P, Xia Z B, et al. Preparation and Film Performance of Self-Crosslinking Fluorine-Containing Latex at Room Temperature[J]. Journal of South China University of Technology, 2005, 33:19-23.
    [172]潘明旺,万林战,张健,等.核壳型交联丙烯酸酯共聚物的合成及表征[J].高分子材料科学与工程, 2004, 20:61-64.
    [173]杨冰,谢明贵.交联体系对核/壳型乳液涂饰性能的影响[J].四川大学学报, 2000, 32:72-74.
    [174]秦总根,涂伟平.自交联含氟乳液与水性环氧树脂共混乳液自分层的研究[J].精细化工, 2006, 23:497-501.
    [175]付校坤. DAAM在建筑内外墙乳胶漆中的应用[J].上海涂料, 2004, 42:33.
    [176]崔月芝,段洪东,张庆思,等.双丙酮丙烯酰胺参与共聚的聚丙烯酸酯乳液的制备及其应用[J].应用化学, 2001, 18:131-133.
    [177] Nicola K, Derek R I, Joseph L K. The Diacetone Acrylamide Crosslinking Reaction and its Influence on the Film Formation of an Acrylic Latex[J]. Journal of Coatings Technology Research, 2008, 5(3):285-297.
    [178] Feng J R, Pham H, Peter M. Formation and Crosslinking of Latex Films through the Reaction of Acetoacetoxy Groups with Diamines under Ambient Conditions[J]. Journal of Coatings Technology, 1998, 70:57-68.
    [179] Guo J P, Xu Z S, Yi C F. Preparation and Characterization of Acrylate Copolymer Emulsion Containing Fluorosilicone[J]. Polymer Materials Science and Engineering, 2007, 23:49-52.
    [180] Cheng X L, Chen Z X, Shi TS, et al. Synthesis and Characterization of Core-Shell LIPN-Fluorine-Containing Polyacrylate Latex[J]. Colloids and Surfaces A: Physicochem and Engineering Aspects, 2007, 292:119-124.
    [181] Jiang M, Zheng Z H, Ding X B, et al. Convenient Synthesis of Novel Fluorinated Polyurethane Hybrid Latexes and Core-Shell Structures via Emulsion Polymerization Process with Self-emulsification of Polyurethane[J]. Colliod and Polymer Science, 2007, 285:1049-1054.
    [182] Thomas R R, Lloyd K G, Stika K M, et al. Low Free Energy Surfaces using Blends of Fluorinated Acrylic Copolymer and Hydrocarbon Acrylic Copolymer Latexes[J]. Macromolecules, 2000, 33: 8828-8841.
    [183] Linemann R F, Malner T E, Brandsch R, et al. Film Formation of Fluorine Containing Dispersions by Atomic-force Microscopy[J]. Polymer Preprints, 1998, 39(2): 952-953.
    [184] Adamson A W. Physical chemistry of surface[M]. New York:Interscience Publishers, 1960, 73-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700