黑龙江省链格孢属病原菌遗传多样性及杀菌剂抗药性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007~2009年在黑龙江省各地区不同寄主植物上分离了109株链格孢属病原菌,其中Alternaria solani 73株、Alternari brassicola 15株、Alternaria porri 21株。从分离到的A. solani,A. brassicola及A. porri菌株中各挑选一株,并利用ITS1和ITS2通用引物扩增了3种链格孢属病原菌的基因组DNA。扩增结果显示所测定菌株ks09-7的碱基序列与NCBI上注册的A. solani ITS序列之间的同源性为98.35%;所测定菌株gl09-2的碱基序列与NCBI上注册的A. brassicicola ITS序列之间的同源性为97.81%;所测定菌株zb09-10的碱基序列与NCBI上注册的A. porri ITS序列之间的同源性为98.71%。
     本研究利用生长速率法测定了马铃薯早疫病菌对恶醚唑、腐霉利和戊唑醇的敏感性。恶醚唑的敏感性测定结果表明,不同年份和不同地区分离的马铃薯早疫病菌对恶醚唑的敏感性之间存在着差异,EC_(50)值在0.0643~9.0666μg·mL~(-1),最不敏感菌株(nh09-5)的EC_(50)值是最敏感菌株(hg08-20)的141.00倍,平均值为2.5196±2.2025μg·mL~(-1),抗性指数低于3的马铃薯早疫病菌株有47个,抗性指数在3~10之间的马铃薯早疫病病菌有3个,说明齐齐哈尔地区讷河市分离的马铃薯早疫病菌已有对恶醚唑产生抗药性的趋势;腐霉利的敏感性测定结果表明,不同年份和不同地区分离的茄链格孢菌对腐霉利的敏感性无显著差异,其敏感性呈连续的单峰曲线分布,EC_(50)值在0.3472~8.1799μg·mL~(-1)之间,最不敏感菌株的EC_(50)值是最敏感菌株的23.56倍,平均值为4.4457±0.6019μg·mL~(-1),未出现敏感性下降的抗药性群体,因此可作为马铃薯早疫病菌对腐霉利的敏感性基线;戊唑醇的敏感性测定结果表明,不同年份分离的马铃薯早疫病菌对戊唑醇的敏感性之间无显著差异,但不同地区分离的马铃薯早疫病菌有一定的差异,其敏感性呈连续的单峰曲线分布,EC_(50)值在3.0903~23.5613μg·mL~(-1)之间,最不敏感菌株的EC_(50)值是最敏感菌株的7.62倍,平均值为10.3584±1.6331μg·mL~(-1),未出现敏感性下降的抗药性群体,因此可作为马铃薯早疫病菌对戊唑醇的敏感性基线。总之,腐霉利和戊唑醇可以使用在马铃薯早疫病的防治上,但应注意监测其抗药性的动态变化。
     利用RAPD技术对分离自黑龙江省哈尔滨市、齐齐哈尔市、牡丹江市、鹤岗市、佳木斯市和加格达奇市等6个地区的90株链格孢属病原菌进行了遗传多样性分析。从20个随机引物中筛选出一条扩增条带清晰,多态性好的引物,并利用NTSYS 2.0进行链格孢属病原菌的聚类分析。结果表明引物OPE-19扩增后产生的各个群体间相似性系数分布在0.60~1.00。在60.8%相似性水平上可划分为3个主要RAPD组群和8个次要RAPD组群。牡丹江市和齐齐哈尔市分离的马铃薯早疫病菌分别划分为8个RAPD组群。以上结果说明黑龙江省链格孢属病原菌RAPD组群与寄主植物和分离地区之间没有相关性。
     利用AFLP技术对分离自黑龙江省哈尔滨、齐齐哈尔、牡丹江、鹤岗、佳木斯、加格达奇等6个地区分离的91株链格孢属病原菌进行了遗传多样性分析。在相似性系数为0.66时91个链格孢属病原菌被分为1个主要组群和3个次要组群。在这四个组群中,第一(AG1_(0.66))、第二(AG2_(0.66))和第四(AG4_(0.66))组群属于由大孢子种组成的链格孢属病原菌,而第三组群(AG3_(0.66))绝大多数属于由小孢子种组成的链格孢病原菌。综合分析上述聚类结果可得出链格孢属病原菌的AFLP组群与孢子类型有一定相关性,而链格孢属病原菌的AFLP组群与分离地区之间没有相关性。在相似性系数为0.72时91个链格孢属病原菌被分为2个主要组群和10个次要组群。在这12个组群中,第一(AG1_(0.72))、第二(AG2_(0.72))和第三组群(AG3_(0.72))主要由葱链格孢菌组成,第四(AG4_(0.72))、第五(AG5_(0.72))、第六(AG6_(0.72))、第七(AG7_(0.72))、第八(AG8_(0.72))和第十二组群(AG12_(0.72))全部由茄链格孢菌组成,而第九(AG9_(0.72))、第十(AG10_(0.72))和第十一组群(AG11_(0.72))主要由芸薹链格孢菌组成。链格孢属病原菌的AFLP组群与寄主植物之间有一定的相关性,而与分离地区之间没有相关性。
A total of 109 Alternaria Pathogens isolates were isolated from different host plants cultivated in various locations of Heilongjiang province in 2007~2009. Of which, Alternaria solani isolates were 73, Alternaria brassicola isolates were 15, Alternaria porri isolates were 21. One isolate were chosed from 3 speceis Altenaria Pathogens isolated, respectively. The genomic DNA extracted from 3 speceis Alternaria Pathogens isolates were amplified by using ITS1 and ITS2 primer combination. The results indicated that the homology between the base sequences of ks09-7 determined and ITS sequences of Alternaria solani registered in NCBI was 98.35%; the homology between the base sequences of gl09-2 determined and ITS sequences of Alternaria brassicicola registered in NCBI was 97.81%; the homology between the base sequences of zb09-10 determined and ITS sequences of Alternaria porri registered in NCBI was 98.71%.
     The experiment determined for sensitivity of A. solani isolates to difenoconazole, procymidone and tebuconazole in vitro by using growth rate method. The results of sensitivity to difenoconazole indicated that there were significant differences of sensitivity to difenoconazole between A. solani isolates collected from different locations and various years. The EC_(50) values ranged from 0.0643 to 9.066μg.mL~(-1), the EC_(50) values of most insensitive isolate (nh09-5) was 141 folds of the most sensitive (hg08-20), with a mean of 2.5196±2.2025μg.mL~(-1). A. solani isolates less than resistance index were 47, A. solani isolates between the 3.0 and 10 of resistance index were 3. The above results suggested that A. solani isolates collected from Nehe city of Qiqihar locality have been occurred trend of resistance to difenoconazole. The results of sensitivity to procymidone indicated that there were no significant differences of sensitivity to procymidone between A. solani isolates collected from different locations and various years. Their sensitivities distributed as a unimodal curve, EC_(50) values ranged from 0.3472μg·mL~(-1) to 8.1799μg·mL~(-1), the most insensitive was 23.56 folds of the most sensitive, with a mean of 4.4457±0.6019μg·mL~(-1), so it can be used as baseline-sensitivity of A. solani to procymidone. The results of sensitivity to tebuconazole indicated that there is no significant difference of sensitivity to tebuconazole between A. solani isolates collected from various years, but there is significant difference of sensitivity to tebuconazole between A. solani isolates collected from different locations. Their sensitivities distributed as a unimodal curve, EC_(50) values ranged from 3.0903μg·mL~(-1) to 23.5613μg·mL~(-1), the most insensitive was 7.62 folds of the most sensitive, with a mean of 10.3584±1.6331μg·mL~(-1), so it can be used as baseline-sensitivity of A. solani to procymidone. In conclusion, procymidone and tebuconazole can be used to control potato early blight in Heilongjiang province, but we should pay attention to monitor dynamic changes of resistance of Alternaria solani to procymidone and tebuconazole.
     To examine the genetic diversity of 90 Alternaria Pathogens isolates collected from Harbin, Qiqihar, Mudanjiang, Hegang, Jiamusi and Jiagedaqi city of Heilongjiang province, the study was performed the genotypic characteristics by using random amplified polymorphic DNA (RAPD). One primer having a clear amplified bands and good polymorphic fragments was selected from 20 random primers, and carried out the cluster analysis of Alternaria Pathogens by using NTSYs program. The result indicated that the similarity coefficients of the RAPD group amplified by OPE-19 primer ranged from 0.60 to 1.00. According to the RAPD analysis by using OPE-19 primer, 90 isolates contains standard isolates were separated into three major RAPD groups and eight minor groups at similarity level of 60.8%. A. solani isolates collected from Mudanjiang and Qiqihar city were separated into 8 RAPD groups, respectively. The above result suggested that tRAPD groups were not correlated with the host plants and isolated locations.
     To examine the genetic diversity of 91 Alternaria Pathogens isolates collected from Harbin, Qiqihar, Mudanjiang, Hegang, Jiamusi and Jiagedaqi city of Heilongjiang province, the study was performed the genotypic characteristics by using amplified fragment length polymorphism (AFLP). 91 isolates of Alternaria Pathogens were separated into one major AFLP group and three minor groups at similarity level of 0.66. Among the four groups, the first (AG1_(0.66)), second (AG2_(0.66)) and fourth groups (AG4_(0.66)) were compsed of the large spore Alternaria species, but the third group (AG3_(0.66)) was compsed of the small spores Alternaria species. The comprehensive analysis of above cluster result suggested that AFLP groups were correlated with spore types, but were not correlated with the isolated locations. 91 isolates of Alternaria Pathogens were separated into two major AFLP group and ten minor groups at similarity level of 0.72. Among the 12 groups, the first (AG1_(0.72)), second (AG2_(0.72)) and third groups (AG3_(0.72)) were mainly compsed of the Alternaria porri; fourth (AG4_(0.72)), fifth (AG5_(0.72)), sixth (AG6_(0.72)), seventh (AG7_(0.72)), eighth (AG8_(0.72)) and twelfth (AG12_(0.72)) groups were composed of the Alternaria solani; but the ninth (AG9_(0.72)), tenth (AG10_(0.72)) and eleventh (AG11_(0.72)) is formed by the small spores Alternaria species. The comprehensive analysis of above cluster result suggested that AFLP groups were correlated with host plants, but were not correlated with the isolated locations.
引文
陈伟群,张天宇.1994.十字花科上的链格孢属真菌同工酶凝胶电泳分析[J].真菌字报, 13(4): 295~302.
    崔迪,王继华,陈捷. 2005,等.链格孢属真菌对农作物的危害[J].哈尔滨师范大学自然科学学报. 21(3): 87~91.
    崔娜. 2004.细交链孢菌的抗药性分化研究[D].广西大学.
    常缨,王义权,强胜,等. 2005.链格孢菌菌株致病性及其遗传差异性[J].应用与环境生物学报, 486~489.
    董金皋,樊慕贞,杨俊国,等. 1995.白菜黑斑病菌(A. brassicae)菌丝生长和毒素产生条件的研究[J].河北农业大学学报, 18(4): 21~27.
    董金皋,樊慕贞,杨英茹,等. 1997.芸苔链格孢菌种内和链格孢菌种间的酯酶同工酶比较[J].植物病理学报, 27(2): 167~173.
    范永玲,任璐,刘秀英,等. 2008.番茄早疫病菌对3种杀菌剂的抗药性监测[J].安徽农业科学, 36(26): 11431~11448.
    方中达. 2007.植病研究方法[M].北京:中国农业出版社.
    郜瑞敏. 2009.河南省小麦黑胚病优势病原菌链格孢(Alternaria spp.)遗传多样性及rDNA ITS序列分析[D].河南农业大学,郑州.
    何劲,康冀川,谢红艳,等. 2009.我国部分区域链格孢属rDNA ITS区序列分析[J].安徽农业科学, 37( 6): 2425~ 2427.
    黄立志,姜子德,李发钦. 2006.大棚香蕉组培苗黑斑病的病原鉴定[J].仲恺农业技术学院学报,19(1):53~54.
    李保聚. 1998.中国番茄虫害及其防治学研究进展[M]].北京,中国农业出版社:31~35.
    李多川,张大宇,吴竟爽. 1992.链格孢(Alteraria)真菌微机鉴定系统的组建与应用[J]. 西北农业学报, l(2): 33~35.
    李凤琴. 2001.链格孢毒素及其食品卫生问题(综述)[J].中国食品卫生杂志, 6: 45~49.
    李岩松,周玉,谭建华. 2006.真菌毒素快速分析方法研究进展[J].中国卫生检验杂志, 16(l): 126~129.
    李珊,赵桂仿. 2003. AFLP分子标记及其应用[J].西北植物学报, 23(5):830~836
    鲁红学,赵明敏,李建强,等. 2007.芦荟黑斑病病原鉴定及培养特性的研究[J].华北农学报,22(1):156~163.
    马腾飞. 2009.上海市进口水果市场病害的检测与病原真菌的鉴定[D].华东师范大学硕士毕业论文.
    孙思,王军2006银海枣褐斑病的病原鉴定与化学防治[J]华南农业大学学报,27(3):58~60.
    彭希文,刘光珍,杨永柱. 2000.云南省烟草赤星病(Tobacco brown spot)病原研究及其防治药剂的筛选[J].西南农业大学学报, 22(2):153~156.
    孙霞. 2006.链格孢属真菌现代分类方法研究[D].山东农业大学.
    孙霞,王波,张天宇. 2007.链格孢菌酯酶同工酶分析及其分类学意义[J].菌物研究, 5(4): 229~232.
    王春明,金秀琳,何苏琴. 2009.花椰菜黑斑病病原鉴定及6种杀菌剂的室内药效测定[J]. 甘肃省农业科技, 1:17~19.
    王洪凯,张天宇,张猛. 2001.链格孢属真菌分类研究进展[J].山东农业大学学报, 32(3): 406~410.
    王海强,田家顺,严清平. 2008.番茄早疫病菌对7种杀菌剂的敏感性比较及其对苯醚甲环唑的敏感性基线建立[J].农药, 47(4):294~296.
    王军,辛玉成. 2007.冬枣黑斑病病原的分离与鉴定[J].青岛农业大学, 24(1): 21~24.
    王义勋,江明,郑露,等. 2006.苍术黑斑病病原鉴定[J].植物病理学报, 36(5): 477~484.
    杨炜华. 2002.杏果实黑斑病病原鉴定及相关链格孢菌的RAPD分析[D].山东农业大学
    郑健秋,胡荣娟,王艳梅,等. 1994.秋白菜黑斑病产量损失关键期分析[J].北京农业科学, 12(2):39~40.
    周明国,叶钟音. 1991.交链孢霉对速克灵的抗药性研究[J].植植物保护,17(2):6~7.
    周如军,傅俊范,严雪瑞,等. 2007.穿山龙黑斑病病原茵鉴定及其生物学研究[J].植物病理学报, 37(3): 310~313.
    张天宇. 2000.中国真菌志,第十六卷:链格孢属[M].北京:科学出版社.
    张天宇. 2003.中国真菌植物志(十六卷).链格孢属[M].北京:科学出版社.
    张天宇,郭英兰. 1998.中国链格孢属的研究[J].菌物系统, 17(1): 11~14.
    张晓,张艳军,陈雨.2008.嘧菌酯对番茄早疫病菌的抑制作用[J].农药学学报, 10(1):41~46.
    张乐. 2006.烟草赤星病生物学特性研究及同工酶技术在链格抱分类中的应用[D].安徽农业大学.
    朱颖莹,许玲,张展瑜,等. 2007.进口鲜葡萄市场病害的检测与分析[J].爱品科尝, 28(7): 393~396.
    赵日丰,朱桂香,王书,等. 1986.我国人参黑斑病的研究取得成果[J].中国农业科学, 5: 93~94.
    Acland K M, Hay R J. 2002. cutaneous infection with Alternaria alternata complicating immunosuppression: successful treatment with itraconazole[J]. British Journal Dermatology,138(2): 354-356
    Andersen B, Smedsgaard J, Jorring I, et al. 2006, Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples[J].Int,JFoodMicrobio1, 111(2):105-111
    Banuett F , Herskowitz I.1994. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle[J]. Genes Dev, 8: 1367-1378.
    Bell A A,Wheeler M H. 1986. Biosynthesis and functions of fungal melanins[J]. Annu. Rev.Phytopathol. 24:411-451.
    Bottalico A, Logrieco A. 1998. Toxigenic Alternaria species of economic importance. In: Sinha K K , Bhatnager D, Eds, Mycotoxins in Agriculture and Food Safety, Marcel Dekker[M], New York, 65-108.
    Caldas E D, Jones A D ,Ward B. et al. 1994. Structural characterization of three new AAL toxins produced by Alternaria alternata .sp.lycopersici[J]. J.Agric. Food Chem, 42: 327- 333 .
    Campbell R. 1969. An electron microscope study of spore structure and development in Alternaria brassicicolaj[J]. Microbiol. Gen, 54: 381-392.
    Chen X M,, Line R F, Leung H. 1993. Relationship between virulence variation and DNA polymorphism in Puccinia striiformis[J]. Phytopathoology. 83(12):1489-1497.
    Cook D E. 1998. Analysis of intraspecific and interspecific variation in the genus Alternaria by zhe use of RAPD-PCR [J].Annals of Applied biology,132(2): 197-209.
    Dhiman J S. 1990. Ocurrence of leaf spot and flower blight of marigold.in Punjab[D]. Journal of Research, Punjab Agricultural university,27(2):231-236.
    Dong Z, Liu G, Qina Y. et al. 1987. Induction of mutagenesis and transformation by the extract of Alternaria alternata isolated from grains in Linxian,China [J].Carcinogenesis, 8(7):989-991.
    Edward J C. 1957. Leaf and infloreseenees blight of Marigold caused by Altenaria zinnia[M]. Sicence and Culturation, 22: 683.
    Feng F, Qiu D, Jiang L. 2007. Isolation of cDNA sequences encoding the MAP kinase HOG1 and the MAP kinase kinase PBS2 genes of the fungus Alternaria tenuissima through a genetic approach[J]. Journal of Microbiological Methods, 69(1):188-196.
    Goodwin S B, Drenth A, Fry W E. 1992. Cloning and genetic analyses of two highly polymorphic, moderately repetitive nuclear DNAs from Phytophthora infestans [J]. Current Genetics, 22: 107-115.
    Halonen M, Stern D A, Wright A L.et al.1997. Alternaria as a major allergen for asthma in children raised in a desert environment [J].Am.J Respir. Crit.Care Med,155(4):1356-1361.
    Hiram S , Robert K B. 2001. A review of Alternaria alternata sensitivity[J]. Rev Iberoam Micol, 18: 56-59.
    Jasalavich C A, Morales V M,. Pelcher L E. et al. 1995. Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers[J]. Mycological Research, 99(5):604- 614.
    Johnson L J, Johnson R D, Akamatsu H. et al. 2001. Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity[J]. Current Genetics. 40(1):65-72.
    Johnson R D, Johnson L, Kohmoto K. et al. 2000.A polymerase chain reaction-based method to specifically detect Alternaria alternata apple pathotype(A. mali),the causal agent of Alternaria blotch of apple[J].Phytopathology, 90:973-976.
    Johnson R D, Johnson L J, Itoh Y. et al. 2000. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity[J]. MPMI 13:742-753.
    Karlsson-Borga A, Jonsson P, Rolfsen W. 1989. Specific IgE antibodies to 16 widespread mold genera in patients with suspected mold allergy[J].Annals of Allergy.63(1):521-526.
    Kawamura C, Moriwaki J, Kimura N. et al. 1997. The melanin biosynthesis genes of Alternaria alternate can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea[J]. Molecular Plant-Microbe Interact,10(4):446-453.
    Kusaba M,Tsuge T. 1995. Phologeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA[J]. Current Genetics,28(5):491- 498
    Kusaba M. Tsuge T·1994. Coinfection by different isolates of Alternaria alternate in single black spot lesions of Japanese pear leaves[J]. Phytophthology, 84 (5): 447-451·
    Leech C M. 1962. Sporulation of diverse species of fungi under near-ultraviolet radiation[J]. Canadian Journal of Botany. 40(1): 152-163.
    Ma T F, Yang B, Wang Y W. et al. 2009. Market Disease Pathogens Deteotion of Imported Fruits in Shanghai[J]. Agricultural Sciences in China, 8(9):101-105
    Mahuku G, Peters R D, Platt H W, et al. 2000. Random amplified polymorphic DNA (RAPD) analysis of Phytophthora infestans isolates collected in Canada during 1994 to 1996 [J]. Plant Pathology, 49(2): 252-260.
    Márquez L M, Redman R S, Rodriguez R J.et al. 2007. A virus in a fungus in a plant:Three-way symbiosis required for thermal tolerance[J]. Science, 315(5811):513-517.
    Micales J A, Bonde M R, Peterson J L. 1986. The Use of isozyme analysis in fungal taxonomy and genetics[J]. Mycotaxon, 27:405-449
    Morris R, Bonde, Jessie A. et al. 1993. The Use of Isozyme Analysis for Identification of Plant-Pathogenic Fungi[J]. Plant Disease,77(10):961-968
    Narayanappa M, sohi H S. l985. Seed mycoflora of marigold and its control [J]. India Journal of Myeology Plant Pathology, 15(3):283-286.
    Nishimura S. 1983. Host-specific toxins and chemical structures from Alternaria species[J] Annual Reviews Phytopathol,21: 87-116.
    Petrunak D D M. Christ B J·1992. Isozyme variability in Alternaria alternata[J]. Phytopathology, 82: 1343-1347·
    Pryor B M. Gilbertson R L. 2002. Relationships and taxonomic status of Alternaria radicina, A. carotiincultae, and A. petroselini based upon morphological, biochemical, and molecular characteristics[J]. Mycologia, 94(1): 49-61.
    Pryor B M, Bigelow D M. 2003. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium[J]. Mycolagia, 95(6): 1141-1154.
    Promputtha I, Lumyong S, Dhanasekaran V. et al. 2007. A Phylogenetic evaluation of whether endophytes become saprotrophs at host senescence[J]. Microbial Ecology, 53(4):579-590.
    Rang J C, Crous P W, Mchau G R A. et al. 2002. Phylogenetic analysis of Alternaria spp.associated with apple core rot and citrus black rot in South Africa[J]. Mycological Research, 106(10):1151–1162.
    Rehner S A, Samuels G J. 1994. Taxonomy and phylogeny of gliocladium analyssed from nuclear large subunit ribosomal DNA sequences[J]. Mycological Research, 98 (6): 625-634·
    Rotem,J. 1994. The Genus Alternaria;Biology,Epidemiology,and Pathogenicity[M]. American Phytopathological Society Press,St.Paul,Minnesota.
    Roberts R G, Reymond S T, Anderson B. 2000. RAPD fragment pattern analysis and morphological segregation of small-spored Alternaria species and species group[J]. Mycological Research. 104(2): 151-160.
    Saenz-de-Santamaria M, Postigo I, Gutierrez-Rodriguez A. et al. 2006.The major allergen of Alternaria alternata (Alt al) is expressed in other members of the Pleosporaceae family[J]. Mycoses. 49(2):91-95.
    Shome S , Mustafee T P. 1966. Alternaria tagetica sp.nov. Causing blight of marigold(Tagetes sp.) [J]. Curr.Sei, 35:370~371.
    Sher A A, Marshall D L,Gilbert S A. 2000. Competition between native Populus deltoides and invasive Tamarix ramosissima and the implications for reestablishing flooding disturbance[J]. Conservation Biology, 14(6):1744-1754.
    Shimomura N, Otani H, Tabira H. et al. 1991. Two primary action sites for AM-toxin produced by Alternaria alternate apple pathotype and their pathological significance[J]. Annnual Phytopathology Society Japan, 57(2):247-255.
    Shipunov A, Newcombe G, Anil KH. et al. 2008. Hidden diversity of endophytic fungi in an invasive plant. American Journal of Botany[J],95(9):1096 -1108.
    Simmons E G. 1967. Typification of Alternaria, Stemphylium and Ulocladium[J]. Mycologia, 59(1): jan.-feb.
    Snider R D, Karmer C L. 1974. An electrophoretic Protein analysis and numerical taxonomic study of the genus Taphrina[J]. Myeologia,66(5):754-772.
    VOS P, Hogers R, Bleeker. et a1. 1995. A new technique for DNA fingerprinting[J]. Nucleic Acids Research, 23(21): 4407-4414.
    Wang R , Wang Y Z. 2006. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora(Asteraceae)in China[J]. Diversity and Distributions. 12(4):397-408.
    Welsh J, Mcclelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research. 18(24): 7213-7218.
    Wetzel H C, Dernoeden P H. Millner P D. 1996. Identification of Darkly Pigmented Fungi Associated with Turfgrass Roots Mycelial Characteristics and RAPD-PCR[J]. Plant Disease, 80 (4):359-364.
    Williams J G K, Kubelik A R, Libak K J. et al. 1990. DNA polymorphisms amplified by arbitrary primers are useful as gemetic markers[J]. Nucleic Acids Rpesearch, 18(22): 6531-6535.
    Zabean M, Vos P. 1992. Selective restriction fragment amplification: a general method for DNA fingerprinting[P]. French,EP0534858.
    Zhou Z X, Jiang H, Yang C. et al. 2010. Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China[J]. The Journal of Microbiology, 48(2):139-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700