长江上游干支流汇合口水沙特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流交汇口区域水流紊乱,泥沙冲淤变化大,通航条件极其复杂。加上汇合口上游水利枢纽修建后,来水来沙条件发生重大改变,枢纽日调节和大坝泄洪对汇合口航道通航条件将产生严重影响。因此,研究汇合口的水沙运动特性及上游水利枢纽的运行对汇合口通航水流条件的影响具有重要意义。
     本文结合西部交通建设科技项目“长江上游干支流汇合口通航水流条件及整治技术研究”,在回顾汇合口水沙运动研究成果的基础上,选择长江上游沱江汇合口为依托工程,制作了比尺为1:100的正态河工模型,进行了定床和动床试验验证。通过模型试验和理论分析,系统研究了自然来水、向家坝日调节和大坝泄洪情况下沱江汇合口的水力特性及向家坝枢纽泄洪对汇合口河床冲淤变化的影响。详细分析了汇合口纵向、横向水面线、流速分布随汇流比的变化特点;揭示了汇合口水流脉动动能和相对紊动强度在不同流量组合下的分布规律;得出了向家坝枢纽泄洪对沱江汇合口通航水流条件和河床的冲淤变化影响较小,基本能满足通航要求。
In the confluent area, flow pattern is tangled, the changes of sediment erosion and deposition are big, and the condition of navigation is complex. Besides, with the construction of hydraulic engineering complex in the upper reaches of confluent area, the conditions of incoming water and sediment will change greatly and the hub daily regulation and the dam flood discharge will have serious implications for the channel conditions. So it is of great significance to study that the water-sediment movement characteristics on the confluence and the operation of upstream hydraulic engineering complex have a great impact on the navigation flow conditions.
     This paper was carried out from the western communication construction of the "study on the technology of navigation flow condition and regulation in confluent area of the upper reaches of the Yangtze River". In the basis of reviewing the research results on the saliva sediment movement, Tuojiang confluent area is selected as a support project, a undistorted river model with the scale for 1:100 is made, and the fixed bed and the mobile bed experiments are carried on. Through the model text and theoretical analysis, the hydraulic characteristics on the Tuo River confluence affected by the natural runoff, Xiangjia Dam daily regulation and dam flood discharge are studied systematically and the change in scour and fill of bed on the confluence is affected by Xiangjia Dam hub flood discharge. The longitudinal and transversal water surface profiles and the distribution characteristics of velocity affected by confluent ratios are analyzed in detail. The distributions of fluctuating kinetic energy and relative turbulent intensity on the different discharge are mainly studied. It is found that Xiangjia Dam hub flood discharge has little effect on the navigation flow conditions and the changes in scour and fill of bed on the Tuo River confluence and it can basically meet the navigational requirements.
引文
[1]Rouse, H., Dlffusion in the lee of a 2-D Jet.9th inter Cong. of Applied Mech[C]. 1957,307-315.
    [2]Strazsar, A. et al.,The effects of bottom friction on river entrance flow with crossflows Proc 16th Conf. Great Laker Res[C].1973,615-625.
    [3]Carter, H·H., A preliminary report on the characteristics of a heated jet dischanged horizontally into a transverse current Tech Rept. No.61, Johns Hopkins Univ.,Baltimore,Maryland,1969.
    [4]Mikhall, R. et al, The reattachment of a 2-D turbulent jet in a confined Cross-flow 6th IAHR Cong. Sanpolo[C].1975, (3):414-419.
    [5]Anestis, I. D. et al., Entrapment characteristics in a recirculating eddy[J]. Mc-Gill Univ. Tech. Rep No 79-1, Montrea, Canada,1979.
    [6]McGuirk, J. J.& Rodi, W, A depthaveraged mathematical model for the near field of the side discharge into open channel flow[J]. Journal of Fluid Mechanice, 1978,86(4):761-781.
    [7]Best, J. L. et al., Separation zone at open-channel junctions[J]. Journal of the HydrDiv., ASCE,1984,10(11):1588-1594.
    [8]Taylor E H. Flow characteristics at rectangular open-channel junctions [J]. Trans, ASCE,1944,109(2):893-902.
    [9]Webber N B、Greated C A. An investigation of flow behavior at the junction of rectangular channels[J], Proc. of the Institution of civil Engineers,1966, 34 (8):321-334.
    [10]Mosely M P. An experimental study of channel confluences [J], Journal of Geology, 1976,84 (7):538-562.
    [11]Modi P N、 Dandekar M M、Ariel P D. Conformal mapping for channel junction flow[J].Hydr.Div., ASCE,1981,107(12):1713-1733.
    [12]Best J L、Reid L. Separation zone at open-channel junctions[J]. Journal of Hydraulic Engineering, ASCE,1984,110(11):1588-1594.
    [13]Best J L. Sediment transport and bed morphology at river channel confluences [J]. Sediment technology,1988,35 (5):481-498.
    [14]Gaudet J M, Roy A G. Effect of bed morphology on flow mixing length at river confluence[J].Nature,1995,373 (2):138-139.
    [15]Brion. Effect of bed discordance on flow dynamics at open channel confluence [J]. Journal of hydraulic engineering,1996,122(10):994-1002.
    [16]Biron P、 Best J L. Effect of bed discordance on flow dynamics at river confluences [J]. Journal of Hydraulic Engineering, ASCE,1996,122(12):676-682.
    [17]Hsu C C、Lee W L. Flow at 90° equal-width open-channel junction[J]. Journal of Hydraulic Engineering, ASCE,1998,124(2):186-191.
    [18]Bradbook. Role of bed discordance at asymmetrical river confluence[J]. Journal of hydraulic engineering,2001,127(5):351-368.
    [19]R. Ettema, Laboratory observations of ice jams at channel confluences [J]. Journal of Cold Regions Engineering,2001.15(1):34-58.
    [20]Huang J、 Weber L J、 Lai Y G. Three-Dimensional Numerical Simulation of Flow in an Open-Channel junction[J]. Journal of hydraulic engineering,2002, (3):25-33.
    [21]罗保平.汇流河段干支流分界线的实验研究[J].水运工程,1994,(11):13-16.
    [22]周华君,王绍成.长江嘉陵江交汇口水力特征研究[J].水运工程,1994,(12):24-29.
    [23]刘建新,程吕华.山区河流干支流汇流特性研究[J].重庆交通学院学报,1996,15(4):23-26.
    [24]兰波,汪勇.干支流交汇水面形态特征分析[J].重庆交通学院学报,1997,(12):109-114.
    [25]陈德明,王兆印,何耘.泥石流入汇对河流影响的实验研究[J].泥沙研究,2002,(3):22-28.
    [26]奚斌,黄才安,熊亚南,朱积庆.T型河道交汇口模型试验研究[J].灌溉排水学报,2003,(22):54-58.
    [27]茅泽育,赵升伟,张磊等.明渠交汇口二维水力特性试验研究[J].水利学报,2004,(2):1-7.
    [28]郭志学,余斌,曹叔尤,方铎等.泥石流入汇主河情况下交汇口附近变化规律的试验研究[J].水利学报,2004,(1):33-37.
    [29]敖汝庄,郭志学,曹叔尤.泥石流入汇主河淤积规律的水槽试验研究[J].水土保持学报,2004,18(4):196-199.
    [30]茅泽育,赵升伟,罗焊等.明渠交汇口水流分离区研究[J].水科学进展,2005,16(1):7-12.
    [31]郭维东,王晓刚,曹继文等.“Y”型汇流口水流水力特性试验研究[J].水电能源科学,2005,23(3):53-56.
    [32]王晓刚,郭维东,严忠民,冯亚辉,杨天恩.河床高差对“Y”型汇流口水流水力特性的影响[J].中国农村水利水电,2005,(12):16-19.
    [33]王协康,王宪业,卢伟真,刘同宦.明渠水流交汇区流动特征试验研究[J].四川大学学报, 2006,38(2):1-5.
    [34]刘同宦,郭炜,王协康,王宪业.入汇角为30。时交汇区水流结构试验研究[J].长江科学院院报,2007,24(4):75-78.
    [35]冯亚辉,郭维东.明渠交汇水流的螺旋度分析[J].人民长江,2007,38(1):119-121.
    [36]吴迪,郭维东,刘卓也.复式断面河道“Y”型交汇河口水流水力特性[J].水利水电科技进展,2007,27(3):21-23.
    [37]范平,李家春,刘青泉.交汇、分流河道洪水演进模型及其应用[J].应用数学和力学,2004,25(12):1220-1229.
    [38]茅泽育,罗焊,赵升伟等.等宽明渠交汇口水流一维数学模型[J].水利学报,2004,(8):26-32.
    [39]赵升伟,茅泽育.等宽明渠交汇水流数值计算[J].河海大学学报,2005,33(5):494-499.
    [40]张革联,徐剑秋,梅军亚,张潮.二维水沙数学模型及其在汉江入汇河段的应用[J].人民长江,2006,37(12):108-111.
    [41]冯亚辉,郭维东.Y型明渠交汇水流数值计算[J].水利水运工程学报,2006,(4):34-40.
    [42]朱木兰,西本直史.干支流汇合处的二维河床变形数值模拟[J].应用基础与工程科学学报,2007,15(4):450-456.
    [43]茅泽育,赵雪峰,许昕,赵升伟.交汇水流三维数值模型[J].科学技术与工程,2007,7(5):800-805.
    [44]王晓刚.汇流口水流水力特性研究综述[J].中国农村水利水电,2007,(10):82-86.
    [45]徐孝平,彭文启等.直角交汇河段流场特性分析[J].水利学报,1993,(2):22-31.
    [46]钱宁,张仁等.河床演变学[M].北京:科学出版社,1987.
    [47]余文畴,卢金友等.长江河道演变与治理[M].北京:中国水利水电出版社,2005.
    [48]兰波.山区河流交汇河口的综合特性分析[J].重庆交通学院学报,1998,(12):91-96.
    [49]张强,王平义,刘倩颖.山区河流干支流交汇形式的重新划分[J].重庆交通大学学报,2010.
    [50]杨胜发,赵志舟,杨斌.支流入汇干流交界面数值模拟方法研究[J].重庆交通学院学报,2002,(6):115-118.
    [51]王晓刚.“Y”型汇流口水流水力特性试验研究[D].沈阳:沈阳农业大学,2004.
    [52]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [53]惠遇甲,张国生.交汇河段水沙运动和冲淤特性的试验研究[J].水力发电学报,1990,(3):33-42.
    [54]陈月华.干支流交汇河段水流特性计算研究[D].南京:南京水利科学研究院,2007.
    [55]王协康,刘同宦等.受支流入汇作用主河推移质运动演化特征试验研究[J].四川大学学报(工程科学版),2005(6):6-9.
    [56]王平义.长江上游干支流汇合口通航水流条件及整治技术研究大纲[R].重庆交通大学,2008.
    [57]长江干线泸渝段纳溪至娄溪沟航道图测量工程项目部.沱江汇合口航道图[R].2007.
    [58]吴宋仁,陈永宽.港口及航道工程模型试验[M].北京:人民交通出版社,1993.
    [59]交通部.内河航道与港口水流泥沙模拟技术规程[S].北京:人民交通出版社,1999.
    [60]重庆西南水运工程科学研究所.长江上游金钟碛险滩航道整治初步设计阶段模型试验研究报告[R].2004.
    [61]王平义.弯曲河道动力学[M].成都:成都科技大学出版社,1995.
    [62]南京水利科学研究院.长江水富至宜宾航道治理关键技术研究报告[R].2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700