壳体结构谐振特征研究与特征提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下航行体在航行时,会产生各种各样的辐射噪声,主要分为三类:结构噪声、螺旋桨噪声和流噪声,这三类噪声严重影响了航行体的隐蔽性,而其中结构噪声的影响最为明显。为了提高水下航行体的隐蔽性,有必要对噪声特征线谱来源进行研究。论文主要针对壳体结构受激振动时产生的谐振特征线谱进行研究分析。提取水下航行体振动时产生的谐振信号,然后将振动信号转化为时间切片,分析不同频谱分辨率下的相位差随时间的变化情况,获取壳体结构振动与声辐射的线谱时移特征,为分析壳体受激振动产生的谐振特征,分辨水下航行体受激振动产生的谐振特征线谱来源,提供信息处理手段支撑。论文工作主要由以下几个方面展开:
     首先,论文对球壳进行理论计算和有限元仿真分析,验证通过有限元分析软件ANSYS求取壳体结构谐振频率的数值分析方法的正确性,然后对两边带半球帽的加肋圆柱壳进行模态分析和谐响应分析,求出其在水中受激振动的谐振频率。
     其次,论文研究了复调制细化频谱分析方法(Zoom FFT)和全相位FFT (apFFT)谱分析技术。对于窄带信号而言,Zoom FFT是一种有效的频谱细化手段。全相位FFT谱分析算法是一种优良的抑制频谱泄露的方法,在不进行频率校正的基础上,就可实现精确的相位估计,具有“相位不变性”。此外,apFFT还可以在噪声背景条件下,对多频信号的频率、相位以及幅度进行高精度估计。通过对两种算法的仿真研究,验证了两种算法的正确性和可行性。
     最后,设计试验,对两边带半球帽的加肋圆柱壳在水中进行单频激励和宽带激励,并采用复调制细化频谱分析方法(Zoom FFT)对谐振频率处的信号进行细化谱分析,同时提取谐振信号线谱细化后的相位信息,接着采用全相位FFT谱分析技术对细化前的谐振信号线谱进行分析,并提取其相位信息。然后,分析不同频谱分辨率下的相位差随时间的变化情况,提取壳体振动产生谐振时的时移特征,从而实现一种新的壳体结构谐振特征线谱的识别方法。
Due to the large-scale shells navigating underwater, a variety of radiation noise would be produced, which can be segregate into the following three categories:structural noise, propeller noise and current flow noise. Not only the mobility but also the performance of concealment will be limited by the three types of noise, among which the structural noise is the most impactive. In order to improve the concealment property of marine large-scale shells, it is of great necessity to investigate the sources of noise line spectrum.
     In this thesis, the excited resonant vibration line spectra were mainly researched. The resonant signal generated by shell vibration was extracted and converted into time slices. Then the property of phase difference changing with time at different frequency resolution condition was analyzed, which characters the shell vibration and sound radiation characteristics and is named the time shift feature. That serves as a significant approach to distinguish the sources of resonance vibration line spectra. The main contents of this thesis are as follow:
     Firstly, numerical analysis was done for both the spherical shell and the cylindrical shell with a hemispherical cap at both sides. Then the Vibration modes and the resonant responses were analyzed with ANSYS through which the resonant frequencies were confirmed.
     Secondly, the complex modulation spectrum analysis (Zoom FFT) and the all phase FFT (apFFT) spectral analysis technique are analyzed in this thesis. Zoom FFT is an effective method of zooming spectra for narrow-band signals. As for the all phase FFT, it shows great advantage in suppressing the leakage of spectrum. Further more, accurate phase estimation can be achieved without any frequency correction, which benefits from the behavior of phase invariance. In addition, for the multi-frequency signals ruined by noise, high-precision estimations of frequency, phase and amplitude will also be obtained through the apFFT algorithm.Then the feasibility of both algorithms was demonstrated through the computer simulation.
     Finally, the underwater experiments were carried out. The cylindrical shell with a hemispherical cap at both sides was excited by both the single frequency and the broadband signal sources. Then the resonant frequency spectra were zoomed with the Zoom FFT transformation. Meanwhile, the original resonant signals were analyzed with the all phase FFT algorithm to obtain the phase information. Consequently, the feature that the phase difference changes with time at different frequency resolution condition could be extracted. Hence, the above signal processing provides a new promising method to identify the resonant line spectra of shell structures.
引文
[1]殷学文.(多层复合)圆柱壳体的振动和声辐射研究.上海交通大学工学博士学位论文.2008
    [21 姚耀中,林立.潜艇机械噪声控制技术综述.舰船科学技术.2007,29(1),21-26页
    [3]殷学文,黄捷,崔宏飞,华宏星,沈荣瀛.潜艇结构振动和声学特性研究进展.振动与冲击.2008,27(4),85-88页
    [4]何祚镛,赵玉芳.声学理论基础(第一版).国防工业出版社.1981
    [5]G. V. Borgiotti and E. M. Rosen. The State Vector Approach to the Wave and Power Flow Analysis of the Forced Vibrations of a Cylindrical Shell. Part 1:Infinite Cylinders in Vacuum. J. Acoust. Soc. Am.1992,91(2):911-925P
    [6]Junger M C. Dynamic behavior of reinforced cylindrical shells in a vacuum and in a fluid. App. Mech.1954:35-41P
    [7]Bernblit M V. Sound radiation by a thin elastic cylindrical shell with reinforced ribs. Sov. Phys. Acoust.1975,20(5):414-418P
    [8]Rayleigh. Theory of Sound. Dover. L. New York.1945
    [9]K. Forsberg. Influence of the Boundary Conditions on the Modal Characteristics of Thin Cylindrical Shells. AIAA.1964,2(12):2150-2157P
    [10]Wilken. I. D, Soedl W. The recepance method applied to ring-stiffened cylindrical shells. analysis of modal characteristics. J. Sound. Vib.1976,44:563-576P
    [11]钱斌.圆柱壳组合系统振动噪声的有效导纳功率流法研究.西北工业大学博士学位论文,2002
    [12]刘涛,范军,汤渭霖.水中弹性圆柱壳的共振声辐射.声学学报.2002,27(1):62-66页
    [13]Bernblit M v. Sound radiation by a ribbed cylindrical shell. Sov. Phys. Acoust.1976, 21(6):518-521P
    [14]Keltie R F. The effect of hydrostatic pressure fields on the structural and acoustic response of cylindrical shells. Acoust. Soc. Am.1986,79(3):595-603P
    [15]王三德.水下复杂弹性壳体的相似性研究.哈尔滨工程大学博士论文.2005
    [16]王林泓,杨浩.经典谱分析中的分辨率.华北电力大学学报.2002,29(增刊)
    [17]余海强.离散密集频谱的校正方法研究.北京化工大学硕士学位论文.2009
    [18]余海强,马波,江志农,高金吉Chirp-Z变换在振动信号处理中的应用.计算机 仿真.2010,27(1):319-322页
    [19]徐卓华.基于MATLAB的ZOOM FFT在水声测量中的应用.声学与电子工程.2004,4:13-16页
    [20]汤宝平,李瑞,章国稳.基于分段频谱细化的频响函数优化.重庆理工大学学报(自然科学).2010,24(10):1-6页
    [21]U Fincke. M Phost. Improved Methods for Calculating Vecmrs of Short Length in a Lattice, Including a Comp lexity Analysis. Mathematics of Computation.1985,44(4): 463-471P
    [22]E. A. Hoyer, R.F.Stork. The Zoom FFT using Complex Modulation. IEEE IC ASSP.1971,77:78-81P
    [23]E Viterbo, J Boutros. A UniversalLattice Code Decoder for Fading Channels. IEEE Trans. Inform. Theory.1999,45:1639-1642P
    [24]H. W. Mckinney. Band-Selectable Fourier Analysis. Hewlett-Packacd Qournal.1975, 26:20-24P
    [25]丁康,谢明等.基于复解析带通滤波器复调制细化谱分析原理和方法.振动工程学报.2001,1(14):29-35页
    [26]高怀钢,王华.一种分析频谱局部特性的快速算法.火控雷达技术.1999,28:14-20页
    [27]Cooley J W, Tukey J W. An algorithm for the machine computation of complex Fourier series. Mathematics of Computation.1965,19 (4):297-301P
    [28]王兆华,H.Amiri.用二维重叠数字滤波器再生亚Nyquist取样信号.天津大学学报.1983, (1):47-63页
    [29]王兆华.二维抽取和内插.信号处理.1987,3(4):215-221页
    [30]王兆华.图像放大的内插模板.电视技术.1988, (4):2-7页
    [31]侯正信.离散余弦列率滤波器的设计和应用.天津大学学报.1999,15:128-131页
    [32]王兆华,曹继华,韩萍.FOUREIER重叠数字滤波器.信号处理.2001,17(2):189-191页
    [33]侯正信,王兆华,杨喜.全相位DFT数字滤波器的设计与实现.电子学报.2003,31(4):769-773页
    [34]王兆华,侯正信,苏飞.全相位数字滤波.信号处理.2003,19(增刊):1-4页
    [35]王兆华,侯正信,苏飞.全相位FFT频谱分析.通信学报.2003,24(11A):6-19页
    [36]苏飞.带窗全相位数字滤波器设计和应用.天津大学博士学位论文.2004
    [37]黄晓红.全相位数字间断信号处理.天津大学博士学位论文.2006
    [38]黄翔东.全相位数字信号处理.天津大学博士学位论文.2006
    [39]邓振淼,刘渝.基于全相位频谱分析的正弦波频率估计.数据采集与处理.2008,23(4):449-458页
    [40]张凯,陈建春.加窗全相位半带滤波器在PR QMF组中的应用.电子科技.2007,29(3):573-576页
    [41]侯承环.全相位数字滤波技术的理论研究及推广.北京航空航天大学硕士学位论文.2006
    [42]郝文化,肖新标,沈火明等.ANSYS7.0实例分析与应用.清华大学出版社.2004
    [43]东方人华,祝磊,马赢.ANSYS7.0入门与提高.清华大学出版社.2004
    [44]邓凡平.ANSYS10.0有限元分析自学手册.人民邮电出版社.2006
    [45]郝承智.水下加肋壳体振动与声辐射特性研究.西北工业大学硕士学位论文.2006
    [46]张峰.正交面齿轮传动的动力学分析研究.南京航空航天大学硕士学位论文.2008
    [47]何作镛.结构振动与声辐射.哈尔滨工程大学出版社.2001
    [48]张揽月.有畸变存在时壳体辐射声场相似性的研究.哈尔滨工程大学硕士学位论文.1999
    [49]M. C. Jungle, David Feit. Sound Structures and Their Interaction.151-304P
    [50]商德江.复杂弹性壳体水下结构振动和声场特性研究.哈尔滨工程大学博士论文.2000
    [51]赵经文,王宏钰.结构有限元分析(第一版).科学出版社.1978
    [52]John T. Hunt, Max R. Knittel, Don Barach. Finite element approach to acoustic radiation from elastic structures. J. Acoust. Soc. Am.1974,55(2):269-280P
    [53]俞孟萨.有限长加肋弹性柱壳的振动及声辐射研究.哈尔滨船舶工程学院硕士论文.1989
    [54]黄翔东,王兆华.全相位DFT抑制谱泄漏原理及其在频谱校正中的应用.天津大学学报.2007,40(7):883-886页
    [55]王兆华,黄翔东.数字信号全相位谱分析与滤波技术.电子工业出版社.2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700