红外成像观测系统性能评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外成像与红外成像探测是当今红外技术领域中最为活跃的两个研究方向,以热像仪为主要组成部件的红外成像观测系统将在红外侦察、预警和制导等领域得到日益广泛的应用。红外成像观测系统由目标源、传输信道、热像仪和观测者等组成,在将场景中的热辐射转换为相应的图像输出的过程中,要经过大气媒介、光学部件、探测器、电子部件、显示装置、人眼观测等多个环节。综合性能是描述红外成像观测系统成像质量和预测其外场目标探测性能的总体指标,综合性能评价模型用于研究红外成像观测系统的目标探测概率(即系统作用距离)和图像质量、视觉感知能力的定量关系。
     红外成像技术经历了单元扫描、多元扫描、二维凝视焦平面、多波段多光谱成像等阶段,早期扫描型热像仪的综合性能评价理论研究比较系统深入,目前随着红外焦平面阵列成像探测技术的迅速发展,其灵敏度或信噪比已大幅度提高,而空间分辨率又有限,还存在着非均匀性等问题,此时仍然沿用早期的性能评价模型既不够全面,也不够准确。本文主要研究采用红外焦平面凝视阵列成像技术的红外成像观测系统的综合性能预测技术及目标探测性能分析技术。
     本文从深入分析成像观测过程的光电测量信道入手,建立了完整的红外成像观测系统传输信道数学模型,以综合性能评价模型研究为引领,回顾了红外成像观测系统综合性能评价模型的发展进程及其优缺点,通过引入人眼观测的对比度传输函数,完善了传统性能模型的不足,对多波段下系统的探测性能进行了具体的分析,主要研究成果如下:
     1.通过理论分析建立了完整的红外成像观测系统信号通道传输模型,得到了影响系统成像质量的各项物理参数;
     2.以重建场景温度分布为目的,对传输信道中影响空间重建性能的各部件的调制传递函数MTF进行了逐一分析;建立了完整的红外成像系统的温度测量不确定度模型,给出了衡量系统测量精度的方法;提出了一种提高测量精度的时域滤波与频域修正方法,并将其应用于空间频率域,对图像高频增强的效果进行了分析;
     3.针对红外焦平面凝视阵列热像仪发展采取的新技术和遇到的新问题,重点研究了空间欠采样下的虚假响应特性,细化了图像混叠量对系统探测性能的不良影响,针对采用NETD指标描述温度分辨率时的局限性,采用3-D噪声模型方法细化了焦平面热像仪的灵敏度或信噪比;
     4.通过引入人眼观测时的噪声特性、对比度传输特性和带通滤波器特性,以及红外图像显示装置的噪声及和对比度模型,完善了传统的综合性能预测模型,分别建立了基于最小分辨温差的MRTD方法和基于对比度阈值函数的CTF方法对红
     5.针对多波段红外成像技术信息获取问题,提出了基于PCA技术的多波段图像信息的去冗余方法,给出了多光路图像采集下空间光轴一致性的标校方法。
     本文是一篇理论研究与工程技术应用相结合的学位论文,是作者从事多种红外成像观测系统工程研发项目的总结和提高,其中的观点和方法多属作者自身科研工作研究成果的理论提升,它对红外成像观测系统综合性能的理论分析、测量方法及性能提高措施具有一定的理论意义,对目标红外辐射特性研究与红外成像探测技术应用具有较好的指导价值。
Infrared imaging and detection techniques are the two most active research areas innow days, the Infrared Imaging and Observation System (IIOS) with thermal imager asits main component is widely used in thermal reconnaissance, warning and guidancearea. The infrared imaging and observation system is composed of target source,transmission channel, thermal imager and observer. The basic physical process ofinfrared imaging system is converting the thermal radiation of scene to thecorresponding output image, which should pass through many stages such as theatmosphere media, optical components, detectors, electronic components, displaydevice, and human eye, etc. The overall performance is the all-in-one specification usedto describe the image quality and estimate field performance of the infrared imaging andobservation system. The Overall Performance Evaluation Model is used to study thequantitative relationship between the target delectability (at different distance) withimage quality and vision acuity.
     Infrared imaging technique has pass stages of one-detector scan, multi-detector scan,to the staring array and multi-band imaging now days. The performance theory for earlyscan imager is well enough. With the quickly progress of FPA(Focal Plane Array)imager technique, the sensibility or Signal to Noise Ratio has promote a large amount,but the resolution is not enough, and give rise to non-uniformity also, then the earlymodel is neither broadly nor precise enough. The technique of overall performanceevaluation and target detestability performance analysis for infrared imaging andobservation system based on infrared FPA staring imaging technique were analyzed inthis thesis.
     Starting with an in-depth analysis of the optical-electronic measurement channelof the infrared imaging system, a complete mathematical model of signal transmissionchannel for infrared imaging and observation system was established. The history ofoverall performance evaluation model with its advantages and disadvantages of theinfrared imaging and observation system were reviewed. The previous model wasimproved through the introduction of the CTF (Contrast Transfer Function) of humaneyes, a specific analysis of the capability of multi-band target detection andidentification were carried out. The research result of this thesis is as follows.
     1. The whole signal transmission channel model was established throughtheoretical analysis; all the physical parameters that influence the imaging quality wereobtained.
     2. Aiming at reconstruction the temperature distribution of scene, the ModulationTransfer Function model of all the components in transmission channel was analyzed. Ameasurement uncertainty model of the system was established, and a standardmeasurement method of which is provided too. The method of time-domain filteringand frequency-domain correction method to improve the measurement accuracy ofsystem was put forward and applied in space-frequency domain; the result of highfrequency boost was analyzed also.
     3. As for the new problem faced on by the thermal FPA imaging technique, theSpurious Response characteristic of under-sampled space model was analyzed,performance decreases with quantity of aliasing was precisely analyzed; since theNETD is not fit for PFA imager, the3-Dimension noise model was provided to describethe sensitivity or SNR.
     4. The previous model was improved through the introduction of the vision noise,contrast transfer function, and band pass filter of human eyes with analysis of contrastlimit and filter characteristic of human vision. Two kind of target delectabilityperformance model varied with distance were established, one based on the MRT curveand another based on the CTF curve.
     5. Aiming at the information acquiring of multi-band thermal imager, a method fordecrease the image information redundancy based on the PCA (Principal ComponentAnalysis) was proposed, a calibration method of optical axis coherence in space formulti optical axis image acquisition were given.
     This thesis is a combination of the theoretical research and engineering applicationsummed and improved by the author with a variety of infrared imaging system designand engineer application, many point of views and methods of which are the progresscome from research of engineering experience by the author, which gives importantvalue for the theoretical analysis, measurement method, and performance improvementfor the overall performance of infrared imaging and observation system, and is withimportant guide value also for target infrared signature research and engineeringapplication of the infrared imaging and observation system
引文
[1]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004年.1-2.
    [2]孙志君.红外焦平面阵列技术的未来二十年[J/OL]. http://www.cqvip.com.传感器世界.2002-11-3.
    [3] Schade, Otto Sr. Optical and Photoelectric Analog of the Eye[J]. JOSA,1956,49(9):721-739.
    [4] Night Vision Thermal Imaging System Performance Model User’s Manual&ReferenceGuide[M]. Rev.5U.S Army NVESD2001.
    [5] Richard H, Vollmerhausen R, Eddie J. The Targeting Task Performance (TTP) Metric ANew Model for Predicting Target Acquisition Performance[R]. NVESD Technical ReportAMSEL-NV-TR-230,2003
    [6] Beaton, R.J., W.W. Farley. Comparative study of the MTFA, ICS, and SQRI imagequality metrics for visual display systems[R]. Armstrong Lab., Air Force SystemsCommand, Wright-Pattrerson AFB,OH. AL-TR-1992-0001, DTIC ADA252116,1991.
    [7] Biberman, Lucien. System performance and image quality In Electro-Optical Imaging:System Performance and Modeling, Chapter22[M]. SPIE and ONTAR Corp.,2000,Bellingham, WA.
    [8] Coltman, J. W. Scintillation Limitations to Resolving Power in Imaging Devices[J]. Opt.Soc. Am.1954,44(3):234–237.
    [9] Johnson, J. Analysis of imaging forming systems[J]. Proceedings of the Image IntensifierSymposium, October6-7,1958, AD220-160, U.S. Army Engineer Research andDevelopment Lab, Fort Belvoir, VA,249-273.
    [10] P. Owen and J. Dawson. Resolving The Differences In Oversampled and UndersampledImaging Sensors: Updated Target Acquisition Modeling Strategies for Staring andScanning FLIR Systems[J]. SPIE Vol1689,1992:251.
    [11] L. Scott and J. D’Agostino, NVESD FLIR92thermal imaging systems performancemodel, Proc. SPIE, Vol.1689, Infrared Imaging,1992:194-203.
    [12] U. S. Army Night Vision and Electronic Sensors Directorate, FLIR92Thermal ImagingSystems Performance Model, Analyst’s Reference Guide[M]. Ft. Belvoir, VA,1993.
    [13] Driggers, R.G., R. Vollmerhausen, W. Wittenstein, P. Bijl, M. Valeton, Infrared ImagerModels for Undersampled Imaging Systems, Proceedings of the Fourth Joint MilitarySensing Symposium,2000, vol.45:335-346.
    [14] R. H. Vollmerhausen, R. G. Driggers, B. L. O’Kane, Influence of sampling on targetrecognition and identification[J]. Opt. Eng.1999:38,763.
    [15] Rosell, Fred. Synthesis and Analysis of Imaging Sensors. Chapter14in Electro-OpticalImaging: System Performance and Modeling[M]. Lucien Biberman Ed.,SPIE andONTAR Corp,2000.
    [16] Biberman, Lucien. Alternate modeling concepts. Chapter11In Electro-Optical Imaging:System Performance and Modeling[M]. Lucien Biberman, Ed., SPIE and ONTAR Corp.,Bellingham, WA,2000.
    [17] Overington, Ian, Vision and Acquisition[M]. Crane, Russak&Company, N.Y.1976.
    [18] Vos, Johannes, and Aart van Meeteren. PHIND: an analytic model to predict targetacquisition distance with image intensifiers[J]. Applied Optics,199130(8):958-966.
    [19] O’Kane, Barbara, Irving Biederman, and Eric Cooper, Modeling parameters for targetidentification: A critical features analysis, In Electro-Optical Imaging: SystemPerformance and Modeling, Chapter15[M]. Lucien Biberman Ed., SPIE and ONTARCorp., Bellingham, WA,2000.
    [20] J. A. Ratches, NVL modeling,historical perspective, Proc. SPIE Conf. on InfraredImaging Systems,1999,3701,1.
    [21]J. A. Ratches, R. Vollmerhausen, and R. Driggers, Target Acquisition PerformanceModeling of Infrared Imaging Systems: Past, Present, and Future[J]. IEEE SensorsJournal,2001,1(1):31-40.
    [22] L. M. Biberman (Ed.), Electro-Optical Imaging System Performance and Modeling,Ch.12[M]. SPIE, Bellingham, WA,2000.
    [23] J. C. Leachtenauer, R. G. Driggers, Surveillance and Reconnaissance Imaging SystemsModeling and Performance Prediction[M].1st ed., Artech House, Massachusetts,2001.
    [24] H. L. Van Trees, Detection, Estimation, and Modulation Theory[M].1st ed., John Wileyand Sons, New York,2001.
    [25] P. Bijl, M. A. Hogervorst, and J. M. Valeton. TOD, NVTherm, and TRM3modelcalculations: a comparison[J]. Proceedings of SPIE,2002,vol.4719:51-62.
    [26]金伟其,王吉辉,王霞等.红外成像系统性能评价技术的新进展[J].红外与激光工程2009,38(1):7-13.
    [27]王晓蕊,张建奇,冯卓祥等.三角形方向鉴别阈值性能理论模型研究[J].红外与毫米波学报,2006,25(2):118-122.
    [28] Gary L. Orlove, Robert P. Madding. Answers to the Common Questions People Askabout Infrared Thermography[EB/OL]. http://www.true-spec.com/ir-inspections.asp.
    [29]吴宗凡,柳美琳,张绍举等.红外与微光技术[M].北京:国防工业出版社,1998.18-19.
    [30] Herbert M, Runciman. Thermal imaging[M]. Pilkington Optronics,1999by CRC PressLLC.
    [31]徐之海,李奇.现代成像系统[M].北京:国防工业出版社,2001.09.
    [32] F.X. Kneizys, E.P. Shettle, L.W. Abreu, etc. Users’Guide to LOWTRAN7, Report no.AFGL-TR-88-0177Hanscom, Air Force Geophysics Laboratory,1988.
    [33] Mattias Sonesson, A Probabilistic Approach to Conceptual Sensor Modeling[EB/OL].http://www.ep.liu.se/exjobb/isy/2004/3428.
    [34] M.J. Riedl, Optical Design Fundamentals for Infrared Systems[M]. Bellingham, WA,SPIE Opt. Eng.1995,55.
    [35]周慧鑫,程玉宝,刘上乾,王炳健.红外焦平面阵列器件非均匀性分析[J].半导体光电,2003,24(06).
    [36]姜光,刘上乾.红外焦平面阵列非均匀性自适应校正算法研究[J].红外与毫米波学报,2001,2(2):93-96.
    [37]J. A. Ratches, W. R. Lawson, L. P. Obert, R. J. Bergemann, etc. NVL Static PerformanceModel for Thermal Viewing Systems. U. S. Army, Army Electronics Command, Ft.Monmouth, NJ. Tech. Rep. ECOM-7043, April,1975.
    [38] Night Vision Thermal Imaging Systems Performance Model Users Manual andReference Guide[M]. U. S. Army Night Vision and Electronic Sensors Directorate, Ft.Belvoir, VA,2002.
    [38] van Meetern, A.,Characterization of task performance with viewing instruments[J].JOSA A,1990,7(10):2016-2023.
    [39] NATO, STANAG4347LAND (ed.1), Definition of Nominal Static Range Performancefor Thermal Imaging Systems[J]. MAS/209-LAND/4347,1995.
    [40] Vollmerhausen, Richard H., Eddie Jacobs, and Ronald Driggers,New metric forpredicting target acquisition performance, Proc. SPIE Vol.5076, Infrared ImagingSystems: Design, Analysis, Modeling, and Testing XIV[M]. Gerald C. Holst; Ed,2003.
    [41] R. Vollmerhausen. Impact of display modulation transfer function on the quality ofsampled imagery. Aerospace/Defense Sensing and Controls. Society of Photo-Optic andInstrumentation Engineers,1996,2743-09.
    [42] K. Chrzanowski, Non-contact thermometry-Measurement errors, SPIE PL, Research andDevelopment Treaties, Vol.7, Warsaw,2000.
    [43] Guide to the expression of uncertainty in measurement, International Organisation forStandarisation-International Electrotechnical Commission-International Organisation ofLegal Metrology-International Bureau of Weights and Measures, TAG4/WG3,1993.
    [44]彭利军,杨坤涛,章秀华.光学测温技术中的物理原理[J].红外.2006,10(27):1-4.
    [45] Chrzanowski K., Szulim M. A measure of influence of detector noise on temperaturemeasurement accuracy with IR systems[J]. App. Opt.,1998,37:5051-5057.
    [46] K. Chrzanowski, J. Fischer, R Matyszkiel, Testing and evaluation of thermal cameras forabsolute temperature measurement[J]. Opt. Eng.2000,39:2535-2544.
    [47] J. Hartmann, J. Fischer. Calibration and investigation of infrared camera systemsapplying blackbody radiation[M].Thermosense XXIII, Orlando, USA,2001.
    [48] Characteristics of Thermal Imagers[EB/OL]. http://www.inframet.com.
    [49] Chrzanowski, K. J. Fischer,R. Matyszkiel. etc. Evaluation of uncertainty of temperaturemeasurewment with thermal cameras[J]. Opt. Eng.2001,40(6):1106-1114.
    [50] Krzysztof Chrzanowski, Evaluation of thermal cameras in quality systems according toISO9000or EN45000standards, Military University of Technology, Institute ofOptoelectronics, Warsaw, Poland.
    [51] K. Chrzanowski, R. Matyszkiel, A software package for uncertainty calculations oftemperature measurements with thermal cameras, Quantitative Infrared ThermographyConference QIRT-2000, Reims, France,2000.
    [52]黄正平,爆炸与冲击电测技术[M].北京:国防工业出版社,2006,55-64.
    [53] Fred Molinari, Product Handbook2001[M]. Data Translation, Inc.2001,157-161.
    [54] Tanja C Hofner. Defining and testing dynamic ADC parameters, Microwaves&RF[J],2000,39(11)75-81.
    [55] Application Note5962-0015E, Precision Time-Domain Measurements using the AgilentE1430A[M], Agilent Technologies, Aug2000,2-4.
    [56]戴鹏飞,王胜开,王格芳等.测试工程与LabVIEW应用[M],北京:电子工业出版社,2006,103-109.
    [57]寇小明,郭恩全,高天德.提高自动测试系统测量精度的时域滤波与频域修正方法[J].电子测量与仪器学报,2007,21(1),11-14.
    [58]41R. Vollmerhausen and R. Driggers, Analysis of Sampled Imaging Systems, SPIEPress, Bellingham Washington,2000.
    [59]42J.A. Ratches, et.al., Night Vision Laboratory Static Performance Model for ThermalViewing Systems[R]. Research and Development Technical Report ECOM-7043, USArmy Electronics Command, Fort Monmouth, N.J.1975.
    [60]J. Howe, L. Scott, S. Pletz, J. Horger,etc. Thermal Model Improvement ThroughPerception Testing[J]. Proceedings of the IRIS Specialty Group on Passive Sensors,Infrared Information Analysis Center, ERIM, Ann Arbor, MI,1989.
    [61]牛建军,刘上乾,姚荣辉等.高准确度光电成像测量系统图像畸变校正算法[J].光子学报,2006,35(9).
    [62] W. Wittenstein, J. Fontanella, A. Newberry, and J. Baars. The Definition and the OTFand the Measurement of Aliasing for Sampled Imaging Systems. Optica Acta,1982,29(1):50.
    [63]Vollmerhausen, Richard H. Modeling the Performance of Imaging Sensors, InElectro-Optical Imaging: System Performance and Modeling[M]. Biberman Ed., SPIEand ONTAR Corp., Bellingham, WA,2000.
    [64] Krapels, D., R. Driggers, and R. Vollmerhausen, Performance Comparison ofRectangular (Four Point) and Diagonal (Two Point) Dither in Undersampled InfraredFocal Plane Array Imagers, Applied Optics, Vol40, No1, Jan., pg71-84,2001.
    [65]R. Vollmerhausen and R. Driggers, Analysis of Sampled Imaging Systems, SPIE Press,Bellingham Washington,2000.
    [66]Herbert M. Runciman, Thermal imaging, Pilkington Optronics,1999by CRC Press LLC.
    [67]Night Vision Thermal Imaging System Performance Model User’s Manual&ReferenceGuide[M]. Rev.5U.S Army NVESD2001.
    [68]R. G. Driggers, C. Webb, S. J. Pruchnic Jr.etc. Laboratory measurements of sampledinfrared imaging system performance[J]. Opt.Eng.,38,852,1999.
    [69]E. L. Dereniak, and G. D. Boreman, Infrared Detectors and Systems, Ch.14[M]. p.531,John Wiley and Sons, Inc.,1996.
    [70] E. Jacobs, J. Cha, K. Krapels, and V. Hodgkin, Assessment of3-D Noise Methodologyfor Thermal Sensor Simulation, Proceedings of SPIE,2001,vol.4372:154-161.
    [71] Krapels, K., R. Driggers, R. Vollmerhausen, C. Halford. The Influence of Sampling onRecognition and Identification Performance[J]. Opti.Eng,.36(5),1999.
    [72] Steven K. Moyer. Modeling Challenges of Advanced Thermal Images[D]. GeorgiaInstitute of Technology,2006.46-47.
    [73] Devitt, Nicole, Ronald G. Driggers, Richard Vollmerhausen, Steve Moyer, Keith Krapels,and John O’Connor, Target Recognition Performance as a Function of Sampling, Proc.SPIE, Sept,2001, Vol.4372, p.74-84, Infrared Imaging System: Design, Analysis,Modeling, and Testing XII, Gerald C. Holst;Ed..
    [74] Vollmerhausen, Richard H.; Driggers, Ronald G.; Tomkinson, Michelle. Improved imagequality metric for predicting tactical vehicle identification. Proc. SPIE Vol.4030,60-69,Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XI, Gerald C. Holst;Ed,07/2000.
    [75] Fernandez, Ralph Nelson, Helga Kolb, etc,. The organization of the retina and visualsystem[EB/OL]. Webvision.med.utah.edu, Part IX,“Psychophysics of Vision,” byMichael Kalloniatis and Charles Luu, Sections2and4, September,2003.
    [76] Yau, K.-W. Phototransduction mechanisms in retinal rods and cones. Invest. Ophthal.Vis. Sci.1994,35,9-32.
    [77] Lu, Zhong-Lin and Barbara Anne Dosher, Characterizing human perceptualinefficiencies with equivalent internal noise, JOSA A, Vol.16, No.3,1999.
    [78]Vollmerhausen, R. Incorporating Display Limitations into Night Vision PerformanceModels. IRIS Passive Sensors, V2,1995,11-31.
    [79]56Barten, P.G.J., Contrast Sensitivity of the Human Eye and its Effects on ImageQuality, SPIE Press, Bellingham, WA,1999.
    [80] M. C. Dudzik. Electro-Optical Systems Design, Analysis, and Testing. The Infrared andElectro-Optical Systems Handbook, Vol.4, Environmental Research Institute ofMichigan, Ann Arbor, Michigan,1993.
    [81] Mattias Sonesson. A Probabilistic Approach to Conceptual Sensor Modeling[D].Link ping University. http://www.ep.liu.se/exjobb/isy/2004/3428/
    [82] Z. Fang, G. Zhiyun, S. Meikai, and L. Guangrong, An approach for MTF measurementof discrete imaging system, Proc. SPIE Conf. on Electr. Imaging and Multimedia Tech.,4925,668,2002.
    [83] C. Webb. Laboratory Analysis of Discretely Sampled Thermal Imaging Systems. Proc.of IRIS Passive Sensors,1,311,1990.
    [84] P. Bijl and J.M. Valeton. Triangle orientation discrimination: the alternative to minimumresolvable temperature and minimum resolvable contrast [J]. Opt. Eng,1998,37(7):1976-1983.
    [85] Schloss Kressbach. Minimum temperature difference perceived-a new approach to assessundersampled thermal imagers [J]. Opt.Eng,1999,38(5):773-781.
    [86] S. Park and R. Schowengerdt, Image Sampling, Reconstruction, and the Effect ofSample-Scene Phasing, Applied Optics, Vol21, No17, pg3142.
    [87]寇小明,刘上乾,洪鸣,等.红外热像仪综合性能的客观评价及实现技术.哈尔滨工业大学学报[J].2010,42(9):682-686.
    [88] Kornfeld, G.H., and W.R. Lawson. Visual Perception Models. JOSA,1971,61(6):811-820.
    [89] Rosell, Fred and R.H. Wilson. Recent Psychophysical Experiments and the Displaysignal to Noise Ratio Concept. In Perception of Displayed Information, Chapter5, LucienBiberman, Ed., Plenum Press, N.Y.1973.
    [90] C. M. Webb and C. E. Halford, Dynamic Minimum Resolvable Temperature DifferenceTesting for Staring Array Imagers, Opt. Eng.,1999,38,845.
    [91] R. Vollmerhausen, R. G. Driggers, C. Webb, and T. C. Edwards, Staring imagerminimum resolvable temperature measurements beyond the half sample rate, Opt. Eng.,37,1763,1998.
    [92] Rosell, Fred and R.L. Sendall. Static Performance Model based on the PerfectSynchronous Integrator Model. Chapter13in Electro-Optical Imaging: SystemPerformance and Modeling[M] Lucien Biberman Ed.,SPIE and ONTAR Corp,2000.
    [93]寇小明,刘上乾,洪鸣,等.一种自适应红外图像增强自适应增强技术.西安电子科技大学学报[J].2009,36(6):1070-1074.
    [94] Driggers, Ronald G.;Vollmerhausen, Richard H.;Krapels, Keith A., Target identificationperformance as a function of low spatial frequency image content[J]. OpticalEngineering,2000,39(09),2458-2462.
    [95] R. G. Driggers, R. H. Vollmerhausen, B. L. O’Kane. Equivalent Blur as a function ofspurious response of a sampled imaging system: application to character recognition[J].Journal of the Optical Society of America A,16(5), May,1999.
    [96] M. Self, B. Miller, and D. Dixon, Acquisition Level Definitions and Observables forHuman Targets, Urban Operations, and the Global War on Terrorism, U. S. Army, NightVision and Electronic Sensors Directorate, Ft. Belvoir, VA Tech. Rep. AMSRD-CER-NV-TR-235March,2005.
    [97] M. P. Satyshur, D. A. Scribner, and M. R. Kruer, Multispectral Imaging: Band Selectionand Performance Predictions, Proc. IRIS Specialty Group on Targets and Backgrounds,1997.
    [98] K. J. Barnard, M. T. Eismann, C. R. Schwartz., and M. Nayeri, Optimization of ThermalMultispectral Sensors for Detecting Camouflaged and Concealed Targets, Proc. MSSNational Military Sensing Symposium,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700