细晶Si_3N_4/Al_2O_3复合陶瓷材料的制备及其力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化硅复合陶瓷具有优良的物理、力学性能和耐磨、耐腐蚀特性,因而受到人们的广泛关注;但是该材料的脆性断裂特性依然存在,而且其机械可靠性也不尽如意,因此有必要进一步深入研究以充分发挥其性能优点。细化晶粒改善陶瓷性能是当前研究的热点。本文用热压方法制备了细晶氮化硅/氧化铝复合陶瓷,并对该材料的原料粉末的特性、烧结工艺、致密特性及力学性能进行了比较深入的实验研究和理论探讨,为下一步研究打下实验和理论基础。
     首先研究了原料粉末的性能。研究发现原料粉末的团聚特性、氧吸附性对材料的烧结工艺、力学性能影响较大;对原料粉末在1200℃下进行热处理,可以使原料粉末转晶和钝化,最终烧结成细晶复合陶瓷。
     其次研究了烧结温度和气氛对细晶陶瓷致密特性、力学性能的影响。随着烧结温度升高,材料的致密度上升,抗弯强度和硬度提高,但断裂韧性的变化与添加剂有关;当烧结气氛是氮气时,能有效地抑制原料粉末的分解和氧化;而当烧结气氛是氩气时,则会发生较严重的氧化现象。
     再次研究了烧结添加剂种类对该材料的致密特性、力学性能的影响。随着烧结添加剂种类的增加,在相同温度下材料的致密度上升,力学性能提高。但当添加剂中氮含量升高到一定程度时就会得到相反的结果。
     最后研究了烧结添加剂的数量对该材料的致密特性、力学性能的影响。随着烧结添加剂量的增加,在相同温度下材料的致密度上升,力学性能的变化与材料中的致密度、第二相粒子及晶间相有关。
SisN'-based composite ceramics have attracted attention owing to its
    outstanding physical, mechanical properties and high wear-resistance, good
    erosion-resistance. But the fatal brittleness still exists in these materials, and the
    mechanical reliability is also low. The fine crystalline ceramics was researched
    popularly at present. In this thesis, the fine-crystalline Si3N4/Al2O3 composite
    ceramics were prepared by hot pressing. The phenomena including the properties of
    powder, sintering process, densification and mechanical properties were discussed
    by the experimented research and theoretical analysis. The experimenta1 and
    theoreticaI basis has been presented for further research.
    First, the research on the properties of powders was done. The results
    revealed that the formation of agglomerates and the absorbed oxygen affected the
    sintering process and mechanical properties of these fine-crystalline materials.
    When the powders have been heat-treated at 1200C, the fine crystalline materia1s
    have been obtained due to the phase transformation and thermal inactivation.
    Second, the research on the effect of the sintering temperature and the
    protective gas on the densification and the mechanical properties of these materials
    was worked on. The higher the sintering temperature, the higher the density. the
    better bend strength and hardness. but the variation of fracture toughness properties
    depended on the kind of addition. When the protective gas was N2, the oxidation
    and the decomposition have been pressed. But when Ar was used, the serious
    oxidation has been happened.
    Third, the research on the effect of the kind of addition on the densification
    and the mechanical properties of these materials was conducted. Under the same
    temperature, with the increase of the sort of the additions, the density and the
    mechanical properties of these materials have increased. But a proper proportion of
    nitrogen in the addition should been defined, otherwise, a contrary result has been
    rec eived.
    Last, the research on the effect of the quantity of addition on the densification
    and the mechanical properties of these materials was done. Under the same
    temperature, with the increase of the quantity of the additions, the density has
    increased, and the variation of the mechanical properties of these materials
    
    
    depended on the density and the quantities of the second-phase particle and intercrystalline phase of these materials.
引文
[1] 李见.新型材料导论.北京:冶金工业出版社,1986:86
    [2] 李荣久.陶瓷-金属复合材料.北京:冶金工业出版社,1995:Ⅶ
    [3] 师昌绪.新型材料与材料科学.北京:科学出版社,1988:2
    [4] 董文麟.氮化硅陶瓷.北京:中国建筑工业出版社,1987:1-15
    [5] M.S.斯温.陶瓷的结构与性能.北京:科学出版社,1998:93
    [6] 张云,刘建华.非金属工程材料.北京:轻工业出版社,1987:216
    [7] 科学普及出版社编辑部及中央人民广播电台科技组编.新型材料知识.北京:科学普及出版社,1988
    [8] 王魁汉,郝士明,王君超.开拓未来的新材料.北京:冶金工业出版社,1989
    [9] 张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001
    [10] 张立德.纳米材料研究的新进展及在 21 世纪的战略地位.中国粉体技术.2000;6(1):1-5
    [11] 潘劲松,黄学辉,顾少轩.纳米材料的类别划分及其依据.材料导报.2000;14(11):28-29
    [12] U.Betz, A.Sturm, J.F.Loffier, W. Wagner, A.Wiedenmann, H.Hahn. Microstrural development during final-stage sintering of nanostructured zirconia based ceramics. Materials Science and Engineering. 2000; A281: 68-74
    [13] 赵秦生,胡海南.新材料与新能源.北京:轻工业出版社,1987
    [14] Catherine L.Hewett, Yi-Bing Cheng, Barry C.Muddle. Phase Relationships and Related Microstructure Observations in the Ca-Si-Al-O-N System. J.Am. Ceram. Soc. 1998; 81(7): 1781-88
    [15] C.J.Spacie, K.Liddell, D.P. Thompson. The U-phase in heat-treated Sialon ceramics. Journal of Materials Science Letters. 1988; 7:95-96
    [16] Wei-Ying Sun, Tseng-Ying Tien, Tung-Sheng Yen. Subsolidus Phase Relationships in Part of the System Si, Al, Y/N, O: The System Si_3N_4-AlN-YN-Y_2O_3. J.Am. Ceram. Soc. 1991; 74(11): 2753-58
    [17] Zhen-Kun Huang, Yao-Zhong Jiang, Tseng-Ying Tien. Formation of a-Sialons with dual modifying cations(Li+Y and Ca+Y). Journal of Materials Science Letters. 1997; 16:747-751
    [18] Thommy Ekstrom, Lena K.L.Falk, Zhi-Jian Shen. Duplex α-β-Sialon Ceramics Stabilized by Dysprosium and Samarium. J.Am. Ceram. Soc. 1997; 80(2): 301-12
    
    
    [19] 崔国文.缺陷、扩散与烧结.北京:清华大学出版社,1990
    [20] 张艳丽.热压氮化硅-氧化锆复合陶瓷的研究:[硕士论文],合肥:合肥工业大学材料科学与工程学院,1995
    [21] Wei-Ying Sun, Tseng-Ying Tien, Tung-Sheng Yen. Solubility Limits of a-Sialon Solid Solution in the System Si,Al,Y/N,O. J.Am. Ceram.Soc. 1991; 74(10): 2547-50
    [22] H.Mandal, N.Camuscu, D. P. Thompson. Comparison of the effectiveness of rare-earth sintering additives on the high-temperature stability of a-Sialon ceramics. Journal of Materials Science. 1995; 30:5901-5909
    [23] Per-Olof Olsson, Thommy Ekstrom. HIP-sintered β-and mixed α-β Sialons densified with Y_2O_3 and La-2O_3 additions. Journal of Materials Science. 1990; 25:1824-1832
    [24] Seiji Hayama, Takakuni Nasu, Masakuni Ozawa, Suguru Suzuki. Mechanical properties and microstructure of reation sintered β-Sialon ceramics prepared by a slip casting method. Journal of Materials Science .1997; 32:4973-4977
    [25] Thommy Ekstrom, Per-Olof Olsson. Pressureless sintering of Sialon ceramics with mixed Y_2O_3-La_2O_3 additive. Journal of Materials Science 1989; 8:1067-1070
    [26] 李世普.特种陶瓷工艺学.武汉:武汉工业大学出版社,1997:129
    [27] Shusheng Jiang, Walter A.Schulze, Vasantha R.W. Amarakoon, Gregory C.stangle. Electrical properties of ultrafine-grained yttria-stabilized zirconia ceramics. J.Mater.Res. 1997; 12(9): 2374-80
    [28] S.Bhaduri, S. B. Bhaduri, E.Zhou. Auto ignition synthesis and consolidation of Al_2O_3-ZrO_2 nano/nano composite powders. J.Mater.Res. 1998; 13(1): 156-165
    [29] 张清纯.陶瓷材料的力学性能.北京:科学出版社,1987
    [30] 束德林.金属力学性能.北京:机械工业出版社,1995:216-229
    [31] R.Chaim, G.Basat, A.Kats-Demyanets. Effect of oxide additives on grain during sintering of nanocrystalline zirconia alloy. Materials Letters. 1998; 35:245-250
    [32] 朱新文,江东亮,谭寿洪,张兆泉.氧化铝粉体在硅溶胶中分散行为的研究.硅酸盐学报.2001,29(3):263-266
    [33] 田明原,施尔畏,仲维卓,庞文琴,郭景坤.纳米陶瓷与纳米陶瓷粉末.无机材料学报.1998;13(2):129-137
    [34] 范雄.金属X射线学.北京:机械工业出版社,1994
    [35] 张岩峰,魏雨,武瑞涛.纳米 TiO 粉体的制备及应用发展.功能材料.2000;31(4):354-356
    
    
    [36] 李华.纳米 TiN 改性 TiC 基金属陶瓷材料及刀具性能的研究:[硕士论文],合肥:合肥工业大学材料科学与工程学院,2001
    [37] Joanna R.Groza, Justin D.Curtis, Martin Kramer. Field-Assisted Sintering of Nanocrystalline Titanium Nitride. J.Am. Ceram.Soc. 2000; 83(5): 1281-83
    [38] Gene A.Danko, Richard Silberglitt, Paolo Colombo, Eckhard Pippel, Jorg Woltersdorf. Comparison of Microware Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxycarbide Ceramics. J.Am. Ceram. Soc. 2000; 83(7):1617-25
    [39] Shaoming Dong, Dongliang Jiang, Shouhong Tan, Jingkun Guo. Preparation and characterization of nano-structured monolithic SiC and Si_3N_4/SiC composite by hot isostatic pressing. Journal of Materials Science Letters. 1997;16:1080-1083
    [40] Padmakumar Nair, Jalajakumari Nair, Anuj Raj, Kazuyuki Maeda, Fujio Mizukami, Tatsuya Okubo, Hiroyuki Izutsu. Critical muclei size effect in the densification of nanostructured niobia ceramics. Materials Research Bulletin. 1999; 34(2):225-231
    [41] I.E.Reimanis. A review of issues in the fracture of interracial ceramics and ceramic composites. Materials Science and Engineering. 1997;A237:159-167
    [42] M.R.Gallas, A.R.Rosa, T.H.Costa, J.A.Hde Jornada. High pressure compaction of nanosize ceramics powders. J.Mater.Res. 1997; 12(3): 764-768
    [43] Mathias Herrmann, Christian Schuber, Andreas Rendtel, Heinz Hiibner. Silicon Nitride/Silicon Carbide Properties at Room Temperture. J. Am. Ceram. Soc. 1998; 81(5): 1095-108
    [44] 应崇福.超声学.北京:科学出版社,1990:1-7
    [45] P. Dura, M.Villegas, J.F.Fernandez, F.Capel, C.Moure. Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders. Materials Science and Engineering. 1997; A232:168-176
    [46] J.Luo, S.Adak, R.Stevens. Microstructure evolution and grain growth in the sintering of 3Y-TZP ceramics. Journal of Materials Science. 1998; 33: 5301-5309
    [47] 李蔚,高濂,李强.热压烧结制备纳米 Y-TZP 材料形貌及结构分析.硅酸盐学报.2001;29(1):84-86
    [48] 李蔚,高濂,归林华,郭景坤.热压烧结制备纳米 Y-TZP 材料.无机材料学报.2000;15(4):607-611
    [49] C.M.Wang. Microstructure development of Si_3N_4-TiN composite prepared by in situ compositing. Journal of Materials Science. 1995; 30:3222-3230
    
    
    [50] Zhijian Shen, Thommy Ekstrom, Mats Nygren. Homogeneity Region and Thermal Stability of Neodymium-Doped α-Sialon Ceramics. J.Am. Ceram. Soc. 1996; 79(3): 721-32
    [51] Miroslav Haviar. Poul Lenvig Hansen. Hot pressing and α-β phase transformation of compositions corresponding to β-Sialon. Journal of Materials Science. 1990; 25:992-996
    [52] V.A. Izhevskiy, L.A. Genova, J.C. Bressiani, F. Aldinger. Progress in Sialon Ceramics. Journal of the European Ceramic Society. 2000; 20:2275-2295
    [53] Yong-Ken Jeong, Atsuslu Nakahira,Peter. E.D.Morgan, Koichi Niihara. Effect of Milling Condition on the Strength of Alumina-Silicon Carbide Nanocomposite. J.Am.Ceram.Soc. 1997; 80(5): 1307-309
    [54] 李蔚,高濂,洪金生,宫本大树.快速烧结制备纳米 Y-TZP 材料.无机材料学报.2000;15(2):269-274
    [55] 陈卫武,孙维莹,严东生.AIN-多型体对形成长颗粒 α-Sialon 的影响.无机材料学报.2000;15(1):174-178
    [56] 黄明志.金属力学性能.西安交通大学出版社,1986:49-50
    [57] 李振红.纳米 TiN 改性 TiC 基金属陶瓷材料性能及刀具切削性能的研究:[硕士论文],合肥:合肥工业大学材料科学与工程学院,2002
    [58] 王宏志,高濂,归林华,郭景坤.Al_2O_3·ZrO_2(3Y)·SiC纳米复合材料的制备及性能.无机材料学报.1999;14(2):280-286
    [59] Fengying Wu, Tingrong Lai, Hanrui Zhuang, Peiling Wang, Yiren Fu. α /β-Sialon ceramics and its fatigue life. Materials Letters. 1999;39:197-199
    [60] 王宏志,高濂,郭景坤.SiC颗粒尺寸对Al_2O_3·SiC纳米复合陶瓷的影响.无机材料学报.1999;14(4):679-683
    [61] 王浩,庄汉锐,孙维莹,冯景伟,严东生.添加 Sm_2O_3 的 β-12H 复相 Sialon.硅酸盐学报.1994;12(1):1-6
    [62] 赵岳,许育东,曾庆梅,李振红,刘宁.细晶 Si_3N_4/Al_2O_3 复合陶瓷.合肥工业大学学报.2002;25(1):41-45
    [63] G.H.Li, Z.X.Hu, L.D.Zhang, Z.R.Zhang. Elastic modulus of nano-alumina composite. Journal of Materiala Science Letters. 1998;17:1185-1186
    [64] P. Sajgalik, J.Dusza, F. Hofer, P. Warbichler, M.Reece, G.Boden, J.Kozankova. Structural development and properties of SiC-Si_3N_4 nano/micro-composites. Journal of Materials Science Letters. 1996; 15:72-76
    [65] 李恒德,肖纪美.材料表面与界面.北京:清华大学出版社,1990
    [66] 胡赓祥等.材料科学基础.上海:上海交通大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700