高温稳定型MLCC用介质陶瓷材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以钛酸钡基陶瓷为研究对象,通过掺杂改性成功制备了一系列高温稳定型的多层陶瓷电容器(MLCC)用介质材料,推动了国内该领域尤其是使用温度上限为200℃的MLCC的技术发展,同时对高温稳定型介质材料的成分、结构与性能之间的关系做了大量系统性工作和创新性探究。
     选用BaTiO_3_-Nb_2O_5-Co_3O_4作为基本的温度稳定型介质材料体系,通过适量的Re_2O_3和Bi_2O_3共掺杂可获得符合EIA X8R (55~150℃,ΔC/C25≤±15%)特性的空气烧结陶瓷材料,其中Re代表一种小离子半径的稀土元素。重点研究了Re和Bi的掺杂改性机理,证实了Re掺杂具有移峰效应。提出了“芯—壳”界面的内应力模型并指出了具有“芯—壳”结构的BaTiO_3基陶瓷居里温度升高的原因。所开发的瓷料成功应用于X8R型贵金属内电极MLCC的制备。器件的劣化行为、偏压特性及高温阻抗谱分析结果均表明该类MLCC具有良好的可靠性。通过高分辨透射电镜研究了Ag-Pd内电极层与陶瓷介质层界面附近的互扩散行为。
     选用BaTiO_3-MgO-Y_2O_3-MnO_2作为基本材料体系,通过适量的CaZrO_3掺杂获得了符合EIA X8R特性的还原气氛烧结陶瓷。研究了CaZrO_3含量对于陶瓷烧结特性、居里温度、介电性能以及劣化行为的影响,揭示了CaZrO_3的改性机理。考察了两性稀土氧化物Y2O3的取代行为对材料各方面特性的影响。制备了平均粒径小于200nm的细晶抗还原X8R陶瓷,发现细晶陶瓷具有优异的电性能及偏压特性并指出了其主要原因。
     通过固相法合成了具有高居里点的(1-x)BaTiO_(3–x)(Bi_(0.5)Na_(0.5))TiO_3(x≤0.12)弥散相变型铁电陶瓷。以0.9BaTiO_3–0.1(Bi0.5Na0.5)TiO_3作为基料,通过掺杂Nb_2O_5制备出符合X9R(55~200℃,ΔC/C25≤±15%)标准的空气烧结陶瓷材料。通过两段式烧结、化学包覆等工艺可进一步改善介电性能,获得介电常数为1900~2000,介电损耗为1.7%~2.0%的X9R材料,性能达到国际领先水平。能谱分析的结果表明,Nb元素的微观不均匀分布是材料具有温度稳定特性的根本原因。该类材料显微形貌的演变可以通过“溶解—沉淀”机制加以解释。
This dissertation focuses on the preparation of barium titanate baseddielectric materials for high-temperature-stable multilayer ceramic capacitors(MLCC) application, especially for the MLCCs whose upper temperature limitreaches200oC. The domestic technology in this field is promoted. Therelationship among the composition, microstructures and properties wassystematically studied and the related mechanism was also discussed.
     BaTiO_3_-Nb_2O_5-Co_3O_4was chose as the system for air-sinteredtemperature-stable dielectrics. The ceramics which satisfy EIA X8Rspecification (55to150°C, ΔC/C25≤±15%) could be obtained by the co-dopingof Re_2O_3and Bi_2O_3(Re represents a kind of rare-earth element with smallerionic radius). The effects of Re_2O_3and Bi_2O_3on the Curie temperature wereinvestigated and Re was proved to play a major role in Tcshift. A “core-shell”interface model was proposed and the effect of the internal stress on Tcwaselucidated. The above-mentioned X8R material was successfully applied in thefabrication of MLCCs with Ag-Pd inner electrodes. The degradationcharacteristic, the dielectric behavior under a direct current (DC) bias field andthe impedance spectra demonstrated the high reliability of X8R-type MLCCs.The elements interdiffusion in the vicinity of ceramic/electrode interface wasstudied by HRTEM.
     With a proper amount of CaZrO_3addtion, the BaTiO_3-MgO-Y_2O_3-MnO_2nonreducible system was found to fulfill EIA X8R specification. The effects ofCaZrO_3content on the sintering process, the Curie temperature, dielectricproperties and degradation behaviors were investigated and the modificationmechanism was discussed. The site occupancy behavior of amphoteric rare-earthoxide Y2O3was also investigated, which had a significant effect on dielectricand electrical properties. Fine-grained X8R materials with an average grain sizeof less than200nm were prepared. Fine-grained ceramics showed much betterperformance under a DC bias field and the explanation was provided.
     The solid solutions (1-x)BaTiO_(3–x)(Bi_(0.5)Na_(0.5))TiO_3(x≤0.12) synthesize by solid-state reactions exhibited a high Curie temperature as well as a diffusephase transition (DPT). The temperature coefficient of capacitance (TCC)curves of0.9BaTiO_3–0.1(Bi0.5Na0.5)TiO_3system were largely improved with thedoping of Nb_2O_5. As a result, air-sintered X9R-type (55to200°C,ΔC/C25≤±15%) dielectric materials were successfully obtained. The dielectricproperties were further enhanced via two step sintering and chemical coatingmethod. The newly developed air-sintered X9R materials showed an excellentoverall performance with the dielectric constant of1900~2000and the dielectricloss of1.7%~2.1%, which reached the international leading edge. The energydispersive spectrometry was used to analyse the elements distribution inmicroregions. The results revealed that the temperature stability of permittivityoriginated from the heterogeneous distribution of niobium. The evolution ofmicrostructures could be explained by the “solution-precipitation” mechanism.
引文
[1]成建生,陈鸣.电容器.沈阳:辽宁科学技术出版社,1990.
    [2]赵贵武.表面贴装元器件产业发展综述.电子元件与材料,1998,17:19-20.
    [3] Paumanok Publications, Inc. Passive electronic components: World market outlook:2010-2015,2010.
    [4] Paumanok Publications, Inc. Ceramic capacitors: World markets, technologies&opportunities:2009-2014,2009.
    [5]李标荣,莫以豪,王筱珍.无机介电材料.上海科学技术出版社,1986.
    [6]章锦泰,许赛卿,周东祥,等.微波介质材料与器件的发展.电子元件与材料,2004,23:6-9.
    [7] Wu S H, Wang G Q, Zhao Y S, et al. BaO–TiO2microwave ceramics. J Eur Ceram Soc,2003,23:2565-2568.
    [8]赵梅瑜,王依琳.高介电常数微波陶瓷材料的研究进展.电子元件与材料,2005,24:50-54.
    [9] Tang B, Zhang S R, Zhou X H, et al. Preparation and modification of high Curie pointBaTiO3-based X9R ceramics. J Electroceram,2010,25:93-97.
    [10]裴贞林.高温MLCC电子陶瓷材料的组成及工艺研究[硕士学位论文].成都:电子科技大学电子科学与技术,2009.
    [11] Gao S Q, Wu S H, Zhang Y G, et al. Study on the microstructure and dielectricproperties of X9R ceramics based on BaTiO3. Materials Science and Engineering: B,2011,176:68-71.
    [12] Li L X, Han Y M, Zhang P, et al. Synthesis and characterization of BaTiO3-based X9Rceramics. J Mater Sci,2009,44:5563-5568.
    [13] Yoon D H. Tetragonality of barium titanate powder for a ceramic capacitor application.Journal of Ceramic Processing Research,2006,7:343-354.
    [14] EU-Directive2002/95/EC: Restriction of the Use of Certain Hazardous Substances inElectrical and Electronic Equipment (RoHs).
    [15] Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics.J Eur Ceram Soc,2005,25:2693-2700.
    [16] Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: alternatives for PZT? JElectroceram,2007,19:113-126.
    [17] R del J, Jo W, Seifert K T P, et al. Perspective on the development of lead-freepiezoceramics. J Am Ceram Soc,2009,92:1153-1177.
    [18] Johnson R W, Evans J L, Jacobsen P, et al. The Changing Automotive Environment:High-temperature Electronics. IEEE Transactions on Electronics PackagingManufacturing,2004,27:164-176.
    [19]方建洪,倪峰,冯皓. X波段50W GaN功放管的应用研究.火控雷达技术,2010,39:
    [20]野村武氏.積層セラミツクコソチコサの開發と材料技術およひ高信賴性化,2001.
    [21]杨刚.多层铁电压电器件在力电载荷下的介电响应和疲劳研究[博士学位论文].清华大学2008.
    [22] Park Y, Kim H G. Effect of external stress on the dielectric temperature characteristicsof samarium-modified barium titanate. Ferroelectrics,1997,198:67-76.
    [23] Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. London: Academic Press,1971.
    [24] Han Y H, Appleby B J, Smyth M D. Calcium as an acceptor impurity in BaTiO3. J AmCeram Soc,1987,70:96-100.
    [25] Zhang L, Thakur O P, Feteira A, et al. Comment on the use of calcium as a dopant inX8R BaTiO3-based ceramics. Appl Phys Lett,2007,90:142914.
    [26] Krishna P S R, Pandey D, Tiwari V S, et al. Effect of powder synthesis procedure oncalcium site occupancies in barium calcium titanate. Appl Phys Lett,1993,62:231-233.
    [27] Buscaglia M T, Buscaglia V, Viviani M, et al. Influence of foreign ions on the crystalstructure of BaTiO3. J Eur Ceram Soc,2000,20:1997-2007.
    [28] Tsur Y, Dunbar T D, Randall C A. Crystal and defect chemistry of rare earth cations inBaTiO3. J Electroceram,2001,7:25-34.
    [29] Kurata N, Kuwabara M. Semiconducting–insulating transition for highly donor-dopedbarium titanate ceramics. J Am Ceram Soc,1993,76:1605-1608.
    [30] Zhi J, Chen A, Zhi Y, et al. Dielectric properties of Ba(Ti1-yYy)O3ceramics. J ApplPhys,1998,84:983-986.
    [31] Mizuno Y, Kishi H, Ohnuma K, et al. Effect of site occupancies of rare earth ions onelectrical properties in Ni-MLCC based on BaTiO3. J Eur Ceram Soc,2007,27:4017-4020.
    [32] Dunbar T D, Warren W L, Tuttle B A, et al. Electron paramagnetic resonanceinvestigations of lanthanide-doped barium titanate: Dopant site occupancy. J PhysChem B,2004,108:908-917.
    [33] Mitic V V, Nikolic Z S, Pavlovic V, B., et al. Influence of rare-earth dopants on bariumtitanate ceramics microstructure and corresponding electrical properties. J Am CeramSoc,2010,93:132-137.
    [34] Tinberg D S, Trolier-McKinstry S. Structural and electrical characterization ofxBiScO3-(1-x)BaTiO3thin films. J Appl Phys,2007,101:024112.
    [35] Ogihara H, Randall C A, Trolier-McKinstry S. Weakly coupled relaxor behavior ofBaTiO3-BiScO3ceramics. J Am Ceram Soc,2009,92:110-118.
    [36] Datta K, Thomas P A. Structural investigation of a novel perovskite-based lead-freeceramics: xBiScO3-(1-x)BaTiO3. J Appl Phys,2010,107:043516.
    [37] Eitel R E, Randall C A, Shrout T R, et al. New high temperature morphotropic phaseboundary piezoelectrics based on Bi(Me)O3-PbTiO3ceramics. Jpn J Appl Phys,2001,40:5999-6002.
    [38] Zou T T, Xiao Hui W, Wang H, et al. Bulk dense fine-grain (1-x)BiScO3-xPbTiO3ceramics with high piezoelectric coefficient. Appl Phys Lett,2008,93:192913.
    [39] Gao F, Hong R Z, Liu J J, et al. Phase formation and characterization of high Curietemperature xBiYbO3-(1-x)PbTiO3piezoelectric ceramics. J Eur Ceram Soc,2009,29:1687-1693.
    [40] Hsiang H-I, Mei L-T, Chun Y-J. Dielectric properties and microstructure of Nb-Cocodoped BaTiO3-(Bi0.5Na0.5)TiO3ceramics. J Am Ceram Soc,2009,92:2768-2771.
    [41] Sun Y, Liu H X, Hao H, et al. Effect of Na0.5Bi0.5TiO3on dielectric properties ofBaTiO3based ceramics. Ceram Int,2012,38:41-44.
    [42] Takeda H, Aoto W, Shiosaki T. BaTiO3-(Bi1/2Na1/2)TiO3Solid-SolutionSemiconducting Ceramics with Tc>130oC. Appl Phys Lett,2005,87:102104.
    [43] Huo W R, Qu Y F. Effects of Bi1/2Na1/2TiO3on the Curie temperature and the PTCeffects of BaTiO3-based positive temperature coefficient ceramics. Sensors andActuators A: Physical,2006,128:265-269.
    [44] Wei J F, Pu Y P, Mao Y Q, et al. Effect of the reoxidation on positive temperaturecoefficient behavior of BaTiO3-Bi0.5Na0.5TiO3. J Am Ceram Soc,2010,93:1527-1529.
    [45] Pu Y P, Wu H D, Wei J F, et al. Preparation and positive temperature coefficient ofresistivity behavior of Ba0.95Ca0.05TiO3–BiYO3–Na0.5Bi0.5TiO3ceramics. PowderTechnol,2012,219:244-248.
    [46] Datta K, Roleder K, Thomas P A. Enhanced tetragonality in lead-free piezoelectric(1-x)BaTiO3-xNa1/2Bi1/2TiO3solid solutions where x=0.05-0.40. J Appl Phys,2009,106:123512.
    [47] Datta K, Thomas P A, Roleder K. Anomalous phase transitions of lead-freepiezoelectric xNa0.5Bi0.5TiO3-(1-x)BaTiO3solid solutions with enhanced phasetransition temperatures. Phys Rev B,2010,82:224105.
    [48]邓湘云.纳米晶钛酸钡陶瓷的制备、微细结构及性能的研究[博士学位论文].北京:清华大学材料科学与工程系,2006.
    [49] Emelyanov A Y, Pertsev N A, Hoffmann-Eifert S, et al. Grain-Boundary Effect on theCurie-Weiss Law of Ferroelectric Ceramics and Polycrystalline Thin Films: Calculationby the Method of Effective Medium. J Electroceram,2002,9:5-16.
    [50] Wang X H, Deng X Y, Wen H, et al. Phase transition and high dielectric constant ofbulk dense nanograin barium titanate ceramics. Appl Phys Lett,2006,89:162902.
    [51] Buscaglia V, Buscaglia M T, Viviani M, et al. Raman and AFM piezoresponse study ofdense BaTiO3nanocrystalline ceramics. J Eur Ceram Soc,2005,25:3059-3062.
    [52] Kenji Uchino, Sadanaga E, Hirose T. Dependence of the crystal structure on particlesize in barium titanate. J Am Ceram Soc,1989,72:1555-1558.
    [53] Arlt G, Hennings D, With G d. Dielectric properties of fine-grained barium titanateceramics. J Appl Phys,1985,58:1619-1625.
    [54] Cheng X R, Shen M R. Enhanced spontaneous polarization in Sr and Ca co-dopedBaTiO3ceramics. Solid State Commun,2007,141:587-590.
    [55] Sakabe Y, Wada N, Hamaji Y. Grain size effects on dielectric properties and crystalstructure of fine-grained BaTiO3ceramics. J Korean Phys Soc,1998,32:260-264.
    [56] Zhao Z, Buscaglia V, Viviani M, et al. Grain-size effects on the ferroelectric behaviorof dense nanocrystalline BaTiO3ceramics. Phys Rev B,2004,70:024107.
    [57] Baeten F, Derks B, Coppens W, et al. Barium titanate characterization by differentialscanning calorimetry. J Eur Ceram Soc,2006,26:589-592.
    [58] Lee S, Liu Z-K, Kim M-H, et al. Influence of nonstoichiometry on ferroelectric phasetransition in BaTiO3. J Appl Phys,2007,101:054119.
    [59] Lee J-K, Hong K-S, Jang J-W. Roles of Ba/Ti ratios in the dielectric properties ofBaTiO3ceramics. J Am Ceram Soc,2001,84:2001-2006.
    [60] Murugaraj P, Kutty T R N, Rao M S. Diffuse phase transformations inneodymium-doped BaTiO3ceramics. J Mater Sci,1986,21:3521-3527.
    [61] Hirose N, Skakle J M S, West A R. Doping mechanism and permittivity correlations inNd-doped BaTiO3. J Electroceram,1999,3:233-238.
    [62] Shvartsman V V, Lupascu D C. Lead-free relaxor ferroelectrics. J Am Ceram Soc,2012,95:1-26.
    [63] Kleemann W. The relaxor enigma—charge disorder and random fields in ferroelectrics.J Mater Sci,2006,41:129-136.
    [64] Park Y, Kim H G. Dielectric temperature characteristics of cerium-modified bariumtitanate based ceramics with core—shell grain structure. J Am Ceram Soc,1997,80:106-112.
    [65] Metzmacher C, Albertsen K. Microstructural investigations of barium titanate-basedmaterial for base metal electrode ceramic multilayer capacitor. J Am Ceram Soc,2001,84:821-826.
    [66] Yoon S-H, Lee J-H, Kim D-Y, et al. Core-shell structure of acceptor-rich, coarsebarium titanate grains. J Am Ceram Soc,2002,85:3111-3113.
    [67] Kim C-H, Park K-J, Yoon Y-J, et al. Role of yttrium and magnesium in the formation ofcore-shell structure of BaTiO3grains in MLCC. J Eur Ceram Soc,2008,28:1213-1219.
    [68] Buessem W R, Kahn M. Effects of grain growth on the distribution of Nb in BaTiO3ceramics. J Am Ceram Soc,1971,54:458-461.
    [69] Hennings D, Rosenstein G. Temperature-stable dielectrics based on chemicallyinhomogeneous BaTiO3. J Am Ceram Soc,1984,67:249-254.
    [70] Kishi H, Okino Y, Honda M, et al. The effect of MgO and rare-earth oxide on formationbehavior of core-shell structure in BaTiO3. Jpn J Appl Phys,1997,36:5954-5957.
    [71] Chazono H, Kishi H. Sintering characteristics in the BaTiO3-Nb2O5-Co3O4ternarysystem: II, stability of so-called "core-shell" structure. J Am Ceram Soc,2000,83:101-106.
    [72] Kim C-H, Park K-J, Yoon Y-J, et al. Effects of milling condition on the formation ofcore-shell structure in BaTiO3grains. J Eur Ceram Soc,2008,28:2589-2596.
    [73] Mizuno Y, Hagiwara T, Chazono H, et al. Effect of milling process on core-shellmicrostructure and electrical properties for BaTiO3-based Ni-MLCC. J Eur Ceram Soc,2001,21:1649-1652.
    [74]王天.超薄层BME-MLCC用超细晶陶瓷材料及元件的研究[博士学位论文].清华大学材料科学与工程系,2008.
    [75] Armstrong T R, Buchanan R C. Influence of core-shell grains on the internal stress stateand permittivity response of zirconia-modified barium titanate. J Am Ceram Soc,1990,73:1268-1273.
    [76] Jung Y-S, Na E-S, Paik U, et al. A study on the phase transition and characteristics ofrare earth elements doped BaTiO3. Mater Res Bull,2002,37:1633.
    [77]杜旻,袁颖,王升,等. BaTiO3-Yb2O3-MgO系陶瓷居里点移动机理研究.压电与声光,2008,30:450.
    [78] Song Y H, Han Y H. Effects of rare-earth oxides on temperature stability ofacceptor-doped BaTiO3. Jpn J Appl Phys,2005,44:6143-6147.
    [79] Nishikawa J, Hagiwara T, Kobayashi K, et al. Effects of microstructure on the Curietemperature in BaTiO3-Ho2O3-MgO-SiO2system Jpn J Appl Phys,2007,46:6999-7004
    [80] Burn I. Temperature-stable barium titanate ceramics containing niobium pentoxide.Electrocomponent Science and Technology,1976,2:241-247.
    [81] Wang S-F, Dayton G O. Dielectric properties of fine-grained barium titanate based X7Rmaterials. J Am Ceram Soc,1999,82:2677-2682.
    [82] Hennings D F K, Schreinemacher B S. Temperature-stable dielectric materials in thesystem BaTiO3-Nb2O5-Co3O4. J Eur Ceram Soc,1994,14:463-471.
    [83] Chazono H, Kishi H. Sintering characteristics in BaTiO3-Nb2O5-Co3O4ternary system: I,electrical properties and microstructure. J Am Ceram Soc,1999,82:2689-2697.
    [84] Chen R Z, Wang X H, Li L T, et al. Effects of Nb/Co ratio on the dielectric propertiesof BaTiO3-based X7R ceramics. Materials Science and Engineering B,2003,99:298-301.
    [85] Wang S, Zhang S R, Zhou X H, et al. Investigation on dielectric properties of BaTiO3co-doped with Ni and Nb. Mater Lett,2006,60:909-911.
    [86] Du M, Li Y R, Yuan Y, et al. A novel approach to BaTiO3-based X8R ceramics bycalcium borosilicate glass ceramic doping. J Electron Mater,2007,36:1389-1394.
    [87] Li B, Zhang S R, Zhou X H, et al. Preparation of BaTiO3-based ceramics bynanocomposite doping process. J Mater Sci,2007,42:2090-2096.
    [88]李玲霞,郭锐,王洪茹.多种添加剂对高压X8R介质材料的改性研究.无机材料学报,2007,22:711-714.
    [89]唐斌.温度稳定型MLCC瓷料的研制及其改性机理研究[博士学位论文].电子科技大学2008.
    [90]王小勇.中温烧结热稳定X9R钛酸钡陶瓷的研究[硕士学位论文].天津:天津大学电子信息工程学院,2007.
    [91]杨林波.耐高温MLCC陶瓷材料研究[硕士学位论文].电子科技大学2008.
    [92] Lim J B, Zhang S, Kim N, et al. High-temperature dielectrics in theBiScO3-BaTiO3-(K1/2Bi1/2)TiO3ternary system. J Am Ceram Soc,2009,92:679-682.
    [93] Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors:past, present and future perspectives. Jpn J Appl Phys,2003,42:1-15.
    [94] Herbert. High permittivity ceramics sintered in hydrogen. Transactions of the BritishCeramic Society1963,62:645-648.
    [95] Daniels J, Hardtl K H. Defect chemistry and electrical-conductivity of dopedbarium-titanate ceramic.1. Electrical-conductivity at high-temperatures of donor-dopedbarium-titanate ceramics. Philips Research Reports,1976,31:489-504.
    [96] Daniels J. Defect chemistry and electrical-conductivity of doped barium-titanateceramics2. Defect equilibria in acceptor-doped barium-titanate. Philips ResearchReports,1976,31:505-515.
    [97] Hagemann H-J, Hennings D. Reversible weight change of acceptor-doped BaTiO3. J AmCeram Soc,1981,64:590-594.
    [98] Burn I, Maher G H. High-resistivity BaTiO3ceramics sintered in CO-CO2atmospheres.J Mater Sci,1975,10:633-640.
    [99] Hennings D F K, Schreinemacher H. Ca-acceptors in dielectric ceramics sintered inreducive atmospheres. J Eur Ceram Soc,1995,15:795-800.
    [100] Yang G Y, Dickey F C, Randall C A, et al. Modulated and ordered defect structures inelectrically degraded Ni-BaTiO3multilayer ceramic capacitors. J Appl Phys,2003,94:5990-5996.
    [101] Yamamatsu J, Kawano N, Arashi T, et al. Reliability of multilayer ceramic capacitorswith nickel electrodes. J Power Sources,1996,60:199-203.
    [102] Hennings D F K. Dielectric materials for sintering in reducing atmospheres. J EurCeram Soc,2001,21:1637-1642.
    [103] Kaneda K, Lee S, Donnelly N J, et al. Kinetics of oxygen diffusion into multilayerceramic capacitors during the re-oxidation process and its implications on dielectricproperties. J Am Ceram Soc,2011,94:3934-3940.
    [104] Okino Y, Shizuno H, Kusumi S, et al. Dielectric-properties of rare-earth-oxide-dopedBaTiO3ceramics fired in reducing atmosphere. Jpn J Appl Phys,1994,33:5393-5396.
    [105] Albertsen K, Hennings D, Steigelmann O. Donor-acceptor charge complex formation inbarium titanate ceramics: Role of firing atmosphere. J Electroceram,1998,2:193-198.
    [106] Saito H, Chazono H, Kishi H, et al. X7R multilayer ceramic capacitors with nickelelectrodes. Jpn J Appl Phys,1991,30:2307-2310.
    [107] Yang W-C, Hu C-T, Lin I N. Effect of Y2O3/MgO co-doping on the electrical propertiesof base-metal-electroded BaTiO3materials. J Eur Ceram Soc,2004,24:1479-1483.
    [108] Park K-J, Kim C-H, Yoon Y-J, et al. Doping behaviors of dysprosium, yttrium andholmium in BaTiO3ceramics. J Eur Ceram Soc,2009,29:1735-1741.
    [109]李波,张树人,王升.烧结气氛对Er-Mg和Er-Mn掺杂BaTiO3陶瓷介电性能的影响.无机材料学报,2007,22:821-826.
    [110]李波,张树人,周晓华. V2O5对BaTiO3-Y2O3-MgO陶瓷性能的影响.无机材料学报,2007,22:706-710.
    [111] Koebrugge G W, Albertsen K, Coppens W J L M. Powder composition useful forforming dielectric material comprises blend of: barium titanate, zirconium oxide,barium carbonate, manganese carbonate, molybdenum oxide, magnesium oxide, andyttrium oxide: USA, US2008169530-A1[P].2008-07-17
    [112] Nishikawa J, Ogasawara J, Koide N. Dielectric ceramic composition for multi-layerceramic capacitors used for electronic equipments, e.g. portable equipments, includesbarium titanium, magnesium oxide, rare earth oxide, and silicon oxide: USA,US2008089008-A1[P].2008-04-17
    [113]伊东和重,原治也,井口俊宏,等.叠层型陶瓷电容器:中国, CN1930102A[P].2007-03-14
    [114]王升.钛酸钡基抗还原介质的组成改性及基础工艺研究[博士学位论文].成都:电子科技大学2005.
    [115] R del J, Tomandl G. Degradation of Mn-doped BaTiO3ceramic under a high DCelectric field. J Mater Sci,1984,19:3515-3523.
    [116] Donahoe D N, Pecht M, Lloyd I K, et al. Moisture induced degradation of multilayerceramic capacitors. Microelectronics and Reliability,2006,46:400-408.
    [117] Kobayashi T, Ariyoshi H, Masuda A. Reliability evaluation and failure analysis formultilayer ceramic chip capacitors. IEEE Transactions on Components, Hybrids, andManufacturing Technology,1978,1:316-324.
    [118] Ling H C, Jackson A M. Correlation of silver migration with temperature-humidity-bias(THB) failures in multilayer ceramic capacitors. Components, Hybrids, andManufacturing Technology, IEEE Transactions on,1989,12:130-137.
    [119] Shih S-J, Tuan W-H. Reducing the solubility of Ag into BaTiO3by alloying Ag with Pd.J Eur Ceram Soc,2011,31:2981-2985.
    [120] Yang G Y, Lian G D, Dickey E C, et al. Oxygen nonstoichiometry and dielectricevolution of BaTiO3. Part II-insulation resistance degradation under applied DC bias. JAppl Phys,2004,96:7500-7508.
    [121] Wu Y-C, Lu H-Y, McCauley D E, et al. The {111}-modulated domains in tetragonalBaTiO3. J Am Ceram Soc,2006,89:2702-2709.
    [122] Yoon S-H, Randall C A, Hur K-H. Correlation between resistance degradation andthermally stimulated depolarization current in acceptor (Mg)-doped BaTiO3submicrometer fine-grain ceramics. J Am Ceram Soc,2010,93:1950-1956.
    [123] Waser M R. Electrochemical boundary conditions for resistance degradation of dopedalkaline-earth titanates. J Am Ceram Soc,1989,72:2234-2240.
    [124] Yang G Y, Dickey E C, Randall C A, et al. Oxygen nonstoichiometry and dielectricevolution of BaTiO3. Part I-improvement of insulation resistance with reoxidation. JAppl Phys,2004,96:7492-7499.
    [125] Yoon S-H, Hong M-H, Hong J-O, et al. Effect of acceptor (Mg) concentration on theelectrical resistance at room and high (200oC) temperatures of acceptor (Mg)-dopedBaTiO3ceramics. J Appl Phys,2007,102:054105.
    [126] Yoon S-H, Randall C A, Hur K-H. Effect of acceptor (Mg) concentration on theresistance degradation behavior in acceptor (Mg)-doped BaTiO3bulk ceramics: I.impedance analysis. J Am Ceram Soc,2009,92:1758-1765.
    [127] Waser R, Baiatu T, H rdtl K-H. DC electrical degradation of perovskite-type titanates: I,Ceramics. J Am Ceram Soc,1990,73:1645-1653.
    [128] Sumita S, Ikeda M, Nakano Y, et al. Degradation of multilayer ceramic capacitors withnickel electrodes. J Am Ceram Soc,1991,74:2739-2746.
    [129] Yoon S-H, Randall C A, Hur K-H. Influence of grain size on impedance spectra andresistance degradation behavior in acceptor (Mg)-doped BaTiO3ceramics. J Am CeramSoc,2009,92:2944-2952.
    [130] Lee H-W, Chu M S H, Lu H-Y. Intragranular voids and DC degradation in (CaO+MgO)codoped BaTiO3multilayer ceramic capacitors. J Am Ceram Soc,2009,92:3037-3043.
    [131] Kubashewski O, Evans E L, Alcock C B. Metallurgical thermochemistry. PergamonPress,1967.
    [132]孙常库.低温烧结温度稳定型MLCC用陶瓷材料的研究[博士学位论文].北京:清华大学材料科学与工程系,2010.
    [133] Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram.Acta Metallurgica,1953,1:22-31.
    [134]吴杏芳,柳得橹.电子显微分析实用方法.冶金工业出版社,1998.
    [135] Hoboken N J. Impedance Spectroscopy Theory, Experiment, and Application. NewJersey: Wiley-Interscience,2005.
    [136] West A R, Sinclair D C, Hirose N. Characterization of electrical materials, especiallyferroelectrics, by impedance spectroscopy. J Electroceram,1997,1:65-71.
    [137] Wang X R, Zhang Y, Song X Z, et al. Glass additive in barium titanate ceramics and itsinfluence on electrical breakdown strength in relation with energy storage properties. JEur Ceram Soc,2012,32:559-567.
    [138] Chazono H, Kishi H. Dc-electrical degradation of the BT-based material for multilayerceramic capacitor with Ni internal electrode: impedance analysis and microstructure.Jpn J Appl Phys,2001,40:5624-5629.
    [139]孙铁昱.纳米/亚微米晶钛酸钡铁电陶瓷的晶粒尺寸效应理论[博士学位论文].北京:清华大学材料科学与工程系,2010.
    [140]马超.低温烧结制备温度稳定型陶瓷材料的研究[硕士学位论文].北京:清华大学材料科学与工程系,2006.
    [141] Sun C K, Wang X H, Ma C, et al. Low-temperature sintering barium titanate based X8Rceramics with Nd2O3dopant and ZnO–B2O3flux agent. J Am Ceram Soc,2009,92:1613-1616.
    [142] Li W, Qi J Q, Wang Y L, et al. Doping behaviors of Nb2O5and Co2O3in temperaturestable BaTiO3-based ceramics. Mater Lett,2002,57:1-5.
    [143] Kim S-H, Koh J-H. ZnBO-doped (Ba, Sr)TiO3ceramics for the low-temperaturesintering process. J Eur Ceram Soc,2008,28:2969-2973.
    [144] Harrison D E, Hummel F A. Phase equilibria and fluorescence in the system zincoxide-boric oxide. J Electrochem Soc,1956,103:491-498.
    [145] Lee H-W, Chu M S H, Lu H-Y. Crystal symmetry of BaTiO3grains in X7R multilayerceramic capacitors. J Am Ceram Soc,2011,94:1289-1296.
    [146] Song Y H, Hwang J H, Han Y H. Effects of Y2O3on Temperature Stability ofAcceptor-Doped BaTiO3. Jpn J Appl Phys,2005,44:1310-1313.
    [147] Yoon S H, Park Y S, Hong J O, et al. Effect of the pyrochlore (Y2Ti2O7) phase on theresistance degradation in yttrium-doped BaTiO3ceramic capacitors. J Mater Res,2007,22:2539-2543.
    [148] Shannon R D. Revised effective ionic radii and systematic studies of interatomicdistances in halides and chalcogenides. Acta Crystallogr A,1976,32:751-767.
    [149] Buessem W R, Cross L E, Goswami A K. Phenomenological theory of high permittivityin fine-grained barium titanate. J Am Ceram Soc,1966,49:33-36.
    [150] Bell A J, Cross L E. A phenomenological Gibbs function for BaTiO3giving correct efield dependence of all ferroelectric phase changes. Ferroelectrics,1984,59:197-203.
    [151] Bell A J. Phenomenologically derived electric field-temperature phase diagrams andpiezoelectric coefficients for single crystal barium titanate under fields along differentaxes. J Appl Phys,2001,89:
    [152] Li Y L, Cross L E, Chen L Q. A phenomenological thermodynamic potential for BaTiO3single crystals. J Appl Phys,2005,98:064101.
    [153] Lin S, Lü T Q, Jin C Q, et al. Size effect on the dielectric properties of BaTiO3nanoceramics in a modified Ginsburg-Landau-Devonshire thermodynamic theory. PhysRev B,2006,74:134115.
    [154] Sun T Y, Wang X H, Zhang Y C, et al. Size effect of uniaxial stress affecting dielectricresponse in barium titanate. Jpn J Appl Phys,2010,49:101503.
    [155] Landau L D, Lifshitz E M. Statistical physics Oxford: Pergamon Press,1980.
    [156] Devonshire A F. Theory of barium titanate.1. Philosophical Magazine,1949,40:1040-1063.
    [157] Devonshire A F. Theory of barium titanate.2. Philosophical Magazine,1951,42:1065-1079.
    [158]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    [159] Park Y, Kim Y, Kim H-G. The effect of stress on the dielectric-temperaturecharacteristics of core-shell grain structure. J Phys D Appl Phys,1996,29:2483-2491.
    [160]陈蓓,丁培道,周泽华. Al2O3/ZrO2层状复合陶瓷的结构设计与性能.硅酸盐学报,2001,29:386-388.
    [161]梁立平,赖永雄,李基森.片式叠层陶瓷电容器的制造与材料.广州:暨南大学出版社,2008.
    [162]曹江利.片式多层元件电镀中氢致性能劣化和铅基铁电陶瓷/电极共烧界面研究[博士学位论文].北京:清华大学材料科学与工程系,2002.
    [163]陈仁政.钛酸钡基温度稳定型陶瓷介电特性研究[博士学位论文].北京:清华大学材料科学与工程系,2003.
    [164] Kishi H, Kohzu N, Sugino J, et al. The effect of rare-earth (La, Sm, Dy, Ho and Er) andMg on the microstructure in BaTiO3. J Eur Ceram Soc,1999,19:1043-1046.
    [165] Zhang X W, HAN Y H, LAL M, et al. Defect chemistry of BaTiO3with additions ofCaTiO3. J Am Ceram Soc,1987,70:100-103.
    [166] Xu X, Hilmas G E. Effects of Ba6Ti17O40on the dielectric properties of Nb-dopedBaTiO3ceramics. J Am Ceram Soc,2006,89:2496-2501.
    [167] Lu H-Y, Bow J-S, Deng W-H. Core-shell structures in ZrO2-modified BaTiO3ceramic.J Am Ceram Soc,1990,73:3562-3568.
    [168] Krishnamoorthy P R, Ramaswamy P, Narayana B H. CaZrO3additives to enhancecapacitance properties in BaTiO3ceramic capacitors. Journal of Materials Science:Materials in Electronics,1992,3:176-180.
    [169] Tsur Y, Hitomi A, Scrymgeour I, et al. Site occupancy of rare-earth cations in BaTiO3.Jpn J Appl Phys,2001,40:255-258.
    [170] Smyth D M. The defect dhemistry of donor-doped BaTiO3: A rebuttal. J Electroceram,2002,9:179-186.
    [171] Li B R, Wang X H, Li L T, et al. Dielectric properties of fine-grained BaTiO3preparedby spark-plasma-sintering. Mater Chem Phys,2004,83:23-28.
    [172] Buscaglia V, Buscaglia M T, Viviani M, et al. Grain size and grain boundary-relatedeffects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc,2006,26:2889-2898.
    [173] Wen H, Wang X H, Chen R Z, et al. Modeling of dielectric behaviors of multilayerceramic capacitors under a direct current bias field. J Am Ceram Soc,2006,89:550-556.
    [174] Deng X Y, Wang X H, Wen H, et al. Ferroelectric properties of nanocrystalline bariumtitanate ceramics. Appl Phys Lett,2006,88:252905.
    [175] Armstrong T R, Young K A, Buchanan R C. Dielectric properties of fluxed bariumtitanate ceramics with zirconia additions. J Am Ceram Soc,1990,73:700-706.
    [176] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics of complexcomposition. Sov. Phys. Solid State,1961,2:2651-2654.
    [177] Lee W-C, Huang C-Y, Tsao L-K, et al. Chemical composition and tolerance factor atthe morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics. JEur Ceram Soc,2009,29:1443-1448.
    [178]曲方远.功能陶瓷的物理性能.北京:化学工业出版社,2007.
    [179] Takenaka T, Maruyama K-i, Sakata K.(Bi1/2Na1/2)TiO3-BaTiO3system for lead-freepiezoelectric ceramics. Jpn J Appl Phys,1991,30:2236-2239.
    [180] Chu B-J, Chen D-R, Li G-R, et al. Electrical properties of Na1/2Bi1/2TiO3-BaTiO3ceramics. J Eur Ceram Soc,2002,22:2115-2121.
    [181] Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution oflead-free (Bi1/2Na1/2)TiO3-6mol%BaTiO3. J Appl Phys,2011,110:074106.
    [182] Chen M, Xu Q, Kim B H, et al. Structure and electrical properties of(Na0.5Bi0.5)1-xBaxTiO3piezoelectric ceramics. J Eur Ceram Soc,2008,28:843-849.
    [183] Ma C, Tan X. Phase diagram of unpoled lead-free ceramics. Solid State Commun,2010,150:1497-1500.
    [184] Tian Z B, Wang X H, Li J, et al. Synthesis of nanocrystalline0.94Bi0.5Na0.5TiO3-0.06BaTiO3powder by a citrate method. Key Engineering Materials,2008,368-372:103-105.
    [185] Tsurumi T, Li J, Hoshina T, et al. Ultrawide range dielectric spectroscopy ofBaTiO3-based perovskite dielectrics. Appl Phys Lett,2007,91:182905.
    [186] Uchino K, Nomura S. Critical exponents of the dielectric constants indiffused-phase-transition crystals. Ferroelectrics,1982,44:55-61.
    [187] Gomah-Pettry J-R, Sa d S, Marchet P, et al. Sodium-bismuth titanate based lead-freeferroelectric materials. J Eur Ceram Soc,2004,24:1165-1169.
    [188] Teranishi T, Horiuchi N, Hoshina T, et al. Analysis on dipole polarization ofBaTiO3-based ferroelectric ceramics by Raman spectroscopy. J Ceram Soc Jpn,2010,118:679-682.
    [189] Venkateswaran U D, Naik V M, Naik R. High-pressure Raman studies ofpolycrystalline BaTiO3. Phys Rev B,1998,58:14256.
    [190] Dobal P S, Katiyar R S. Studies on ferroelectric perovskites and Bi-layered compoundsusing micro-Raman spectroscopy. J Raman Spectrosc,2002,33:405-423.
    [191] Baskaran N, Ghule A, Bhongale C, et al. Phase transformation studies of ceramicBaTiO3using thermo-Raman and dielectric constant measurements. J Appl Phys,2002,91:10038-10043.
    [192] Begg B D, Finnie K S, Vance E R. Raman study of the relationship betweenroom-temperature tetragonality and the Curie point of barium titanate. J Am Ceram Soc,1996,79:2666-2672.
    [193] Luo Z H, Granzow T, Glaum J, et al. Effect of ferroelectric long-range order on theunipolar and bipolar electric fatigue in Bi1/2Na1/2TiO3-based lead-free piezoceramics. JAm Ceram Soc,2011,94:3927-3933.
    [194]殷之文.电介质物理学.科学出版社,2003.
    [195] Moulson A J, Herbert J M. Electroceramics: Materials, properties and applications.London: Chapman-Hall,1990.
    [196] Wang X H, Deng X Y, Bai H-L, et al. Two-step sintering of ceramics with constantgrain-size, II: BaTiO3and Ni–Cu–Zn Ferrite. J Am Ceram Soc,2006,89:438-443.
    [197] Meng W Q, Zuo R Z, Su S, et al. Two-step sintering and electrical properties of sol-gelderived0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3lead-free ceramics. J Mater Sci-mater El,2011,22:1841-1847.
    [198] Wang X L, Zhao Y Z, Zhao Y J, et al. Fabrication of BST nano-ceramics by two-stepsintering. Digest Journal of Nanomaterials and Biostructures,2011,6:953-959.
    [199] Wang X H, Deng X Y, Zhou H, et al. Bulk dense nanocrystalline BaTiO3ceramicsprepared by novel pressureless two-step sintering method. J Electroceram,2008,21:230-233.
    [200] Tian Z B, Wang X H, Lee S-J, et al. Microstructure evolution and dielectric propertiesof ultrafine grained BaTiO3-based ceramics by two-step sintering. J Am Ceram Soc,2011,94:1119-1124.
    [201] Park S-E, Chung S-J, Kim I-T, et al. Nonstoichiometry and the long-range cationordering in crystals of (Na1/2Bi1/2)TiO3. J Am Ceram Soc,1994,77:2641-2647.
    [202] Liu G, Wang X H, Lin Y, et al. Growth Kinetics of Core-Shell-Structured Grains andDielectric Constant in Rare-Earth-Doped BaTiO3Ceramics. J Appl Phys,2005,98:044105-044101-044106.
    [203] Kim J-S, Kang S-J L. Formation of core-shell structure in the BaTiO3-SrTiO3system. JAm Ceram Soc,1999,82:1085-1088.
    [204] Ring T A. Fundamentals of ceramic powder processing and synthesis. San Diego:Academic Press,1996.
    [205] Park J, Han Y. Effects of oxide additives coating on microstructure and dielectricproperties of BaTiO3. J Electroceram,2006,17:867-873.
    [206] Zhang Y C, Wang X H, Tian Z B, et al. Preparation of BME MLCC powders by aqueouschemical coating method. J Am Ceram Soc,2011,94:3286-3290.
    [207] Tian Z B, Wang X H, Shu L K, et al. Preparation of nano BaTiO3-based ceramics formultilayer ceramic capacitor application by chemical coating method. J Am Ceram Soc,2009,92:830-833.
    [208] Hayashi T, Iida K, Shinozaki H, et al. Preparation and properties of Nb-coated bariumtitanate composite particles by surface modification with Nb alkoxide in hydrophobicsolvent. J Sol-gel Sci Techn,1999,16:159-164.
    [209] Gan J-J, Wei W-C J. Synthesis and dielectric properties of niobia coating on BaTiO3.International Journal of Applied Ceramic Technology,2009,6:661-670.
    [210]郭青蔚,王肇信.现代铌钽冶金.北京:冶金工业出版社,2009.
    [211] Jehng J-M, Wachs I E. Niobium oxide solution chemistry. J Raman Spectrosc,1991,22:83-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700