围湖造田不同土地利用方式对土壤有机碳库的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围湖造田是我国20世纪50年代后期开始大量出现的与水争地的人类干扰活动。本项研究以太湖流域肖甸湖区为代表,测定分析了肖甸湖区围湖造田35年后,香樟(Cinnamomum camphora)林、水杉(Metasequoia glyptostroboides)林、毛竹(Phyllostachys heterocycla)林、农田这4种土地利用方式下0~40 cm土层土壤活性有机碳与表层土壤呼吸的动态变化。结果表明:
     围湖地区土壤水溶性有机碳和易氧化碳分配比例(1.22%~3.03%、10.56%~30.64%)高于相同气候区的山地森林土壤,颗粒有机碳分配比例(3.43%~17.28%)较低,说明土壤易分解组分占总有机碳比例较高,而保护性组分所占比例较低,围湖地区土壤有机碳稳定性较差。与围湖地区内的溪流底泥相比,林地与农田表层土壤总有机碳含量均有明显增加。
     不同土地利用方式土壤微生物生物量碳含量季节变化显著,3种林地在3个土层中均表现出夏秋季节大于冬春季节,而农田在秋、冬、春3个季节波动不大,仅在进入夏季时含量有显著增加。4种土地利用方式土壤微生物生物量碳含量在垂直方向上均具有明显的分层现象,自上而下呈下降趋势。不同土地利用方式对土壤微生物生物量碳的影响,农田显著大于3种林地,阔叶林大于针叶林。
     不同土地利用方式土壤水溶性有机碳含量均表现出明显的季节动态,总体表现为秋冬季节大于春夏季节。3种林地土壤水溶性有机碳含量在垂直方向上具有明显的分层现象,自上而下呈下降趋势;农田土壤水溶性有机碳含量在垂直方向上表现为亚表层(10~20 cm、20~40 cm)高于表层(0~10 cm)土壤。不同土地利用方式对土壤水溶性有机碳的影响,0~10 cm土层3种林地大于农田,阔叶林小于针叶林;10~20 cm与20~40 cm土层农田大于3种林地,针叶林小于阔叶林。
     不同土地利用方式土壤易氧化碳含量季节动态表现不同,香樟林与毛竹林春夏季节大于冬季,水杉林与农田季节波动较小,农田表层(0~10 cm)土壤易氧化碳含量季节变化不显著。4种土地利用方式土壤易氧化碳含量在垂直方向上均具有明显的分层现象,自上而下呈下降趋势。不同土地利用方式对土壤易氧化碳的影响,3种林地大于农田。
     不同土地利用方式土壤呼吸具有一致的显著季节变化,夏季最高,冬季最低,其季节变化主要受土壤温度的控制。与相同气候区旱地森林相比,围湖地区土壤呼吸速率较高,Q10值较大。
Reclaiming land from a lake area is a kind of human disturbance that has emerged in large numbers since the late 1950s in China. In order to understand the characteristics of soil organic carbon pools in the reclaiming land from lake under different land uses in the Xiaodian Lake area, the concentrations and seasonal fluctuation of soil labile organic carbon in the 0~40 cm soil layer and soil respiration at the surface were analyzed. The results showed that:
     The proportions of soil water soluble organic carbon (WSOC)(1.22%~3.03%) and readily oxidizable carbon (ROC)(10.56%~30.64%) were higher than those in highland forests of the same climate zone, while the proportions of soil particulate organic carbon (POC)(3.43%~17.28%) were lower. That implied that the stability of soil organic carbon was poor in impoldering land. Compared with the remnant stream sediment in the research region, soil total organic carbon (TOC) under the forests and the cropland significantly increased.
     Seasonal dynamics of soil microbial biomass carbon (MBC) under each land use were significantly. MBC concentrations under the forests in summer and autumn were higher than those in winter and spring. Under the cropland the seasonal changes of MBC from autumn to spring were slight, and significantly increased in summer. The concentrations of MBC under each land use decreased sharply with increasing soil depth. MBC concentrations under the cropland were higher than those in the forests, and the concentrations under coniferous forest were lower than those in broadleaf forest.
     Seasonal dynamics of WSOC under different land uses were significantly. The concentrations of WSOC in autumn and winter were higher than those in spring and summer, generally. WSOC concentrations under forests decreased sharply with increasing soil depth. The vertical change of WSOC concentrations in the cropland soil was different from the forests: the highest concentrations were at 10~20 cm depth while the lowest were at 0~10 cm depth. The concentrations of WSOC under the cropland were lower than those in the forests at 0~10 cm deep of soil layer, and the concentrations under coniferous forest were higher than those in broadleaf forest. At 10~20 cm and 20~40 cm deep of soil layer WSOC concentrations under the cropland were higher than those in the forests, and the concentrations under coniferous forest were lower than those in broadleaf forest.
     ROC concentrations under Cinnamomum camphora and Phyllostachys heterocycla in spring and summer were higher than those in winter, while under Metasequoia glyptostroboides and the cropland the seasonal changes were relatively slight. The concentrations of ROC declined with increasing depths. ROC concentrations under the cropland were lower than those in the forests.
     There were significant seasonal variation of soil respiration under each land use, showing that the highest value was in summer while the lowest value was in winter. Soil temperature was the main factor controlling the seasonal fluctuation of soil respiration. The soil respiration and the Q10 value were higher in the impoldering land relative to the upland of the same climate zone.
引文
曹建华,潘根兴,袁道先,等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].水土保持学报, 2004, 18(6): 224-229.
    陈国潮.土壤微生物生物量熏蒸提取法中转换系数KEC的测定研究[J].土壤通报, 2002, 33(5): 392-395.
    陈英,陈蓓,张军,等.免耕覆盖对土壤微生物量碳的影响[J].生态环境, 2008, 17(6): 2370-2373.
    程维信,姜丽芬.陆地生态系统的地下过程[C].陈吉泉,李博,马志军,等主编.生态学家面临的挑战——问题与途径. 北京:高等教育出版社, 2005: 40-67.
    窦鸿身,马武华,张圣照,等.太湖流域围湖利用的动态变化及其对环境的影响[J].环境科学学报, 1988, 8(1): 1-9.
    樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持研究, 2003, 10(1): 85-87.
    高会议,郭胜利,刘文兆,等.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态[J].生态学报, 2009, 29(5): 2551-2559.
    葛全胜,赵名茶,郑景云. 20世纪中国土地利用变化研究[J].地理学报, 2000, 55(6): 698-706.
    耿玉清,余新晓,岳永杰,等.北京山地针叶林与阔叶林土壤活性有机碳库的研究[J].北京林业大学学报, 2009, 31(5): 19-24.
    国家林业局.森林土壤分析方法[M].北京:中国标准出版社, 2000.
    贺宏奎,常建国,李新平.环境与生物因子对土壤呼吸及其组分的影响[J].世界林业研究, 2009, 22(2): 39-44.
    黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报, 1999, 19(3): 324-328.
    黄黎英,曹建华,周莉,等.不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J].生态环境, 2007, 16(4): 1282-1288.
    黄群,姜加虎.近50年来洞庭湖区的内湖变化[J].湖泊科学, 2005, 17(3): 202-206.
    黄雪夏,唐晓红,魏朝富,等.利用方式对紫色水稻土有机碳与颗粒态有机碳的影响[J].生态环境, 2007, 16(4): 1277-1281.
    姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学, 2005, 41(1): 10-13.
    姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报, 2003, 20(1): 8-11.
    焦坤,李忠佩.红壤稻田土壤溶解有机碳含量动态及其生物降解特征[J].土壤, 2005, 37(3): 272-276.
    黎荣彬.土壤微生物生物量碳研究进展[J].广东林业科技, 2008, 24(6): 65-69.
    李博主编.生态学[M].北京:高等教育出版社, 2000.
    李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J].土壤与环境, 2002, 11(4): 422-429.
    李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报, 2003, 20(2): 119-123.
    李维福,解宏图,何红波,等.颗粒有机质的来源、测定及其影响因素[J].生态学杂志, 2007, 26(11): 1849-1856.
    李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J].应用生态学报, 2006, 17(10): 1827-1831.
    李新国,江南,王红娟,等.近30年来太湖流域湖泊岸线形态动态变化[J].湖泊科学, 2005, 17(4): 294-298.
    李玉武.次生植被下土壤活性有机碳组分季节动态研究[D].成都:中国科学院成都生物研究所, 2006.
    李云玲,谢英荷,洪坚平.生物菌肥在不同水分条件下对土壤微生物生物量碳、氮的影响[J].应用与环境生物学报, 2004, 10(6): 790-793.
    李志安,邹碧,丁永祯,等.森林凋落物分解重要影响因子及其研究进展[J].生态学报, 2004, 23(6): 77-83.
    林滨,陶澍.沉积物中水溶性天然有机物吸着系数的动态测定[J].地理科学, 1996, 16(2): 164-169.
    林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志, 2004, 23(1): 60-64.
    刘文娜,吴文良,王秀斌,等.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报, 2006, 12(3): 406-411.
    刘兴土,马学慧.三江平原自然环境变化与生态保育[M].北京:科学出版社, 2002.
    栾军伟,向成华,骆宗诗,等.森林土壤呼吸研究进展[J].应用生态学报, 2006, 17(12): 2451-2456.
    倪进治,徐建民,谢正苗.土壤水溶性有机碳的研究进展[J].生态环境, 2003, 12(1): 71-75.
    倪进治,徐建民,谢正苗,等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报, 2003, 40(5): 724-730.
    潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究, 2000, 20(4): 325-334.
    彭佩钦,张文菊,童成立,等.洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J].应用生态学报, 2005, 16(10): 1872-1878.
    权伟,徐侠,王丰,等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志, 2008, 27(7): 1095-1103.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志, 1999, 18(3): 32-38.
    史奕,陈欣,杨雪莲,等.土壤“慢”有机碳库研究进展[J].生态学杂志, 2003, 22(5): 108-112.
    宋开山,刘殿伟,王宗明,等.三江平原过去50年耕地动态变化及其驱动力分析[J].水土保持学报, 2008, 22(4): 75-81.
    孙媛媛,季宏兵,罗建美,等.气候驱动的中国陆地生态系统碳循环研究进展[J].首都师范大学学报(自然科学版), 2006, 27(5): 90-95.
    谭和平,陈能武,黄苹.土壤无机元素测定的前处理方法研究[J].中国测试技术, 2003, 9(5): 3-6.
    谭炯锐,查同刚,张志强,等.土壤温湿度对北京大兴杨树人工林土壤呼吸的影响[J].生态环境学报, 2009, 18(5): 2308-2315.
    唐国勇,黄道友,童成立,等.红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J].应用生态学报, 2006, 17(3): 429-433.
    唐洁,汤玉喜,王胜,等.洞庭湖区滩地杨树人工林土壤呼吸动态分析[J].湖南林业科技, 2009, 36(2): 10-12.
    万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报, 2008, 28(12): 5980-5986.
    万忠梅,宋长春,杨桂生,等.三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报, 2009, 29(2): 406-412.
    王艮梅,周立祥.陆地生态系统中水溶性有机物动态及其环境学意义[J].应用生态学报, 2003, 14(11): 2019-2025.
    王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J].应用生态学报, 2008, 19(1): 37-42.
    王国兵,阮宏华,唐燕飞,等.森林土壤微生物生物量动态变化研究进展[J].安徽农业大学学报, 2009a, 36(1): 100-104.
    王国兵,唐燕飞,阮宏华,等.次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子[J].生态学报, 2009b, 29(2): 0966-0975.
    汪景宽,李丛,于树,等.不同肥力棕壤溶解性有机碳、氮生物降解特性[J].生态学报, 2008, 28(12): 6165-6167.
    王连峰,潘根兴,石盛莉,等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报, 2002, 8(1): 29-34.
    王连峰,潘根兴,石盛莉,等.庐山6种树木立地土壤溶液铝形态与溶解有机碳变化[J].应用生态学报, 2003, 14(10): 1602-1606.
    汪伟,杨玉盛,陈光水,等.罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J].生态学杂志, 2008, 27(6): 924-928.
    魏朝富,高明,谢德体,等.有机肥对紫色水稻土水稳性团聚体的影响[J].土壤通报, 1995, 26(3): 114-116.
    吴建国,张小全,王彦辉,等.土地利用变化对土壤物理组分中有机碳分配的影响[J].林业科学, 2002, 38(4): 19-29.
    吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学, 2003, 5(9): 65-77.
    吴金水,肖和艾.土壤微生物生物量碳的表观周转时间测定方法[J].土壤学报, 2004, 41(3): 401-407.
    肖复明,范少辉,汪思龙,等.湖南会同毛竹林土壤碳循环特征[J].林业科学, 2009, 45(6): 11-15.
    徐秋芳.森林土壤活性有机碳库的研究[D].杭州:浙江大学, 2003: 43-45.
    徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究[J].水土保持学报, 2004, 18(6): 84-87.
    徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报, 2005, 27(2): 18-22.
    徐侠,王丰,栾以玲,等.武夷山不同海拔植被土壤易氧化碳[J].生态学杂志, 2008, 27(7): 1115-1121.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 2002, 39(1): 89-96.
    杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响[J].生态学杂志, 2005, 24(8): 887-892.
    杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报, 2004, 35(4): 502-506.
    杨林章,徐琪主编.土壤生态系统[M].北京:科学出版社, 2005: 70-71.
    杨玉盛,郭剑芬,陈光水,等.森林生态系统DOM的来源、特性及流动[J].生态学报, 2003, 23(3): 547-558.
    张海燕,张旭东,李军,等.土壤微生物量测定方法概述[J].微生物学杂志, 2005, 25(4): 95-99.
    张甲珅,陶澍,曹军.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报, 2000, 31(4): 174-176.
    张剑,汪思龙,王清奎,等.不同森林植被下土壤活性有机碳含量及其季节变化[J].中国生态农业学报, 2009, 17(1): 41-47.
    张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境, 2003, 12(4): 500-504.
    张金波,宋长春,杨文燕.小叶章湿地表土水溶性有机碳季节动态变化及影响因素分析[J].环境科学学报, 2005, 25(10): 1397-1402.
    张磊,张磊.土地耕作后微生物量碳和水溶性有机碳的动态特征[J].水土保持学报, 2008, 22(2): 146-150.
    张履勤,章明奎.土地利用方式对红壤和黄壤颗粒有机碳和碳黑积累的影响[J].土壤通报, 2006, 37(4): 662-665.
    张毅,曾群,陈玉华,等. 20世纪50-70年代的围湖垦殖与江汉平原湖泊湿地演化[J].湿地科学与管理, 2009, 5(2): 52-55.
    张于光,张小全,肖烨.米亚罗林区土地利用变化对土壤有机碳和微生物量碳的影响[J].应用生态学报, 2006, 17(11): 2029-2033.
    赵劲松,张旭东,袁星,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报, 2003, 14(1): 126-130.
    赵淑清,方精云,陈安平,等.洞庭湖区近50年土地利用/覆盖的变化研究[J].长江流域资源与环境, 2002, 11(6): 536-542.
    周玮.花江峡谷喀斯特土壤酶与可氧化有机碳研究[D].贵阳:贵州大学, 2007.
    周焱.武夷山不同海拔土壤有机碳库及其矿化特征[D].南京:南京林业大学, 2009: 54-69.
    朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物量碳和易氧化态碳的比较[J].林业科学研究, 2006, 19(4): 523-526.
    Adachi M, Bekku Y S, Konuma A, et al. Required sample size for estimating soil respiration rates in large areas of two tropical forests and of two types of plantation in Malaysia[J]. Forest Ecology and Management, 2005, 210: 455-459.
    Amiro B D, Ian MacPherson J, Desjardins R L, et al. Post-fire carbon dioxide fluxes in the western Canadian boreal forest: evidence from towers, aircraft and remote sensing[J]. Agricultural and Forest Meteorology, 2003, 115: 91-107.
    Andersson S, Nilsson S I, Saetre P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH[J]. Soil Biology and Biochemistry, 2000, 32: 1-10.
    Andrews J A, Harrison K G, Matamala R, et al. Separation of root respiration from total soil respiration using carbon-13 labeling during free-air carbon dioxide enrichment (FACE)[J]. Soil Science Society of America Journal, 1999, 63: 1429-1435.
    Balesdent J, Mariotti A, Guillet B. Natural 13C abundance as a tracer for studies of soil organic matter dynamics[J]. Soil Biology and Biochemistry, 1987, 19: 25-30.
    Bauhus J, ParéD, C?téL. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biology and Biochemistry, 1998, 30: 1077-1089.
    Beata M, Pedro L M, Eleno T, et al. No tillage and crop rotation effects on soil aggregation and organic carbon in a rhodic ferralsol from southern Brazil[J]. Soil Tillage Research, 2005, 80: 185-210.
    Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46: 1459-1466.
    Bolan N S, Baskaran S, Thiagarajan S. An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water[J]. Communications in Soil Science and Plant Analysis, 1996, 27: 2723-2737.
    Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396: 570-572.
    Borken W, Muhs A, Beese F. Application of compost in spruce forests: effects on soil respiration, basal respiration and microbial biomass[J]. Forest Ecology and Management, 2002, 159: 49-58.
    Bottner P. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N- labelled plant material[J]. Soil Biology and Biochemistry, 1985, 17: 329-337.
    Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology and Management, 2004, 196: 43-56.
    Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17: 837-842.
    Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 1982, 14: 319-329.
    Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine[J]. Tree Physiology, 2003, 23: 273-280.
    Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56: 777-783.
    Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils[J]. Soil Science Society of America Journal, 1994, 58: 123-130.
    Campbell C A, Biederbeck V O, Wen G, et al. Seasonal trends in selected soil biochemical attributes: effects of crop rotation in the semiarid prairie[J]. Canadian Journal of Soil Science, 1999a, 79: 73-84.
    Campbell C A, Lafond G P, Biederbeck V O, et al. Seasonal trends in soil biochemical attributes: effects of crop management on a black chernozem[J]. Canadian Journal of Soil Science, 1999b, 79: 85-97.
    Campbell J L, Sun O J, Law B E. Supply-side controls on soil respiration among Oregon forests[J]. Global Change Biology, 2004, 10: 1857-1869.
    Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys[J]. Soil Science, 2001, 166: 61-67.
    Collier K J, Jackson R J, Winterbourn M J. Dissolved organic carbon dynamics of developed and undeveloped wetland catchments in Westland, New Zealand[J]. Archiv fur Hydrobiologie, 1989, 117: 21-38.
    Concilio A, Ma S, Li Q, et al. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests[J]. Canadian Journal of Forest Research, 2005, 35: 1581-1592.
    Conteh A, Lefroy R D B, Blair G J. Dynamics of organic matter in soil as determined by variations in 13C/12C isotopic ratios and fractionation by ease of oxidation[J]. Australian Journal of Soil Research, 1997, 35: 881-890.
    Contin M, Corcimaru S, De Nobili M, et al. Temperature changes and the ATP concentration of the soil microbial biomass[J]. Soil Biology and Biochemistry, 2000, 32: 1219-1225.
    Dalva M, Moore T R. 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment[J]. Biogeochemistry, 1991, 15: 1-19.
    Delprat L, Chassin P, Linères M, et al. Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation[J]. European Journal of Agronomy, 1997, 7: 201-210.
    Domisch T, Finér L, Lehto T, et al. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings[J]. Plant and Soil, 2002, 239: 173-185.
    Epron D, Nouvellon Y, Roupsard O, et al. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo[J]. Forest Ecology and Management, 2004, 202: 149-160.
    Follett R F. CRP and microbial biomass dynamics in temperate climates[C]. In: Lal R, Kimble J M, Follett R F, et al. eds. Management of Carbon Sequestration in Soil. Boca Raton: CRC Press Inc., 1997.
    Gale W J, Cambardella C A, Bailey T B. Surface residue- and root-derived carbon in stable and unstable aggregates[J]. Soil Science Society of America Journal, 2000, 64: 196-201.
    Golchin A, Oades J M, Skjemstad J O, et al. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy[J]. Australian Journal of Soil Research, 1994a, 32: 285-309. Golchin A, Oades J M, Skjemstad J O, et al. Soil structure and carbon cycling[J]. Australian Journal of Soil Research, 1994b, 32: 1043-1068.
    Gregorich E G, Ellert B H, Monreal C M. Turnover of soil organic matter and storage of corn residue carbon estimated from natural super 13C abundance[J]. Canadian Journal of Soil Science, 1995, 75: 161-167.
    Gregorich E G, Liang B C, Ellert B H, et al. Fertilization effects on soil organic matter turnover and corn residue C storage[J]. Soil Science Society of America, 1996, 60: 472-476.
    Gregorich E G, Voroney R P, Kachanoski R G. Turnover of carbon through the microbial biomass in soils with different texture [J]. Soil Biology and Biochemistry, 1991, 23: 799-805.
    Hassink J, Whitmore A P. A model of the physical protection of organic matter in soils[J]. Soil Science Society of America Journal, 1997, 61: 131-139.
    Heyes A, Moore T R. The influence of dissolved organic carbon and anaerobic conditions on mineral weathering[J]. Soil Science, 1992, 154: 226-236.
    Insam H, Domsch K H. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites[J]. Microbial Ecology, 1988, 15: 177-188.
    Islam K R, Mulchi C L, Ali A A. Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil[J]. Global Change Biology, 2001, 6: 255-265.
    Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia, 1996, 108: 389-411.
    Janssens I A, Kowalski A S, Ceulemans R. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model[J]. Agricultural and Forest Meteorology, 2001, 106: 61-69.
    Janzen H H. Carbon cycling in earth systems—a soil science perspective[J]. Agriculture, Ecosystems and Environment, 2004, 104: 399-417.
    Jenkinson D S, Ladd J N. Microbial biomass in soil: measurement and turnover[C]. In: Paul E A, Ladd J N eds. Soil Biochemistry. New York: Marcel Dekker Inc., 1981.
    Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8: 209-213.
    Jiang P K, Xu Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation[J]. Pedosphere, 2006, 16: 505-511.
    Jiang P K, Xu Q F, Xu Z.H, et al. Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China[J]. Forest Ecology and Management, 2006, 236: 30-36. Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10: 423-436.
    Joergensen R G, Brookes P C, Jenkinson D S. Survival of the soil microbial biomass at elevated temperatures[J]. Soil Biology and Biochemistry, 1990, 22: 1129-1136.
    Jonasson S, Michelsen A, Schmidt I K, et al. Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: implications for plant nutrient uptake[J]. Oecologia, 1996, 106: 507-515.
    Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 2006, 38: 991-999.
    Kaiser K, Guggenberger G, Zech W. Sorption of DOM and DOM fractions to forest soils[J]. Geoderma, 1996, 74: 281-303.
    Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165: 277-304.
    Kandeler E, Tscherko D, Bardgett R D, et al. The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem[J]. Plant and Soil, 1998, 202: 251-262.
    Kaneko N, McLean M A, Parkinson D. Do mites and Collembola affect pine litter fungal biomass and microbial respiration?[J]. Applied Soil Ecology, 1998, 9: 209-213.
    Kaschuk G, Alberton O, Hungria M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability[J]. Soil Biology and Biochemistry, 2009, 08: 1-13.
    Khomik M, Arain M A, McCaughey J H. Temporal and spatial variability of soil respiration in a boreal mixedwood forest[J]. Agricultural and Forest Meteorology, 2006, 140: 244-256.
    Kieft T L, Soroker E, Firestone M K. Microbial biomass response to a rapid increase in water potential when dry soil is wetted[J]. Soil Biology and Biochemistry, 1987, 19: 119-126.
    Kirschbaum M U F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry, 1995, 27: 753-760.
    Kuikman P J, Lekkerkerk L J A, Van Veen J A, et al. Carbon dynamics of a soil planted with wheat under elevated atmosphericCO2 concentrations[C]. In: Wilson W S eds. Advances in soil organic matter research: The impact on agriculture and the environment. Cambridge: The Royal Society of Chemistry, 1991.
    Kuiters A T, Mulder W. Water-soluble organic matter in forest soils[J]. Plant and Soil, 1993, 152: 225-235.
    Landgraf D, Klose S. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems[J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 9-16.
    Lee K H, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient[J]. Forest Ecology and Management, 2003, 185: 263-273.
    Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155-156: 399-402.
    Liang N S, Nakadai T, Hirano T, et al. In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest[J]. Agricultural and Forest Meteorology, 2004, 123: 97-117.
    Liebig M A, Tanaka D L, Wienhold B J. Tillage and cropping effects on soil quality indicators in the northern Great Plains[J]. Soil and Tillage Research, 2004, 78: 131-141.
    Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils[J]. Soil Biology and Biochemistry, 1999, 31: 1031-1038.
    Lützow M V, K?gel-Knabner I, Ekschmitt K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39: 2183-2207.
    Ma S, Chen J, Butnor J R, et al. Biophysical controls on soil respiration in the dominant patch types of an old-growth, mixed-conifer forest[J]. Forest Science, 2005, 51: 221-233.
    Mallik A U, Hu D. Soil respiration following site preparation treatments in boreal mixedwood forest[J]. Forest Ecology and Management, 1997, 97: 265-275.
    McCarthy J F, Williams T M, Liang L, et al. Mobility of natural organic matter in a sandy aquifer[J]. Environmental Science and Technology, 1993, 27: 667-676.
    McDowell W H, Currie W S, Aber J D, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. Water, Air, and Soil Pollution, 1998, 105: 175-182.
    McDowell W H, Likens G E. Origin, composition, and flux of dissolved organic carbon in the hubbard brook valley[J]. Ecological Monographs, 1988, 58: 177-195.
    Mendham D S, Heagney E C, Corbeels M, et al. Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus[J]. Soil Biology and Biochemistry, 2004, 36: 1067-1074.
    Mendham D S, Sankaran K V, O'Connell A M, et al. Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment[J]. Soil Biology and Biochemistry, 2002, 34: 1903-1912. Meyer J L, Edwards R T, Risley R. Bacterial growth on dissolved organic carbon from a blackwater river[J]. Microbial Ecology, 1987, 13: 13-29.
    Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science, 1999, 50: 579-590.
    Michelsen A, Andersson M, Jensen M, et al. Carbon stocks, soil respiration and microbial biomass in fire-prone tropical grassland, woodland and forest ecosystems[J]. Soil Biology and Biochemistry, 2004, 36: 1707-1717.
    Micks P, Aber J D, Boone R D, et al. Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests[J]. Forest Ecology and Management, 2004, 196: 57-70.
    Moore T R, De Souza W, Koprivnjak J F. Controls on the sorption of dissolved organic carbon by soils[J]. Soil Science, 1992, 154: 120-129.
    Mtambanengwe F, Mapfumo P. Smallholder farmer management impacts on particulate and labile carbon fractions of granitic sanday soils in Zimbabwe[J]. Nutrient Cycling in Agroecosystems, 2008, 81: 1-15.
    Mubarak A R, Elshami O M E, Azhari A A. Long- and short-term effects of cultivation on properties of a Vertisol under sugarcane plantation[J]. Soil and Tillage Research, 2005, 84: 1-6. Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N[J]. Soil Biology and Biochemistry, 1991, 23: 171-176.
    Ohashi M, Finér L, Domisch T, et al. CO2 efflux from a red wood ant mound in a boreal forest[J]. Agricultural and Forest Meteorology, 2005, 130: 131-136.
    Ohashi M, Gyokusen K, Saito A. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptomeria japonica D. Don) forest floor using an open-flow chamber method[J]. Forest Ecology and Management, 1999, 123: 105-114. Ohno T, Crannell B S. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption[J]. Journal of Environmental Quality, 1996, 25: 1137-1143.
    O’Neill K P, Kasischke E S, Richter D D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 2002, 32: 1525-1541.
    Orchard V A, Cook F J. Relationship between soil respiration and soil moisture[J]. Soil Biology and Biochemistry, 1983, 15: 447-453.
    Peng S S, Piao S L, Wang T, et al. Temperature sensitivity of soil respiration in different ecosystems in China[J]. Soil Biology and Biochemistry, 2009, 41: 1008-1014.
    Pinheiro E F M, Pereira M G, Anjos L H C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil[J]. Soil and Tillage Research, 2004, 77: 79-84.
    Post W M, Pastor J, Zinke P J, et al. Global patterns of soil nitrogen storage[J]. Nature, 1985, 317: 613-616. Priess J A, F?lster H. Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments[J]. Soil Biology and Biochemistry, 2001, 33: 503-509.
    Pypker T G, Fredeen A L. Ecosystem CO2 flux over two growing seasons for a sub-Boreal clearcut 5 and 6 years after harvest[J]. Agricultural and Forest Meteorology, 2002, 114: 15-30.
    Pypker T G, Fredeen A L. Below ground CO2 efflux from cut blocks of varying ages in sub-boreal British Columbia[J]. Forest Ecology and Management, 2003, 172: 249-259.
    Qualls R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall, soil solution and stream water[J]. Soil Science Society of America Journal, 1992, 56: 578-586.
    Quédraogo E, Mando A, Stroosnijder L. Effects of tillage, organic resources and nitrogen fertilizer on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa[J]. Soil and Tillage Research, 2006, 91: 57-67.
    Quideau S A, Bockheim J G. Biogeochemical cycling following planting to red pine on a sandy prairie soil[J]. Journal of Environmental Quality, 1997, 26: 1167-1175.
    Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9: 23-36.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B: 81-99.
    Raich J W, Tufekciogul A. Vegetation and soil respiration: Correlations and controls[J]. Biogeochemistry, 2000, 48: 71-90.
    Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest[J]. Soil Biology and Biochemistry, 2000, 32: 35-45.
    Rees R M, Parker J P. Filtration increases the correlation between water extractable organic carbon and soil microbial activity[J]. Soil Biology and Biochemistry, 2005, 37: 2240-2248.
    Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 2002, 8: 851-866.
    Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, 2005, 11: 1024-1041.
    Rosacker L L, Kieft T L. Biomass and adenylate energy charge of a grassland soil during drying[J]. Soil Biology and Biochemistry, 1990, 22: 1121-1127.
    Samuelson L J, Johnsen K, Stokes T, et al. Intensive management modifies soil CO2 efflux in 6-year-old Pinus taeda L. stands[J]. Forest Ecology and Management, 2004, 200: 335-345.
    Sarmiento L, Bottner P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: indications for fertility restoration[J]. Applied Soil Ecology, 2002, 19: 79-89.
    Sato A, Seto M. Relationship between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil[J]. Communications in Soil Science and Plant Analysis, 1999, 30: 2593-2605.
    Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemical Cycles, 1994, 8: 279-293.
    Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology and Biochemistry, 1996, 28: 1061-1066.
    Schinner F, ?hlinger R, Kandeler E, et al. Methods in soil biology[M]. Berlin: Springer-Verlag, 1995.
    Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48: 7-20.
    Scott-Denton L E, Sparks K L, Monson R K. Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest[J]. Soil Biology and Biochemistry, 2003, 35: 525-534.
    Shen R F, Brookes P C, Powlson D S. Effect of long-term straw incorporation on soil microbial biomass and C and N dynamics[J]. Pedosphere, 1997, 7: 297-302.
    Shen S M, Brookes P C, Jenkinson D S. Soil respiration and the measurement of microbial biomass C by the fumigation technique in fresh and in air-dried soil[J]. Soil Biology and Biochemistry, 1987, 19: 153-158.
    Shrestha R K, Ladha J K, Gami S K. Total and organic soil carbon in cropping systems of Nepal[J]. Nutrient Cycling in Agroecosystems, 2006, 75: 257-269.
    Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32: 2099-2103.
    Sleutel S, De Neve S, Németh T, et al. Effects of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. European Journal of Agronomy, 2006, 25: 280-288.
    Smith J L, Paul E A. The significance of soil microbial biomass estimations[C]. In: Bollag J M, Stotzky G eds. Soil Biochemistry. New York: Marcel Dekker Inc., 1991.
    Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J]. Soil Biology and Biochemistry, 2002, 34: 651-660.
    Striegl R G, Wickland K P. Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland[J]. Canadian Journal of Forest Research, 1998, 28: 534-539.
    Su Y Z. Soil carbon and nitrogen sequestration following the conversion of cropland to alfalfa forage land in northwest China[J]. Soil and Tillage Research, 2007, 92: 181-189.
    Subke J A, Reichstein M, Tenhunen J D. Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany[J]. Soil Biology and Biochemistry, 2003, 35: 1467-1483.
    Subke J A, Tenhunen J D. Direct measurements of CO2 flux below a spruce forest canopy[J]. Agricultural and Forest Meteorology, 2004, 126: 157-168.
    Tessier L, Gregorich E G, Topp E. Spatial variability of soil microbial biomass measured by the fumigation extraction method, and KEC as affected by depth and manure application[J]. Soil Biology and Biochemistry, 1998, 30: 1369-1377.
    Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmosphere carbon dioxide driven by temperature change[J]. Science, 1996, 272: 393-396.
    Van Gestel M, Ladd J N, Amato M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: influence of sequential fumigation, drying and storage[J]. Soil Biology and Biochemistry, 1991, 23: 313-322.
    Van Veen J A, Ladd J N, Martin J K, et al. Turnover of carbon, nitrogen and phosphorus through the microbial biomass in soils incubated with 14C-, 15N- and 32P- labelled bacterial cells[J]. Soil Biology and Biochemistry, 1987, 19: 559-565.
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19: 703-707.
    Verburg P S J, Van Dam D, Hefting M M, et al. Microbial transformations of C and N in a boreal forest floor as affected by temperature[J]. Plant and Soil, 1999, 208: 187-197.
    Vestgarden L S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen[J]. Soil Biology and Biochemistry, 2001, 33: 465-474.
    Wander M M, Bidart M G, Aref S. Tillage impacts on depth distribution of total and particulate organic matter in three Illinois soils[J]. Soil Science Society of America Journal, 1998, 62: 1704-1711.
    Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China[J]. Global Change Biology, 2006, 12: 2103-2114.
    Wang F E, Chen Y X, Tian G M, et al. Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern China[J]. Nutrient Cycling in Agroecosystems, 2004, 68: 181-189.
    Wang Q K, Wang S L. Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation[J]. Journal of Forestry Research, 2006, 17: 197-200.
    Wang W J, Dalal R C, Moody P W, et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content[J]. Soil Biology and Biochemistry, 2003, 35: 273-284.
    Wang Y, Shen Q R, Yang Z M, et al. Size of microbial biomass in soils of China[J]. Pedosphere, 1996, 6: 265-272.
    Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biological Reviews, 1992, 67: 321-358.
    Widén B. Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest[J]. Agricultural and Forest Meteorology, 2002, 111: 283-297.
    Wiseman P E, Seiler J R. Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L. ) on the Virginia Piedmont[J]. Forest Ecology and Management, 2004, 192: 297-311.
    Wüthrich C, Schaub D, Weber M, et al. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland[J]. Catena, 2002, 48: 201-215.
    Xu M, Qi Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California[J]. Global Change Biology, 2001, 7: 667-677.
    Zheng Z M, Yu G R, Fu Y L, et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: A trans-China based case study[J]. Soil Biology and Biochemistry, 2009, 41: 1531-1540.
    Zsolnay A, G?rlitz H. Water extractable organic matter in arable soils: Effects of drought and long-term fertilization[J]. Soil Biology and Biochemistry, 1994, 26: 1257-1261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700