V型热解火焰合成碳纳米管的催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米碳管(CNTs)作为一种新型碳材料,具有很好的力学性能、独特的物理化学性质、电学性质和很强的热稳定性,在电子材料、复合材料增强剂、储氢等方面具有潜在的应用价值。合成碳纳米管必需的三要素为:碳源、热源、催化剂,而催化剂具有核心作用,催化剂的种类和性能直接决定了合成碳纳米管的产量和形貌。
     本文采用V型热解火焰法合成碳纳米管,重点从催化剂角度着手,研究Fe(CO)5和Fe-Mo双金属氧化物做催化剂催化合成碳纳米管的情况。主要考察合成温度、取样方式、取样时间、气体浓度、催化剂制备条件等反应条件对碳纳米管产量和形貌的影响,以获得大量形态单一、直径均匀、管径细小的CNTs为目的,得出最佳的实验工况。
     结果表明:Fe(CO)5做催化剂,外部基板取样效果理想,碳纳米管的产量和形貌较好,但管径普遍较大。而Fe(CO)5内部取样得到了管径细小的碳纳米管,最细管径达8~10nm,但管的产量较低。Fe(CO)5内部取样的最佳实验工况为:合成温度950℃C,CO流量0.4L/min,取样时间5min。实验证明单金属催化剂中加入第二种组分Mo能够有效提高催化剂活性,Fe-Mo双金属催化剂内部取样得到的碳纳米管产量和形貌都较好,说明此种催化剂比较适合在高温下合成碳纳米管。最佳实验条件为:催化剂煅烧温度600℃,合成温度900℃,取样时间1Omin。通过对取样方式的改进:对催化剂在无碳源的情况下进行预热,实验结果还得到了比较典型的定向碳纳米管阵列。不同催化剂催化合成碳纳米管的最佳生长条件不同,也突出了催化剂的核心作用。
Carbon nanotubes (CNTs) as a new type of carbon materials has the very good mechanical properties, the unique physical and chemical, electrical properties and strong thermal stability.It has a potential application value in the electronic materials, composite material strengthening agent, hydrogen storage. Synthetic carbon nanotubes required three elements of:carbon sources, heat source, catalyst. And catalyst has a core function, the category and performance of catalysts directly determine the synthetic production and morphology of carbon nanotubes.
     In this article, the V-type pyrolysis flame synthesis method of carbon nanotubes, from the perspective of catalyst, the Fe (CO)5and Fe-Mo double metal oxide did catalytic synthesis of carbon nanotubes. We mainly inspected the synthesis temperature, sampling method, sampling time, gas concentration and the catalyst preparation conditions.In order to get a great deal of a single, diameter even, and the form of small diameter CNTs for the purpose, we obtained the best experimental condition.
     The results showed that:the Fe (CO)5did catalyst, external substrate sampling got ideal effect, carbon nanotubes yield and morphology is better, but generally larger diameter. And Fe (CO)5internal sampling got small diameter of carbon nanotubes, the most fine pipe diameter of8~10nm, but the tube production is low. Fe (CO)5internal sampling best experimental condition was:synthesis temperature950℃, CO flow0.4L/min, sampling time5min. In a single metal catalyst added a second component Mo can effectively improve the catalytic activity. Fe-Mo double metal catalysts internal sampling got the better carbon nanotubes yield and morphology, explained for this catalyst, high temperature was suitable for synthetic carbon nanotubes. Best experimental conditions for:catalyst calcining temperature600℃, the synthesis temperature900℃,sampling time10min. Through the sampling method improvement:no carbon source of catalysts in the preheated, experimental results also had a good directional carbon nanotubes array. In the different catalysts, carbon nanotubes best growth condition is different, this also showed the catalyst is the core of the synthesis of carbon nanotubes.
引文
[1]Kroto HW,Heath JR,O'Brien SC,et al.C60:Buckyminister-fullerene.Nature,1985,3 18:162-163
    [2]Kratschmer W,Lamb LD,Fostiropoulos K,et al.Solid C60:a new form of carbon. Nature,1991,347:354-358
    [3]DING Zhao-Yong, SUN Bao-Min, LIU Yuan-Chao, et al. Pyramid Shaped Pyr olysis Flame Catalyst Synthesis of Carbon Nanotubes [J]. Testing and Evaluati on of Inorganic Materials,2011,177:421-426(EI收录号:20110413613823)
    [4]Iijima Sumio, Ichihashi Toshinari. Single-Shell Carbon Nanotubes of 1-nm Dia meter [J]. Nature,1993, V363 (6430):603-605
    [5]D.S. Bethune, C.H. Klang, M.S. de Vries, et al. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls [J]. Nature,1993, V363 (6 430):605-607
    [6]Ebbesen TW,Lezec HJ,Hiura H,et al. Electrical conductivity of individual carb on nanotubes. Nature,1996,382:54-56
    [7]Hamada N,Sawada S,Oshiyama A. New one-dimensional conductors:graphitic microtubules. Phys Rev Lett,1992,68(10):1519-1522
    [8]倪星元,姚兰芳,沈军,周斌.纳米材料制备技术.化学工业出版社,2007
    [9]T.E.Thostenson,Z.F.Ren, T.W. Chou, Advances in the science and technology o f carbon naotubes and their composites:a review, Compositers Science and Te chnology,2001,61:1899-1912
    [10]J.W. Mintmire, B.I. Dunlap, C.T. White. Are Fullerene Tubules Metallic [J]. P hysical Review Letters,1992, V68 (5):631-634
    [11]R.A. Jiahi, J. Bragin, L. Lou. Electronic Structure of Short and Long Carbon Nanotubes from First Principles [J]. Physical Review B,1999, V59 (15):9862 9865
    [12]A.Y. Kasumov, R. Deblock, M. Kociak, et al. Supercurrents through Single-Walled Carbon Nanotubes [J]. Science,1999, V284 (5419):1508-1511
    [13]Young Rae Cho, Jin Ho Lee, Yoon Ho Song, et al. Photolithography-Based C arbon Nanotubes Patterning for Field Emission Displays [J]. Materials Science and Engineering B,2001, V79 (2):128-132
    [14]韦进全,张先峰,王昆林.碳纳米管宏观体.清华大学出版社,2006
    [15]Calvert Paul. Nanotube Composites-a Recipe for Strength [J]. Nature,1999, V399 (6733):210-211
    [16]M.S.Dresselhaus, Down the straight and narrow, Nature,1992,358:195-196
    [17]Qin LC,Zhao XL,Hirahara K,et al. Materials science-The smallest carbon nan otube.Nature,2000,408:50
    [18]P.Kim,L.Shi,A.Majumdar,P.L.MaEuen. Thermal transport measurements of indivi dual multiwalled nanotubes. Phys.Rev.Lett.,2001,87:215502
    [19]Darkrim F D. Monte Carlo simulations of hydrogen adsorption in singe-walled carbon nanotubes. Journal of Chemical Physics,1988,109:4981
    [20]Laurent Ch, Peigney A, Flahaut E, et al. Synthesis of carbon nanotubes-Fe-Al 203 powders. Influence of the characteristic of starting All.8Fe0.2O3 oxide s olid solution. Material Research Bulletin.2000,35:661
    [21]孙晓刚,等.碳纳米管的生产及应用[J].人工晶体学报,2001,30(4):398-403
    [22]Zhao T,Liu Y. Large Scale and High Purity Synthesis of Single-walled Carbon nanotubes by Arc Discharge at Controlled Temperatures [J].Carbon,2004,42 (12-13):2765-2768
    [23]Ma R Z, Wei B Q, Xu C L. Morphology Changes of Carbon Nanotubes und er Laser Irradiation[J]. Carbon,2000,38 (4):636-638
    [24]Yokomichi H, Sakai F, IchiharaM, et al. Carbon Nanotubes Synthesized by Th ermal Chemical VaporDeposition UsingM (NO3) n ·mH2O as Catalyst[J]. Phy sica B:Condensed Matter,2002,323
    [25]Toshima N., Harada H., Yamazaki Y.,et al. Catalytic activity and structural an alysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride [J].Phys.Chem.,1992,96,9927-9933.
    [26]Lebedkin S.,Schweiss P.,Single-Wall carbonnanotubes with diameters approachin g 6nm obtained by laser vapor-ization[J].Carbon,2002,40,417-423
    [27]Schmid G., Maihack V.,Lantermann E. Ligand-stabilized metal clusters and col loids:properties and applications[J]. Chem. Soc.,1996,589-595.
    [28]Yokomichi H., Sakai F., Ichihara M.,et al. Carbon nanotubes synthesized by th ermal chemical vapor deposition using M (NO3) n·mH2O as Catalyst[J].Phy sica B:Condensed Matter,2002,323 (124):311-313.
    [29]T.Guo,P. Nikolaev, G.Andrew,et al.Self-Assembly of Tubular Fullerenes. JPhys. Chem,1995,99:10694
    [30]Yokomichi H., Sakai F., Ichihara M.,et al. Carbon nanotubes synthesized by th ermal chemical vapor deposition using M (NO3) n·mH2O as Catalyst[J].Phy sica B:Condensed Matter,2002,323 (124):311-313.
    [31]Ravi Bhatia., Prasad V. Synthesis of multiwall carbon nanotubes by chemical vapor deposition of ferrocene alone[J]. Solid State Communications,2010,150 (7-8):311-315.
    [32]Vander Wal.R.L.Flame synthesis of substrate-supported metal-eatalyzed carbon nanotubes[J].Chemical Physies Letters,2000,324:217-223
    [33]Murray J.Height., Jaek B. Ho ward., Jefferson W. Tester. Flame synthesis of sin gle-walled carbon nanotubes[J].Proceedings of the Combustion Institute.2005,30: 2537-2543
    [34]李磊.V型热解火焰合成碳纳米管的基础研究[D].北京:华北电力大学,2009.
    [35]Randall L. Vander Wals, Lee J. Hall. Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers:growth mechanisms and consequences. Chemical Physics Letter.349(2001):178-184
    [36]Vander Wal RL,Lee J.Hall.Ferrocene as a Precursor Reagent for Metal-Catalyz ed Carbon Nanotubes:Competing Effects.Combustion and Flame,2002.130:27-36
    [37]Diener M D,Nichelson N,Alford J M.Synthesis of single-walled carbon nanotu bes in flames.Phys.Chem.B.2000,104:9615-9620
    [38]丁兆勇.火焰法合成碳纳米管及合成机理研究[D].北京:华北电力大学,2011
    [39]许秉浩.V型热解火焰法合成定向碳纳米管阵列的实验方法研究[D].北京:华北电力大学,2011
    [40]曹清.催化裂解甲烷制备碳纳米管的研究[D].四川:电子科技大学,2004
    [41]J.Sloan,J.Hammer,S.M.Zwiefka,et al.Chem Commun,1998,3:347
    [42]C.G.Xu,J.Sloan,G.Brown,et al.Chem Commun,2000,24:2427
    [43]S. Tang, Z. Zhong, Z. Xiong, et al. Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Ch em. Phys. Lett.,2001,350:19-26
    [44]W.E.Alavarez;B.Kitiyanan;A.Borgna;D.E.Resasco Carbon 39(2001)547-558
    [45]Shunpei Nakazawa,Takeshi Yokomori, Masahiko Mizomoto.Flame synthesis of carbon nanotubes in a wall stagnation flow.Chemical Physics Letters.2005,403: 158-162
    [46]D.Mehn,A.Fonseca,G.Bister,et al.Chem.Phys.Lett.,2004,393(4-6):378
    [47]H.Dai,A.G.Rinzler,P.Nikolaev,et al.Chem.phys.Lett.,1996,260(3-4):471
    [48]Baker R T K. Catalytic growth of carbon filaments. Carbon,1989,27(3):315
    [49]M.Cassell,J.A.Raymakers,J.Kong,et al.Large Scale CVD synthesis of single-wall ed carbon nanotubes.J.Phys.Chem.B,1999,103:6484
    [50]牛志强,方炎.催化剂组分对制备单壁碳纳米管的影响[J].物理学报.2007,56(3),1796-06
    [51]Collins P. G., Zettl A. Unique characteristics of cold cathode carbon nanotubes matrix field emitters[J]. Physical review B,1997,55(15):9391-9399.
    [52]朱宏伟,吴德海,徐才录.碳纳米管[M].北京:机械工业出版社,2004,195-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700